
Invoicing Orders
Achim D. Brucker

October 14, 2008

We present a reference example for data refinement using UML/OCL. The
refinement related proof obligations are proven using HOL-OCL [1, 2].

1 The Invoice System

We present a well-known case study for comparing specification formalisms, e. g., Frap-
pier and Habrias [4] give an overview of several formalization of this case study using
different formalisms.

1.1 Informal Description

Frappier and Habrias [4] describe the InvoicingOrders system informally as follows (see
also http://www.dmi.usherb.ca/~spec/texte-cas-invoicing.htm):

1. The subject is to InvoicingOrders orders.

2. To InvoicingOrders is to change the state of an order (to change it from the state
“pending” to “invoiced”).

3. On an order, we have one and one only reference to an ordered product of a certain
quantity. The quantity can be different to other orders.

4. The same reference can be ordered on several different orders.

5. The state of the order will be changed into “invoiced” if the ordered quantity is
either less or equal to the quantity which is in stock according to the reference of
the ordered product.

6. You have to consider the following two cases:
a) Case 1:

All the ordered references are references in the stock. The stock or the set of
orders may vary:
• due to the entry of new orders or canceled orders;

1

http://www.dmi.usherb.ca/~spec/texte-cas-invoicing.htm

• due to having a new entry of quantities of products in stock at the ware-
house.

But, we do not have to take these entries into account. This means that you
will not receive two entry flows (orders, entries in stock). The stock and the
set of orders are always given to you in an up-to-date state.

b) Case 2:
You do have to take into account the entries of
• new orders;
• cancellations of orders;
• entries of quantities in the stock.

1.2 Formal Specification

In this section, we present a formalization of the Invoice case-study using UML/OCL.
Dupuy et al. [3] already present a UML specification for the InvoicingOrders system. But
this specifications lacks any usage of OCL. Moreover, the use of UML is quite informal,
e. g., their specification is untyped. Our work is inspired by the formalization of Dupuy
et al. [3], in fact, we restrict ourselves to making their specification more rigid. For
example, we provide full type annotation and complete the diagrammatic part of UML
with a detailed OCL specification.

1.2.1 Case 1: Products and Orders

Figure 2 shows the data model of our case study is quite simple. For realizing item 6a we
only need the classes Product and Order. For realizing the item 6b, we also model a class
Warehouse. ?? presents the UML data model of the Invoice system. Table 1 presents
the OCL specification for constraining the state part of the system, i. e., constraining the
datatypes. For example, UML/OCL does not provide a datatype for natural numbers,
therefore we use the datatype Integer and constrain the corresponding attributes to
positive values. ?? describes the behavior of the Invoice case-study, i. e., the precondition
and postconditions of the operations. Overall, this completes the OCL specification.
Finally, ?? presents the complete theory file containing the proofs explained in ??.

theory InvoicingOrders
imports
OCL

begin

1.2.2 Importing The Model

Importing the Model is easy, just use

2

Product

<<create>> Product() : Boolean
supply(qty : Integer) : Boolean
release(qty : Integer) : Boolean

id : Integer
stock : Integer

Order

<<create>> Order(prd : Product,qty : Integer) : OclVoid
cancel() : Boolean
invoice() : Boolean

id : Integer
quantity : Integer
state : String

OrderProduct

1

product

1

order

Figure 1: Case 1: The Invoice Case-study models a simple system for invoicing orders;
thus we need to model at least products, orders, and a warehouse managing
the orders and products.

Product

<<create>> Product() : Boolean
supply(qty : Integer) : Boolean
release(qty : Integer) : Boolean

id : Integer
stock : Integer

Warehouse

getFirstInvoicable() : Order

Order

<<create>> Order(prd : Product,qty : Integer) : OclVoid
cancel() : Boolean
invoice() : Boolean

id : Integer
quantity : Integer
state : String

WarehouseProduct

1

warehouse

0..*

products

OrderProduct

1

product

1

order

WarehouseOrder

1

warehouse

0..*

orders

Figure 2: Case 2: The Invoice Case-study models a simple system for invoicing orders;
thus we need to model at least products, orders, and a warehouse managing
the orders and products.

3

-- --
-- Case 1
-- --
package InvoicingOrders

--
-- 1) Constraining the Data Model
-- ==============================

-- The stock of a Product is always a natural number , i.e., it is a
-- positive Integer . This also ensures the definedness of the stock.
context Product

inv isNat: self.stock >= 0

-- The Product id is unique .
context Product

inv idUnique : Product :: allInstances ()
->forAll (p1:Product , p2: Product | p1.id <> p2.id)

-- The quantity of an Order is always a natural number , i.e., it is
-- a positive Integer . This also ensures the definedness of the
-- quantity .
context Order

inv isNat: self. quantity >= 0

-- The state of an Order should either be ‘pending ’ or ‘invoiced ’.
-- As a direct support for enumeration is not well developed in most
-- CASE tools , we use a String and constrain it to the two
-- alternatives using an invariant .
context Order

inv stateRange : (self.state = ’pending ’)
or (self.state = ’invoiced ’)

-- The Order id is unique .
context Order

inv idUnique : Order :: allInstances ()
->forAll (o1:Order , o2:Order | o1.id <> o2.id)

--
-- 2) Constraining the Dynamic Description
-- =======================================

-- Initialize the state of an Order
context Order :: state : String

init: ’pending ’

-- Create a new Order
context Order :: Order(prd:Product , qty: Integer): OclVoid

pre: qty > 0
pre: self. warehouse .products -> exists (x: Product | x = prd)
pre: not prd. oclIsUndefined ()
post: self. oclIsNew () and self. quantity = qty

-- and self. orderedProduct = prd

-- The state of the order will be changed into " invoiced " if the ordered quantity
-- is either less or equal to the quantity which is in stock according to the
-- reference of the ordered product .

context Order :: invoice () : Boolean
pre: self.state = ’pending ’

-- and self. quantity <= self. orderedProduct .stock
post: self.state = ’invoiced ’ and self. quantity = self. quantity@pre

-- and self. orderedProduct = self. orderedProduct@pre
-- and self. orderedProduct .stock = self. orderedProduct@pre .stock - self. quantity

-- Cancel order as an opposite operation to invoice order
context Order :: cancel () : Boolean

pre: self.state = ’invoiced ’
post: self.state = ’pending ’

and self. quantity = self. quantity@pre and self. product = self. product@pre
and self. product .stock = self. product@pre .stock + self@pre . quantity

-- Create a new Order
context Product :: Product (): Boolean

pre : true
post: self.stock = 0 and self. oclIsNew ()

-- Add quantity of the product to the stock
context Product :: supply (qty: Integer): Boolean

pre: qty > 0
post: self.stock = self. stock@pre + qty

-- Remove quantity of the product from the stock
context Product :: release (qty: Integer): Boolean

pre: self.stock >= qty
post: self.stock = self. stock@pre - qty

endpackage

-- --
-- -- Case 2
-- --
package InvoicingOrders

--
-- 1) Constraining the Data Model
-- ==============================
-- First , we present several invariants on the static data model. These
-- type constraints

-- There is one and only one Warehouse .
context Warehouse

inv isStatic : self. allInstances ()-> size () = 1

-- All products are in the Warehouse .
context Product

inv isInWarehouse :
not self. warehouse . oclIsUndefined ()

-- -- All orders are in the Warehouse .
context Order

inv isInWarehouse : not self. warehouse . oclIsUndefined ()

--
-- 2) Constraining the Dynamic Description
-- =======================================

-- Create a new Order
context Order :: Order(prd:Product ,qty: Integer): OclVoid

pre: self. warehouse .products -> exists (x: Product | x = prd)

-- Warehouse management
-- context Warehouse :: getFirstInvoicable (): Order
-- pre: self.orders -> exists (x:Order |
-- x.state = ’pending ’ and x. quantity <= x. product .stock)
-- body: self.orders ->any(x:Order |
-- x.state = ’pending ’ and x. quantity <= x. product .stock)

endpackage

Table 1: Invoicing Orders

4

import_model InvoicingOrders.zargo InvoicingOrders.ocl

which loads the data model and the OCL specification of our case study. The import
of our model takes about 10 seconds and already generates . . . of conservative definitions
and proven theorems.

1.2.3 Proving simple properties

First we show, that a very simple property of OCL: an positive Integer is allways defined:
lemma foo: τ � Product.inv.isNat self =⇒ τ � ∂ Product.stock self

apply(frule isDefined_if_valid ′)
apply(simp add: Product.inv.isNat_def)
done

lemma foo [simp]: τ � ∂ (0::(′a Integer))
apply(auto)
done

lemma [simp]: τ � 0≤ (0::(′a Integer))
apply(simp add:OCL_Integer.OclLe_def OclLocalValid_def)
apply(simp add: lift2_def strictify_def)
apply(auto)
prefer 2
apply(simp add: OclTrue_def lift0_def)
apply(unfold Zero_ocl_int_def)
apply(auto simp: OclTrue_def lift0_def)
done

lemmas Product_weakinv =
weakinvariant1.init_stock_def
Product.weakinvariant1.isNat_def
Product.weakinvariant1.init_id_def
weakinvariant1_def

lemmas Product_post =
Product_Boolean.post1_def
Product_Boolean.post1.post_0_def
Product_Boolean.post1.post_0_def

lemmas supply_post =
supply_Integer_Boolean.post1_def
supply_Integer_Boolean.post1.post_0_def
supply_Integer_Boolean.post1.post_0_def

lemmas release_pre =
release_Integer_Boolean.pre1_def

5

release_Integer_Boolean.pre1.pre_0_def
release_Integer_Boolean.pre1.pre_0_def

lemma implies_false_asumption: τ � ¬ ϕ =⇒ τ � ϕ −→ ψ
by(ocl_simp, simp)

lemma implies_prem: τ � ϕ =⇒ τ � ψ −→ ϕ
by(ocl_simp, simp)

lemma implis_prem: τ � ϕ =⇒ τ � ψ −→ ϕ
apply(unfold OclImplies_def)
apply(rule or_TRUE_I_core)
apply(rule disjI2)
by(assumption)

end

References
[1] A. D. Brucker. An Interactive Proof Environment for Object-oriented Specifications.

Ph.d. thesis, ETH Zurich, Mar. 2007. URL http://www.brucker.ch/bibliography/
abstract/brucker-interactive-2007. ETH Dissertation No. 17097.

[2] A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report 525, ETH
Zurich, 2006. URL http://www.brucker.ch/bibliography/abstract/brucker.
ea-hol-ocl-book-2006.

[3] S. Dupuy, A. Front-Conte, and C. Saint-Marcel. Using UML with a behaviour-driven
method. In Frappier and Habrias [4], chapter 6. ISBN 1-85233-353-7.

[4] M. Frappier and H. Habrias, editors. Software Specification Methods: An Overview
Using a Case Study. Formal Approaches to Computing and Information Technology.
Springer-Verlag, London, 2000. ISBN 1-85233-353-7.

6

http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006

	The Invoice System
	Informal Description
	Formal Specification
	Case 1: Products and Orders
	Importing The Model
	Proving simple properties

