
A Framework for Proving Ontology-Relations and
Runtime Testing Ontology Instances

Idir Ait-Sadoune1[0000−0002−6484−8276], Nicolas Méric2[0000−0002−0756−7072], and
Burkhart Wolff3

1 Université Paris-Saclay, CentraleSupélec, LMF, France
idir.aitsadoune@centralesupelec.fr
2 Université Paris-Saclay, LMF, France

nicolas.meric@universite-paris-saclay.fr
3 Université Paris-Saclay, LMF, France

burkhart.wolff@universite-paris-saclay.fr

Abstract. Isabelle/DOF is an ontology framework on top of Isabelle
[8,4]. Isabelle/DOF allows for the formal development of ontologies as
well as continuous checking that a formal document under development
conforms to an underlying ontology. Such a document may contain text
and code elements as well as formal Isabelle definitions and proofs. Thus,
Isabelle/DOF is designed to annotate and trace typed meta-data within
formal developments in Isabelle.
In this paper we extend Isabelle/DOF with invariants (or: ontologi-
cal rules). Via a reflection mechanism, this allows for efficient run-time
checking of abstract properties of formal content under evolution. Addi-
tionally, invariants have a formal represention in HOL amenable to for-
mal proofs over mappings between different ontologies. With this feature
widely called ontology mapping in the literature, our framework paves
the way for advanced uses such as “semantic” search and translation. We
demonstrate the use of these new features in an extended ontology used
for formal developments targeting CENELEC certifications.
Keywords: Ontologies, Formal Documents, Formal Development, Is-
abelle/HOL, Ontology Mapping, Certification

1 Introduction
The linking of formal and informal information is perhaps the most pervasive

challenge in the digitization of knowledge and its propagation. Unsurprisingly,
this problem reappears in the libraries with formalized mathematics and engi-
neering such as the Isabelle Archive of Formal Proofs [19] (AFP), which passed
the impressive numbers of 650 articles, written by 420 authors at the begin-
ning of 2022. Together with the AFP, there is also a growing body on articles
concerned with formal software engineering such as standardized language defi-
nitions (e.g., [16,7]), data-structures (e.g., [6,23]), hardware- models (e.g., [15]),
security-related specifications (e.g., [5,26]), or operating systems (e. g., [27,17]).

Still, while the problem of logical consistency even under system-changes and
pervasive theory evolution is technically solved via continuous proof-checking,
the problem of knowledge retrieval and of linking semi-formal explanations
to definitions and proofs remains largely open. The central role in technolo-
gies adressing the knowledge problem is played by document ontologies, i. e., a
machine-readable form of meta-data attached to document-elements as well as
their document discourse. In order to make these techniques applicable to formal
theory development, the following is needed:

– a general mechanism to define and develop domain-specific ontologies,
– ... that should be adapted to entities occurring in formal theories, i. e., pro-

vide built-in support for types, terms, theorems, proofs, etc.,
– ways to annotate meta-data generated by ontologies to the document ele-

ments, as “deep” as possible, together with strong validation checks,
– a smooth integration into the theory document development process, and
– ways to relate ontologies and ontology-conform documents along different

ontologies by ontological mappings and data translations 4.

Recently, Isabelle/DOF [8,4] 5 has been designed as an Isabelle component
that attempts to answer these needs. Isabelle/DOF generates from ontology def-
initions directly integrated into Isabelle theories typed meta-data, that may be
annotated to a number of document elements and that were validated “on-the-
fly” during the general continuous type and proof-checking process in an IDE
(Isabelle/PIDE). Thus, we extend the document-centric view on code, defini-
tions, proofs, text-elements, etc., prevailing in the Isabelle system framework.

In more detail, Isabelle/DOF introduces a number of “ontology aware” text-
elements with analogous syntax to standard ones. The difference is a bracket
with meta-data of the form:

text∗[label ::classid , attr1=E1, ... attrn=En]‹ some semi−formal text ›
ML∗[label ::classid , attr1=E1, ... attrn=En]‹ some SML code ›
...

In these Isabelle/DOF elements, a meta-data object is created and associated to
it. This meta-data can be referenced via its label and used in further computa-
tions in text or code.

Admittedly, Isabelle is not the first system that comes into one’s mind when
writing a scientific paper, a book, or a larger technical documentation. How-
ever, it has a typesetting system inside which is in the tradition of document
generation systems such as mkd, Document! X, Doxygen, Javadoc, etc., and
which embed formal content such as formula pretty-prints into semi-formal text
or code. The analogous mechanism the Isabelle system provides is a machine-
checked macro called antiquotation that depends on the logical context of the
document element.
4 We follow throughout this text the terminology established in [12], pp. 39 ff.
5 The official releases are available at https://zenodo.org/record/6385695, the devel-

oper version at https://github.com/logicalhacking/Isabelle_DOF.

https://zenodo.org/record/6385695
https://github.com/logicalhacking/Isabelle_DOF

With standard Isabelle antiquotations, for example, the following text ele-
ment of the integrated source will appear in Isabelle/PIDE as follows:

text‹ According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term fac 5} the result @{value fac 5}.›

In the corresponding generated LaTeX or HTML output, this looks like this:

According to the reflexivity axiom ‹x = x›, we obtain in Γ
for ‹fac 5› the result ‹120›.

where the meta-texts @{thm refl} (“give the presentation of theorem ‘refl’”),
@{term fac 5} (“parse and type-check ‘fac 5’ in the previous logical context”)
and @{value fac 5} (“compile and execute ‘fac 5’ according to its definitions”)
are built-in antiquotations in HOL.

One distinguishing feature of Isabelle/DOF is that specific antiquotations
were generated from an ontology rather than being hard-coded into the Isabelle
system infrastructure.

As novel contribution, this work extends prior versions of Isabelle/DOF by

1. support of antiquotations in a new class of contexts, namely term contexts
(rather than SML code or semi-formal text). Thus, annotations generated
from Isabelle/DOF may also occur in λ-terms used to denote meta-data.

2. formal, machine-checked invariants on meta-data, which correspond to the
concept of “rules” in OWL [25] or “constraints” in UML, and which can be
specified in common HOL λ-term syntax.

For example, the Isabelle/DOF command evaluating the HOL-expression:

value∗[ass::Assertion, relvce=4 ::int]
‹filter (λ σ. relvce σ > 2) @{Assertion−instances}›

where Isabelle/DOF command value∗ type-checks, expands in an own validation
phase the Assertion−instances-term antiquotation, and evaluates the resulting
HOL expression above. Assuming an ontology providing the class Assertion hav-
ing at least the integer attribute relvce, the command finally creates an instance
of Assertion and binds this to label ass, while setting its relvce to 4.

Beyond the gain of expressivity in Isabelle/DOF ontologies, term-anti-
quotations pave the way for advanced queries of elements inside an integrated
source, and invariants allow for formal proofs over the relations/translations of
ontologies and ontology-instances. The latter question raised scientific interest
under the label “ontology mapping” for which we therefore present a formal
solution. To sum up, we completed Isabelle/DOF to a fairly rich ontology lan-
guage oriented to interactive theorem proving (ITP) systems, which is a concrete
proposal for formal development projects targeting a certification, for technical
documentation, for books with a high amount of machine-checked formal content
or for mathematical libraries such as the AFP.

2 Background

2.1 The Isabelle/DOF Framework

Isabelle/DOF [4,8] is a document ontology framework that extends Is-
abelle/HOL. Isabelle/DOF offers basically two things: a language called On-
tology Definition Language (ODL) to specify a formal ontology, and ways to
annotate an integrated document written in Isabelle/HOL with the specified
meta-data. Additionally, Isabelle/DOF generates from an ontology a family of
antiquotations allowing to specify machine-checked links between ODL entities.

The perhaps most attractive aspect of Isabelle/DOF is its deep integration
into the IDE of Isabelle (Isabelle/PIDE), which allows a hypertext-like naviga-
tion as well as fast user-feedback during development and evolution of the inte-
grated source. This includes rich editing support, including on-the-fly semantics
checks, hinting, or auto-completion. Isabelle/DOF supports LaTeX-based docu-
ment generation as well as ontology-aware “views” on the integrated document,
i. e., specific versions of generated PDF addressing, e. g., different stake-holders.

2.2 A Guided Tour through ODL

Isabelle/DOF provides a strongly typed ODL that provides the usual con-
cepts of ontologies such as
– document class (using the doc-class keyword) that describes a concept,
– attributes specific to document classes (attributes might be initialized with

default values), and
– a special link, the reference to a super-class, establishes an is-a relation

between classes.

The types of attributes are HOL-types. Thus, ODL can refer to any prede-
fined type from the HOL library, e. g., string, int as well as parameterized types,
e. g., option, list. As a consequence of the Isabelle document model, ODL defini-
tions may be arbitrarily mixed with standard HOL type definitions. Document
class definitions are HOL-types, allowing for formal links to and between onto-
logical concepts. For example, the basic concept of requirements from CENELEC
50128 [10] is captured in ODL as follows:

doc-class requirement = text-element +
long-name ::string option
is-concerned ::role set

This ODL class definition maybe part of one or more Isabelle theory-files cap-
turing the entire ontology definition. Isabelle’s session management allows for
pre-compiling them before being imported in the actual target document.

Fig. 1 shows an ontological annotation of a requirement and its referencing via
an antiquotation @{requirement ‹req1 ›}; the latter is generated from the above
class definition. Undefined or ill-typed references were rejected, the high-lighting
displays the hyperlinking which is activated on a click. The class-definition of
requirement and its documentation is also revisited via one activation click.

(a) A Text-Element as Requirement. (b) Referencing a Requirement.

Fig. 1: Referencing a Requirement.

Isabelle/HOL supports records at the level of terms and types. The notation for
terms and types is as follows:
– record terms (|x = a, y = b|) and corresponding record types (|x ::A, y ::B |),
– the resulting selectors are written x r, y r.

In fact, onto-classes and the logically equivalent doc-classes were represented
by extensible record types and instances thereof by HOL terms (see [8] for de-
tails.). Invariants of an onto-class are just predicates over extensible record
types and were applied to subclasses.

2.3 Term-Evaluations in Isabelle

Besides the powerful, but relatively slow Isabelle rewriting-based proof method,
there are two other techniques for term evaluation:
– evaluation via reflection [14] (eval), and
– normalization by evaluation [1] (nbe).

The former is based on a nearly one-to-one compilation of HOL-level datatype
specifications and function definitions into SML datatypes and functions. The
latter technique — allowing for free variables in terms — uses a generic data-
universe enriched by explicit variables. Both techniques are several orders of
magnitude faster than standard rewriting. Isabelle/DOF uses both to generate
code that evaluates invariant and data-integrity checks on-the-fly during editing.
For all examples in our library, this form of runtime-testing is sufficiently fast to
remain unnoticed by the user.

3 Term-Context Support, Invariants and Queries in DOF

To offer a smooth integration into the formal theory development process, Is-
abelle/HOL should be able to dynamically interpret the source document. But
the specific antiquotations introduced by Isabelle/DOF are not directly recog-
nized by Isabelle/HOL, and the process of term checking and evaluation must
be enriched. Previous works [4,8] added a validation step for the SML and semi-
formal text contexts. To support Isabelle/DOF antiquotations in the term con-
texts, the validation step should be improved and a new step, which we call
elaboration must be added to allow these antiquotations in λ-terms. The result-
ing process encompasses the following steps:

– Parsing of the term which represents the object in HOL,
– Typeinference/Typechecking of the term,
– Ontological validation of the term: the meta-data of term antiquotations is

parsed and checked in the logical context,
– Elaboration of term antiquotations: depending of the antiquotation specific

elaboration function, the antiquotations containing references were replaced,
for example, by the object they refer to in the logical context,

– Generation of markup information for the Isabelle/PIDE, and
– Code generation:

• Evaluation of HOL expressions with ontological annotations,
• Generation of ontological invariants processed simultaneously with the

generation of the document (a theory in HOL).

Isabelle/HOL provides inspection commands to type-check (the command
term) and to evaluate a term (the command value). We provide the equivalent
commands, respectively term∗ and value∗, which additionally support a vali-
dation and elaboration phase. A variant of value∗ is assert∗, which additionally
checks that the term-evaluation results in True. Note that term antiquotations
are admitted in all Isabelle/DOF commands, not just term∗, value∗ etc.

If we take back the example ontology for mathematical papers of [8]
shown in Fig. 2 we can define some class instances for this ontology with the
text∗ command, as in Fig. 3. In the instance intro1, the term antiquotation
@{myauthor ‹church›}, or its equivalent notation @{myauthor ′′church ′′}, de-
notes the instance church of the class myauthor, where church is a HOL-string.
One can now reference a class instance in a term∗ command. In the com-
mand term∗‹@{myauthor ‹church›}› the term @{myauthor ′′church ′′} is type-
checked, i. e., the command term∗ checks that church references a term of type
myauthor against the global context (see Fig. 4).

The command value∗‹email @{author ‹church›}› validates @{myauthor
′′church ′′} and returns the attribute-value of myauthor .email for the church
instance, i. e. the HOL string ′′church@lambda.org ′′ (see Fig. 5).

Since term antiquotations are logically uninterpreted constants, it is possible
to compare class instances logically. The assertion in the Fig. 6 fails: the class
instances proof1 and proof2 are not equivalent because their attribute prop-
erty differs. When assert∗ evaluates the term, the term antiquotations @{thm
′′HOL.refl ′′} and @{thm ′′HOL.sym ′′} are checked against the global context
such that the strings ′′HOL.refl ′′ and ′′HOL.sym ′′ denote existing theorems.

The mechanism of term annotations is also used for the new concept of in-
variant constraints which can be specified in common HOL syntax. They were
introduced by the keyword invariant in a class definition (recall Fig. 2). Fol-
lowing the constraints proposed in [4], one can specify that any instance of a
class myresult finally has a non-empty property list, if its kind is proof (see the
invariant has-property), or that the relation between myclaim and myresult ex-
pressed in the attribute establish must be defined when an instance of the class
myconclusion is defined (see the invariant establish-defined).

Isabelle codedatatype kind = expert-opinion | argument | proof

doc-class myauthor =
email :: string <= ′′′′

doc-class mytext-section =
authored-by :: myauthor set <= {}
level :: int option <= None

doc-class myintro = mytext-section +
authored-by :: myauthor set <= UNIV
uses :: string set
invariant author-set :: authored-by σ ̸= {}
and force-level :: the (level σ) > 1

doc-class myclaim = myintro +
based-on :: string list

doc-class mytechnical = mytext-section +
formal-results :: thm list

doc-class myresult = mytechnical +
evidence :: kind
property :: thm list <= []
invariant has-property :: evidence σ = proof ←→ property σ ̸= []

doc-class myconclusion = mytext-section +
establish :: (myclaim × myresult) set
invariant establish-defined :: ∀ x . x ∈ Domain (establish σ)

−→ (∃ y ∈ Range (establish σ). (x , y) ∈ establish σ)

Fig. 2: Excerpt of an Example Ontology for mathematical Papers.

Isabelle codetext∗[church::myauthor , email=‹church@lambda.org›]‹›
text∗[proof1 ::myresult , evidence=proof , property=[@{thm ‹HOL.refl›}]]‹›
text∗[proof2 ::myresult , evidence=proof , property=[@{thm ‹HOL.sym›}]]‹›
text∗[intro1 ::myintro, authored-by={@{myauthor ‹church›}}, level=Some 0]‹›
text∗[intro2 ::myintro, authored-by={@{myauthor ‹church›}}, level=Some 2]‹›
text∗[claimNotion::myclaim, authored-by={@{myauthor ‹church›}}

, based-on=[‹Notion1›,‹Notion2›], level=Some 0]‹›

Fig. 3: Some Instances of the Classes of the Ontology of Fig. 2.

(a) Church is an existing Instance. (b) The Churche Instance is not defined.

Fig. 4: Type-Checking of Antiquotations in a Term-Context.

(a) The Evaluation succeeds. (b) The Evaluation fails.

Fig. 5: Evaluation of Antiquotations in a Term-Context.

Fig. 6: Evaluation of the Equivalence of two Class Instances.

In Fig. 2, the invariant author-set of the class myintro enforces that a my-
intro instance has at least one author. The σ symbol is reserved and references
the future class instance. By relying on the implementation of the Records in
Isabelle/HOL [28], one can reference an attribute of an instance using its selector
function. For example, establish σ denotes the value of the attribute establish of
the future instance of the class myconclusion.

The value of each attribute defined for the instances is checked at run-time
against their class invariants. Classes also inherit the invariants from their super-
class. As the class myclaim is a subclass of the class myintro, it inherits the
myintro invariants. In Fig. 7, we attempt to specify a new instance claimNo-
tion of the class myclaim. However, the invariant checking triggers an error
because the invariant force-level forces the value of the argument of the at-
tribute mytext-section.level to be greater than 1, and we initialize it to Some 0
in claimNotion.

Fig. 7: Inherited Invariant Violation.

Any class definition generates term antiquotations checking a class instance
reference in a particular logical context; these references were elaborated to ob-
jects they refer to. This paves the way for a new mechanism to query the “current”
instances presented as a HOL list. Arbitrarily complex queries can therefore be
defined inside the logical language. Thus, to get the list of the properties of the
instances of the class myresult, or to get the list of the authors of the instances
of the myintro class, it suffices to treat this meta-data as usual:

value∗‹map (myresult .property) @{myresult−instances}›
value∗‹map (mytext-section.authored-by) @{myintro−instances}›

In order to get the list of the instances of the class myresult whose evidence is a
proof, one can use the command:

value∗‹filter (λσ. myresult .evidence σ = proof) @{myresult−instances}›

4 Proving Morphisms on Ontologies

The Isabelle/DOF framework does not assume that all documents refer to the
same ontology. Each document may even build its local ontology without any
external reference. It may also be based on several reference ontologies (e. g.,
from the Isabelle/DOF library). Since ontological instances possess representa-
tions inside the logic, the relationship between a local ontology and a reference
ontology can be formalised using a morphism function also inside the logic. More
precisely, the instances of local ontology classes may be described as the image of
a transformation applied to one or several other instances of class(es) belonging
to another ontology. Thanks to the morphism relationship, the obtained class
may either import meta-data (definitions are preserved) or map meta-data (the
properties are different but are semantically equivalent) that are defined in the
referenced class(es). It may also provide additional properties. This means that
morphisms may be injective, surjective, bijective, and thus describe abstract
relations between ontologies. This raises the question of invariant preservation.

To illustrate this process, we have defined a simple ontology to classify Hard-
ware objects.

Isabelle codeonto-class Item =
name :: string

onto-class Product = Item +
serial-number :: int
provider :: string
mass :: int

onto-class Computer-Hardware = Product +
type :: Hardware-Type
composed-of :: Product list
invariant c2 :: Product .mass σ = sum(map Product .mass (composed-of σ))

This ontology defines the Item, Product and Computer-Hardware concepts
(or classes). Each class contains a set of attributes or properties and some local
invariants. In this example, we focus on the Computer-Hardware class defined as
a list of products characterised by their mass value. This class contains a local
invariant c2 to guarantee that its own mass value equals the sum of all the
masses of the products composing the object. For the sake of the argument, we
use the reference ontology (considered as a standard) described in this listing:

Isabelle codedefinition sum where sum S = (fold (+) S 0)

datatype Hardware-Type = Motherboard | Expansion-Card | Storage-Device ...

onto-class Resource =
name :: string

onto-class Electronic = Resource +
provider :: string
manufacturer :: string

onto-class Component = Electronic +
mass :: int
dimensions :: int list

onto-class Informatic = Resource +
description :: string

onto-class Hardware = Informatic +
type :: Hardware-Type
mass :: int
composed-of :: Component list
invariant c1 :: mass σ = sum(map Component .mass (composed-of σ))

This ontology defines the Resource, Electronic, Component, Informatic and
Hardware concepts. In our example, we focus on the Hardware class containing
a Component .mass attribute inherited from the Component class and composed
of a list of components with a Component .mass attribute formalising the mass
value of each component. The Hardware class also contains a local invariant
c1 to define a constraint linking the global mass of a Hardware object with the
masses of its own components.

To check the coherence of our local ontology, we define a relationship be-
tween the local ontology and the reference ontology using morphism functions
(or mapping rules as in ATL framework [11] or EXPRESS-X language [2]). These
rules are applied to define the relationship between one class of the local on-
tology to one or several other class(es) described in the reference ontology. In
our case, we have define two morphisms, Product-to-Component-morphism and
Computer-Hardware-to-Hardware-morphism, detailed in the following listing:

Isabelle codedefinition Product-to-Component-morphism ::
Product ⇒ Component (- ⟨Component⟩P roduct [1000]999)

where σ ⟨Component⟩P roduct = (| Resource.tag-attribute = 1 ::int ,
Resource.name = name σ ,
Electronic.provider = provider σ ,
Electronic.manufacturer = ′′no manufacturer ′′ ,
Component .mass = mass σ ,
Component .dimensions = [] |)

Isabelle codedefinition Computer-Hardware-to-Hardware-morphism ::
Computer-Hardware ⇒ Hardware
(- ⟨Hardware⟩ComputerHardware [1000]999)
where σ ⟨Hardware⟩ComputerHardware =

(| Resource.tag-attribute = 2 ::int ,
Resource.name = name σ ,
Informatic.description = ′′no description ′′,
Hardware.type = type σ ,
Hardware.mass = mass σ ,

Hardware.composed-of = map Product-to-Component-morphism
(composed-of σ) |)

These definitions specify how Product or Computer-Hardware objects are
mapped to Component or Hardware objects defined in the reference ontology.
This mapping shows that the structure of a (user) ontology may be arbitrarily
different from the one of a standard ontology it references.

After defining the mapping rules, now we have to deal with the question of
invariant preservation. The following example proofs for a simple but typical
example of reformatting meta-data into another format along an ontological
mapping are nearly trivial:

Isabelle codelemma inv-c2-preserved :
c2-inv σ =⇒ c1-inv (σ ⟨Hardware⟩ComputerHardware)
unfolding c1-inv-def c2-inv-def

Computer-Hardware-to-Hardware-morphism-def
Product-to-Component-morphism-def

by (auto simp: comp-def)

lemma Computer-Hardware-to-Hardware-total :
Computer-Hardware-to-Hardware-morphism ‘ ({X . c2-inv X })

⊆ ({X ::Hardware. c1-inv X })
using inv-c2-preserved by auto

After unfolding the invariant and the morphism definitions, the preserva-
tion proof is automatic. The advantage of using the Isabelle/DOF framework
compared to approaches like ATL or EXPRESS-X is the possibility of formally
verifying the mapping rules, i. e., proving the preservation of invariants, as we
have demonstrated in the previous example.

5 Application: CENELEC Ontology

From its beginning, Isabelle/DOF had been used for documents containing for-
mal models targeting certifications. A major case-study from the railways domain
based on the CENELEC 50128 standard had been published earlier (cf. [9]) 6.
6 Our CENELEC ontology in Isabelle/DOF can be found at https://github.

com/logicalhacking/Isabelle_DOF/blob/main/src/ontologies/CENELEC_50128/
CENELEC_50128.thy.

https://github.com/logicalhacking/Isabelle_DOF/blob/main/src/ontologies/CENELEC_50128/CENELEC_50128.thy
https://github.com/logicalhacking/Isabelle_DOF/blob/main/src/ontologies/CENELEC_50128/CENELEC_50128.thy
https://github.com/logicalhacking/Isabelle_DOF/blob/main/src/ontologies/CENELEC_50128/CENELEC_50128.thy

The CENELEC Standard comprises 18 different “Design and Test Documents”;
a fully fledged description of our ontology covering these is therefore out of reach
of this paper. Rather, we present how the novel concepts such as invariants and
term-antiquotations are used in selected elements in this ontology.

According to CENELEC Table C.1, for example, we specify the category of
“Design and Test Documents” as follows:

Isabelle codedoc-class cenelec-document = text-element +
phase :: phase
written-by :: role — Annex C Table C.1
fst-check :: role — Annex C Table C.1
snd-check :: role — Annex C Table C.1
...
invariant must-be-chapter :: text-element .level σ = Some(0)
invariant two-eyes-prcple :: written-by σ ̸= fst-check σ

∧ written-by σ ̸= snd-check σ

This class refers to the “software phases” the standard postulates (like SPl
for “Software Planning” or SCDES for “Software Component Design”) which
we model by a corresponding enumeration types (not shown here). Similarly,
the standard postulates “roles” that certain specified teams possess in the over-
all process (like VER for verification and VAL for validation). We added in-
variants that specify certain constraints implicit in the standard: for example,
a cenelec-document must have the textual structure of a chapter (the level -
attribute is inherited from an underlying ontology library specifying basic text-
elements) as well as the two-eyes-principle between authors and checkers of these
chapters.

The concrete sub-class of cenelec-document is the class SWIS (“software inter-
face specification”) as shown below, which provides the role assignment required
for this document type:

Isabelle code

doc-class SWIS = cenelec-document + — software interface specification
phase :: phase <= SCDES written-by :: role <= DES
fst-check :: role <= VER snd-check :: role <= VAL
components:: SWIS-E list

The structural constraints expressed so far can in principle be covered by any
hand-coded validation process and suitable editing support (e. g., Protégé [21]).
However, a closer look at the class SWIS-E (“software interface specification
element”) referenced in the components-attribute reveals the unique power of
Isabelle/DOF; rather than saying “there must be a pre-condition”, Isabelle/DOF
can be far more precise:

Isabelle codedoc-class SWIS-E =
op-name :: string
op-args-res :: (string × typ) list × typ — args and result type
pre-cond :: (string × thm) list — labels and predicates
post-cond :: (string × thm) list — labels and predicates
invariant well-formed-pre :: ∀ cond ∈ set(map snd (pre-cond σ)).

iswff pre (op-args-res σ) (cond)
invariant well-formed-post :: ...

where the constant iswff pre is bound to a function at the SML-level, that is
executed during the evaluation phase of these invariants and that checks:

– Any cond is indeed a valid definition in the global logical context (taking
HOL-libraries but also the concrete certification target model into account).

– Any such HOL definition has the syntactic form:
pre-<op-name> (a1::τ1) ... (an::τn) ≡ <predicate>,

where (a1::τ1) ... (an::τn) correspond to the argument list.
– The case for the post-condition is treated analogously.

Note that this technique can also be applied to impose specific syntactic
constraints on types. For example, via the SI-package available in the Isabelle
AFP 7, it is possible to express that the result of some calculation is of type
32 unsigned [m ·s−2], so a 32-bit natural representing an acceleration in the SI-
system. Therefore it is possible to impose that certain values refer to physical
dimensions measured in a concrete metrological system.

6 Related Work

There are a number of approaches to use ontologies for structuring the link be-
tween information and knowledge, and to make it amenable to “semantic” search
in or consistency checking of documents. Some are targeting mathematical li-
braries, like the search engine http://shinh.org/wfs which uses clever text-based
search methods in a large number of formulas, agnostic of their logical context
and of formal proof, or the OAF project [18] which developed a common onto-
logical format, called OMDoc/MMT, and six export functions from major ITP
systems into it. The more difficult task to develop import functions has not been
addressed, not to mention the construction of imported proofs in a native tactic
proof format. Rather, the emphasis was put on building a server infrastructure
based on conventional, rather heavy-weight database and OWL technology. Our
approach targets so far only one ITP system and its libraries, and emphasizes
type-safeness, expressive power and “depth” of meta-data, which is adapted to
the specific needs of ITP systems and theory developments.

There are also a number of proposals of ontologies targeting mathematics:
the OntoMathPRO [22] proposes a “taxonomy of the fields of mathematics” (p.
7 https://www.isa-afp.org/entries/Physical_Quantities.html

http://shinh.org/wfs
https://www.isa-afp.org/entries/Physical_Quantities.html

6). In total, OntoMathPRO contains the daunting number of 3,449 classes, which
is in part due to the need to compensate the lack of general datatype definition
methods for meta-data. It is nevertheless an interesting starting point for a future
development of a mathematics ontology in the Isabelle/DOF framework. Other
ontologies worth mentioning are DBpedia [3], which provides with the SPARQL
endpoint http://dbpedia.org/sparql a search engine, and the more general Sci-
enceWISE 8 that allows users to introduce their own category concepts. Both
suffer from the lack of deeper meta-data modeling, and the latter is still at the
beginning (ScienceWISE marks the Mathematics part as “under construction”).

Regarding the use of formal methods to formalise standards, the Event-
B method was proposed by Fotso et al. [13] for specifications of the hybrid
ERTMS/ETCS level 3 standard, in which requirements are specified using SysM-
L/KAOS goal diagrams. The latter were translated into Event-B, where domain-
specific properties were specified by ontologies. In another case, Mendil et al. [20]
propose an Event-B framework for formalising standard conformance through
formal modelling of standards as ontologies. The proposed approach was ex-
emplified on ARINC 661 standard in the context of a weather radar system
application. These works are essentially interested in expressing ontological con-
cepts in a formal method but do not explicitly deal with the formalisation of
rules/invariants defined in ontologies. The question of ontology-mappings is not
addressed.

7 Conclusion and Future Work

We presented Isabelle/DOF, an ontology framework deeply integrating
continuous-check/continuous-build functionality into the formal development
process in HOL. The novel feature of term-contexts in Isabelle/DOF, which
permits term-antiquotations elaborated in the parsing process, paves the way
for the abstract specification of meta-data constraints as well the possibility of
advanced search in the meta-data of document elements. Thus it profits and
extends Isabelle’s document-centric view on formal development.

Many ontological languages such as OWL as well as the meta-modeling tech-
nology available for UML/OCL provide concepts for semantic rules and con-
straints, but leave the validation checking usually to external tools (if imple-
menting them at all). This limits their practical usefulness drastically. Our ap-
proach treats invariants as first-class citizens, and turns them into an object of
formal study in, for example, ontological mappings. Such a technology exists, to
our knowledge, for the first time.

Our experiments with adaptations of existing ontologies from engineering
and mathematics show that Isabelle/DOF’s ODL has sufficient expressive power
to cover all aspects of languages such as OWL (with perhaps the exception of
multiple inheritance on classes). However, these ontologies have been developed
specifically in OWL and target its specific support, the Protégé editor [21]. We

8 http://sciencewise.info/ontology/.

http://dbpedia.org/sparql
http://sciencewise.info/ontology/

argue that Isabelle/DOF might ask for a re-engineering of these ontologies: less
deep hierarchies, rather deeper structure in meta-data and stronger invariants.

We plan to complement Isabelle/DOF with incremental LaTeX generation
and a previewing facility that will further increase the usability of our framework
for the ontology-conform editing of formal content, be it in the engineering or the
mathematics domain (this paper has been edited in Isabelle/DOF, of course).

Another line of future application is to increase the “depth” of built-in
term antiquotations such as @{typ ‹ ′τ›}, @{term ‹a + b›} and @{thm
‹HOL.refl›}, which are currently implemented just as validations in the cur-
rent logical context. In the future, they could optionally be expanded to the
types, terms and theorems (with proof objects attached) in a meta-model of the
Isabelle Kernel such as the one presented in [24] (also available in the AFP).
This will allow for definitions of query-functions in, e. g., proof-objects, and pave
the way to annotate them with typed meta-data. Such a technology could be
relevant for the interoperability of proofs across different ITP platforms.

References

1. Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalisation
by evaluation. J. Funct. Program. 22(1), 9–30 (2012). https://doi.org/10.1017/
S0956796812000019, https://doi.org/10.1017/S0956796812000019

2. Ameur, Y.A., Besnard, F., Girard, P., Pierra, G., Potier, J.: Formal specification
and metaprogramming in the EXPRESS language. In: SEKE’95, The 7th Inter-
national Conference on Software Engineering and Knowledge Engineering, June
22-24, 1995, Rockville, Maryland, USA, Proceedings. pp. 181–188. Knowledge Sys-
tems Institute (1995)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A
nucleus for a web of open data. In: Aberer, K., Choi, K.S., Noy, N., Allemang, D.,
Lee, K.I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) The Semantic Web. pp. 722–735. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007)

4. Brucker, A.D., Ait-Sadoune, I., Crisafulli, P., Wolff, B.: Using the Is-
abelle ontology framework: Linking the formal with the informal. In: Con-
ference on Intelligent Computer Mathematics (CICM). No. 11006 in Lec-
ture Notes in Computer Science, Springer-Verlag, Heidelberg (2018). https:
//doi.org/10.1007/978-3-319-96812-4_3, https://www.brucker.ch/bibliography/
abstract/brucker.ea-isabelle-ontologies-2018

5. Brucker, A.D., Brügger, L., Wolff, B.: Formal network models and their
application to firewall policies. Archive of Formal Proofs (Jan 2017),
http://www.brucker.ch/bibliography/abstract/brucker.ea-upf-firewall-2017, http:
//www.isa-afp.org/entries/UPF_Firewall.shtml, Formal proof development

6. Brucker, A.D., Herzberg, M.: The Core DOM. Archive of Formal Proofs (Dec 2018),
http://www.brucker.ch/bibliography/abstract/brucker.ea-afp-core-dom-2018,
http://www.isa-afp.org/entries/Core_DOM.html, Formal proof development

7. Brucker, A.D., Tuong, F., Wolff, B.: Featherweight OCL: A proposal for a machine-
checked formal semantics for OCL 2.5. Archive of Formal Proofs (Jan 2014), http:
//www.brucker.ch/bibliography/abstract/brucker.ea-featherweight-2014, http://
www.isa-afp.org/entries/Featherweight_OCL.shtml, Formal proof development

https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
http://www.brucker.ch/bibliography/abstract/brucker.ea-upf-firewall-2017
http://www.isa-afp.org/entries/UPF_Firewall.shtml
http://www.isa-afp.org/entries/UPF_Firewall.shtml
http://www.brucker.ch/bibliography/abstract/brucker.ea-afp-core-dom-2018
http://www.isa-afp.org/entries/Core_DOM.html
http://www.brucker.ch/bibliography/abstract/brucker.ea-featherweight-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-featherweight-2014
http://www.isa-afp.org/entries/Featherweight_OCL.shtml
http://www.isa-afp.org/entries/Featherweight_OCL.shtml

8. Brucker, A.D., Wolff, B.: Isabelle/DOF: Design and implementation. In: Ölveczky,
P.C., Salaün, G. (eds.) Software Engineering and Formal Methods (SEFM).
No. 11724 in Lecture Notes in Computer Science, Springer-Verlag, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-30446-1_15, https://www.brucker.ch/
bibliography/abstract/brucker.ea-isabelledof-2019

9. Brucker, A.D., Wolff, B.: Using ontologies in formal developments targeting
certification. In: Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated Formal Meth-
ods - 15th International Conference, IFM 2019, Bergen, Norway, December 2-6,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11918, pp. 65–82.
Springer (2019). https://doi.org/10.1007/978-3-030-34968-4_4, https://doi.org/
10.1007/978-3-030-34968-4_4

10. Bs en 50128:2011: Railway applications – communication, signalling and processing
systems – software for railway control and protecting systems. Standard, Britisch
Standards Institute (BSI) (Apr 2014)

11. Eclipse Foundation: Atl - a model transformation technology, https://www.eclipse.
org/atl/, Accessed: 2022-03-15

12. Euzenat, J., Shvaiko, P.: Ontology Matching, Second Edition. Springer (2013).
https://doi.org/10.1007/978-3-642-38721-0

13. Fotso, S.J.T., Frappier, M., Laleau, R., Mammar, A.: Modeling the hybrid ERTM-
S/ETCS level 3 standard using a formal requirements engineering approach. In:
Abstract State Machines, Alloy, B, TLA, VDM, and Z - 6th International Confer-
ence, ABZ, Southampton, UK. LLNCS, vol. 10817, pp. 262–276. Springer (2018).
https://doi.org/10.1007/978-3-319-91271-4_18

14. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Program-
ming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6009, pp. 103–117.
Springer (2010). https://doi.org/10.1007/978-3-642-12251-4_9, https://doi.org/
10.1007/978-3-642-12251-4_9

15. Hou, Z., Sanan, D., Tiu, A., Liu, Y.: A formal model for the sparcv8 isa and a
proof of non-interference for the leon3 processor. Archive of Formal Proofs (Oct
2016), http://isa-afp.org/entries/SPARCv8.html, Formal proof development

16. Hupel, L., Zhang, Y.: Cakeml. Archive of Formal Proofs (Mar 2018), http://isa-afp.
org/entries/CakeML.html, Formal proof development

17. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014). https://doi.org/10.1145/2560537

18. Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant li-
braries. J. Autom. Reason. 65(8), 1265–1298 (2021). https://doi.org/10.1007/
s10817-021-09604-0, https://doi.org/10.1007/s10817-021-09604-0

19. M.Eberl and G. Klein and A. Lochbihler and T. Nipkow and L. Paulson and R.
Thiemann (eds): Archive of Formal Proofs. https://afp-isa.org (2022), Accessed:
2022-03-15

20. Mendil, I., Aït-Ameur, Y., Singh, N.K., Méry, D., Palanque, P.A.: Standard
conformance-by-construction with event-b. In: Formal Methods for Industrial Crit-
ical Systems - 26th International Conference, FMICS, Paris, France. LNCS, vol.
12863, pp. 126–146. Springer (2021). https://doi.org/10.1007/978-3-030-85248-1_
8

21. Musen, M.A.: The protégé project: A look back and a look forward. AI Matters
1(4), 4–12 (jun 2015). https://doi.org/10.1145/2757001.2757003, https://doi.org/
10.1145/2757001.2757003

https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-030-30446-1_15
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
http://isa-afp.org/entries/SPARCv8.html
http://isa-afp.org/entries/CakeML.html
http://isa-afp.org/entries/CakeML.html
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://afp-isa.org
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003

22. Nevzorova, O., Zhiltsov, N., Kirillovich, A., Lipachev, E.K.: OntoMathPRO ontol-
ogy: A linked data hub for mathematics. ArXiv abs/1407.4833 (2014). https:
//doi.org/10.1007/978-3-319-11716-4_9

23. Nipkow, T.: Splay tree. Archive of Formal Proofs (Aug 2014), http://isa-afp.org/
entries/Splay_Tree.html, Formal proof development

24. Nipkow, T., Roßkopf, S.: Isabelle’s metalogic: Formalization and proof checker. In:
Platzer, A., Sutcliffe, G. (eds.) Automated Deduction – CADE 28. pp. 93–110.
Springer International Publishing, Cham (2021)

25. Sengupta, K., Hitzler, P.: Web ontology language (OWL). In: Encyclopedia of
Social Network Analysis and Mining, pp. 2374–2378 (2014). https://doi.org/10.
1007/978-1-4614-6170-8_113

26. Sprenger, C., Somaini, I.: Developing security protocols by refinement. Archive
of Formal Proofs (May 2017), http://isa-afp.org/entries/Security_Protocol_
Refinement.html, Formal proof development

27. Verbeek, F., Tverdyshev, S., Havle, O., Blasum, H., Langenstein, B., Stephan, W.,
Nemouchi, Y., Feliachi, A., Wolff, B., Schmaltz, J.: Formal specification of a generic
separation kernel. Archive of Formal Proofs (Jul 2014), http://isa-afp.org/entries/
CISC-Kernel.html, Formal proof development

28. Wenzel, M.: The Isabelle/Isar Reference Manual (2020), part of the Isabelle dis-
tribution.

https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-319-11716-4_9
http://isa-afp.org/entries/Splay_Tree.html
http://isa-afp.org/entries/Splay_Tree.html
https://doi.org/10.1007/978-1-4614-6170-8_113
https://doi.org/10.1007/978-1-4614-6170-8_113
https://doi.org/10.1007/978-1-4614-6170-8_113
https://doi.org/10.1007/978-1-4614-6170-8_113
http://isa-afp.org/entries/Security_Protocol_Refinement.html
http://isa-afp.org/entries/Security_Protocol_Refinement.html
http://isa-afp.org/entries/CISC-Kernel.html
http://isa-afp.org/entries/CISC-Kernel.html

	A Framework for Proving Ontology-Relations and Runtime Testing Ontology Instances
	1 Introduction
	2 Background
	2.1 The Isabelle/DOF Framework
	2.2 A Guided Tour through ODL
	2.3 Term-Evaluations in Isabelle

	3 Term-Context Support, Invariants and Queries in DOF
	4 Proving Morphisms on Ontologies
	5 Application: CENELEC Ontology
	6 Related Work
	7 Conclusion and Future Work

