An Account with my Personal, Ecclectic
Comments on the Isabelle Architecture
Version : Isabelle 2017

Burkhart Wolff

November 28, 2018

Contents

I SMI [Fund [SML Tibraries 7
1.1 ML, Text and Antiquotations| oL 7
8
8

1.2 The Isabelle/Pure bootstrap|. o oot i
[I.3 Elements of the SML library] i

[2__Prover Architecturel 11
[2.1 The Nano-Kernel: Contexts, (Theory)-Contexts, (Proof)-Contexts| 11
2.1.1 Mechanism 1 : Core Interface) 11

2.1.2 Mechanism 2 : global arbitrary data structure that is attached to the global and |

| local Isabelle context 6. 12
(2.2 The LCEF-Kernel: terms, types, theories, proof contexts, thms| 12
21 Termsand Types 12

[2.2.2 Type-Certification (—checking that a type annotation is consistent)| 14

2.2.3 Type-Inference (= inferring consistent type information if possible)|. 16

2.2.4 thy and the signature interfacd, . 16

12.2.5 Thm’s and the LCF-5tyle, "Mikro"-Kernell 16

226 Theorlesl o oo 18

[2.3 Backward Proots: Tactics, Tacticals and Goal-States| 19
2.4 The Isar Engine|l. L 20
2.4.1 Transaction Management in the Isar-Engine : The Toplevel] 22

2.4.2 Configuration flags of fixed type in the Isar-enginef. 24
[3_Front End 27
[3.1 Basics: string, bstring and xstring| oo oo 27
[3.2 Parsing issues| L L 27
[3.2.1 Input streams.| 28

[3-2.2 Scanning and combinator Parsing]o e i 28

3.4 The PIDE Frameworkl 30

/ V] o) IS 30

[3.5 Output: Very Low Levell o 32
[3.6 Output: LaleX|. o 32

Abstract

While Isabelle is mostly known as part of Isabelle/HOL (an interactive theorem prover), it actually
provides a system framework for developing a wide spectrum of applications. A particular strength of
the Isabelle framework is the combination of text editing, formal verification, and code generation.

This is a programming-tutorial of Isabelle and Isabelle/HOL, a complementary text to the un-
fortunately somewhat outdated "The Isabelle Cookbook" in https://nms.kcl.ac.uk/christian.urban/
Cookbook/. The reader is encouraged not only to consider the generated .pdf, but also consult the
loadable version in Isabelle/jedit in order to make experiments on the running code.

This text is written itself in Isabelle/Isar using a specific document ontology for technical reports.
It is intended to be a "living document", i.e. it is not only used for generating a static, conventional
.pdf, but also for direct interactive exploration in Isabelle/jedit. This way, types, intermediate results of
computations and checks can be repeated by the reader who is invited to interact with this document.
Moreover, the textual parts have been enriched with a maximum of formal content which makes this
text re-checkable at each load and easier maintainable.

Keywords: ['LCF-Architecture”,Tsabelle”,’SML”"PIDE”,"Tactic Programming”|

https://nms.kcl.ac.uk/christian.urban/Cookbook/
https://nms.kcl.ac.uk/christian.urban/Cookbook/

1 SML and Fundamental SML libraries

1.1 ML, Text and Antiquotations

Isabelle is written in SML, the "Standard Meta-Language", which is is an impure functional program-
ming language allowing, in principle, mutable variables and side-effects. The following Isabelle/Isar
commands allow for accessing the underlying SML interpreter of Isabelle directly. In the example, a
mutable variable X is declared, defined to 0 and updated; and finally re-evaluated leading to output:

ML¢ val X = Unsynchronized.ref 0;
X:=1X + 1;
X
)

However, since Isabelle is a platform involving parallel execution, concurrent computing, and, as an
interactive environment, involves backtracking / re-evaluation as a consequence of user- interaction,
imperative programming is discouraged and nearly never used in the entire Isabelle code-base. The
preferred programming style is purely functional:

ML« fun fac x = if © = 0 then I else x * fac(z—1) ;
fac 10;
)
— or
ML« type state = { a :int, b : string}
fun incr-state ({a, b}:state) = {a=a+1, b=b}
)

The faculty function is defined and executed; the (sub)-interpreter in Isar works in the conventional
read-execute-print loop for each statement separated by a ";". Functions, types, data-types etc. can be
grouped to modules (called structures) which can be constrained to interfaces (called signatures) and

even be parametric structures (called functors).

The Isabelle /Tsar interpreter (called toplevel) is extensible; by a mixture of SML and Isar-commands,
domain-specific components can be developed and integrated into the system on the fly. Actually,
the Isabelle system code-base consists mainly of SML and .thy-files containing such mixtures of Isar
commands and SML.

Besides the ML-command used in the above examples, there are a number of commands representing
text-elements in Isabelle/Isar; text commands can be interleaved arbitraryly with other commands.
Text in text-commands may use LaTeX and is used for type-setting documentations in a kind of literate
programming style.

So: the text command for:
This is a text.
. is represented in an .thy file by:
text\isa{\isactrlemph {\isasymopen}This\ is\ a\ text{\isachardot}{\isasymclosel}}
and desplayed in the Isabelle/jedit front-end at the sceen by:

text-commands, ML- commands (and in principle any other command) can be seen as quotations
over the underlying SML environment (similar to OCaml or Haskell). Linking these different sorts
of quotations with each other and the underlying SML-envirnment is supported via antiquotations’s.

8b
g7l text«+<This 1s a text.::

mom I | o Y

Figure 1.1: A text-element as presented in Isabelle/jedit.

Generally speaking, antiquotations are a programming technique to specify expressions or patterns in
a quotation, parsed in the context of the enclosing expression or pattern where the quotation is.

The way an antiquotation is specified depends on the quotation expander: typically a specific character
and an identifier, or specific parentheses and a complete expression or pattern.

In Isabelle documentations, antiquotation’s were heavily used to enrich literate explanations and
documentations by "formal content", i.e. machine-checked, typed references to all sorts of entities
in the context of the interpreting environment. Formal content allows for coping with sources that
rapidly evolve and were developed by distributed teams as is typical in open-source developments. A
paradigmatic example for antiquotation in Texts and Program snippets is here:

E|, $ISABELLE_HOME/src/Pure/RO0OT.ML

ML¢ wal z = Q{thm refl};
val y = @{term A — B}
val y = Q{typ 'a list}

. which we will describe in more detail later.

In a way, literate specification attempting to maximize its formal content is a way to ensure "Agile
Development" in a (theory)-document development, at least for its objectives, albeit not for its popular
methods and processes like SCRUM.

A maximum of formal content inside text documentation also ensures the consistency of this present
text with the underlying Isabelle version.

1.2 The Isabelle/Pure bootstrap

It is instructive to study the fundamental bootstrapping sequence of the Isabelle system; it is written
in the Isar format and gives an idea of the global module dependencies: $ISABELLE_HOME/src/Pure/
ROOT.ML. Loading this file (for example by hovering over this hyperlink in the antiquotation holding
control or command key in Isabelle/jedit and activating it) allows the Isabelle IDE to support hyper-
linking inside the Isabelle source.

The bootstrapping sequence is also reflected in the following diagram:

1.3 Elements of the SML library

Elements of the $ISABELLE_HOME/src/Pure/General/basics.ML SML library are basic exceptions.
Note that exceptions should be catched individually, uncatched exceptions except those generated by
the specific "error" function are discouraged in Isabelle source programming since they might produce
races. Finally, a number of commonly used "squigglish" combinators is listed:

Lgdf

__| Editor Front-End T _
(e.g., JEdit, VSCode, Eclipse)

-1 Editor Front-End
L approx. display
edits markup
. evaluation -
- | Isabelle

Isabelle

Figure 1.2: The system architecture of Isabelle (left-hand side) and the asynchronous communication
between the Isabelle system and the IDE (right-hand side).

ML«

Bind :exn;

Chr D exn;

Div . exn;

Domain : exn;

Fail 1 string —> exn;

Match 1 exn;
Overflow : exn;
Size : exn;

Span n;
Subscript : exn;

1)

exnName : exn —> string ; (x —— very interesting to query an unknown exception)
exnMessage : exn —> string ;

ML«
op ! : ‘a Unsynchronized.ref —> 'a;
op :=: ('a Unsynchronized.ref = 'a) —> unit;

op #>: (‘/a —>"b) x ('b —> 'c) —> ‘a —> 'c; (* reversed function composition *)
opo:(('b—=>"c)*('"a—=>"b)—>"'a—>"cg

op|——:('a—=>"bx"c)*x ('c =>"dx"e) —>'a —> "d x '¢;
op —|:('a—>"bx"c)*x (‘e =>"dx"e) —>"a —> b x e;
op——:("a=>"bx"c)x (‘e =>"dx"e) =>"'a —> (b x'd) x 'e;

op ? : bool x ('a —> "a) —> 'a —> ’a;
ignore: 'a —> unit;

op before : ('a x unit) —> 'a;

I: 'a —> 'a;

K:'a —>"'b—>"a

)

Some basic examples for the programming style using these combinators can be found in the "The
Isabelle Cookbook" section 2.3.

An omnipresent data-structure in the Isabelle SML sources are tables implemented in

$ISABELLE_HOME/src/Pure/General/table.ML. These generic tables are presented in an efficient
purely functional implementation using balanced 2-3 trees. Key operations are:

ML«
signature TABLE-reduced =
s1g
type key
type 'a table
exception DUP of key
exception SAME
exception UNDEF of key
val empty: 'a table
val dest: 'a table —> (key * 'a) list
val keys: 'a table —> key list
val lookup-key: 'a table —> key —> (key x 'a) option
val lookup: 'a table —> key —> 'a option
val defined: 'a table —> key —> bool
val update: key * 'a —> 'a table —> 'a table
end
)

. where key is usually just a synonym for string.

10

2 Prover Architecture

2.1 The Nano-Kernel: Contexts, (Theory)-Contexts,
(Proof)-Contexts

What I call the 'Nano-Kernel’ in Isabelle can also be seen as an acyclic theory graph. The meat of it can
be found in the file $ISABELLE_HOME/src/Pure/context.ML. My notion is a bit criticisable since this
component, which provides the type of theory and Proof . context, is not that Nano after all. However,
these type are pretty empty place-holders at that level and the content of $ISABELLE_HOME/src/Pure/
theory.ML is registered much later. The sources themselves mention it as "Fundamental Structure". In
principle, theories and proof contexts could be REGISTERED as user data inside contexts. The chosen
specialization is therefore an acceptable meddling of the abstraction "Nano-Kernel" and its application
context: Isabelle.

Makarius himself says about this structure:

"Generic theory contexts with unique identity, arbitrarily typed data, monotonic development graph
and history support. Generic proof contexts with arbitrarily typed data."

In my words: a context is essentially a container with

e an id

a list of parents (so: the graph structure)

a time stamp and

e a sub-context relation (which uses a combination of the id and the time-stamp to establish this
relation very fast whenever needed; it plays a crucial role for the context transfer in the kernel.
A context comes in form of three 'flavours’

e theories : theory’s, containing a syntax and axioms, but also user-defined data and configuration
information.

e Proof-Contexts: Proof.context containing theories but also additional information if Isar goes
into prove-mode. In general a richer structure than theories coping also with fixes, facts, goals, in
order to support the structured Isar proof-style.

e Generic: Context.generic, i.e. the sum of both.

All context have to be seen as mutable; so there are usually transformations defined on them
which are possible as long as a particular protocol (begin_thy - end_thy etc) are respected.

Contexts come with type user-defined data which is mutable through the entire lifetime of a
context.

2.1.1 Mechanism 1 : Core Interface.
To be found in $ISABELLE_HOME/src/Pure/context.ML:

ML
Context.parents-of : theory —> theory list;
Context.ancestors-of : theory —> theory list;

11

Context.proper-subthy : theory x theory —> bool;

Context.Proof: Proof.context —> Context.generic; (xconstructorsk)
Context.proof-of : Context.generic —> Proof .context;

Context.certificate-theory-id : Context.certificate —> Context.theory-id;
Context.theory-name : theory —> string;

Context.map-theory: (theory —> theory) —> Context.generic —> Context.generic;

»

2.1.2 Mechanism 2 : global arbitrary data structure that is attached to the

ML

global and local Isabelle context 6

datatype X = mt

val init = mt;

val ext = 1

fun merge (X,Y) = mt

structure Data = Generic-Data

(
type T = X
val empty = init
val extend = ext
val merge = merge
)i

Data.get : Context.generic —> Data.T;

Data.put : Data.T —> Context.generic —> Context.generic;

Data.map : (Data.T —> Data.T) —> Conteat.generic —> Context.generic;
(* there are variants to do this on theories ... %)

)

2.2 The LCF-Kernel: terms, types, theories, proof contexts,

thms

The classical LCF-style kernel is about

1.

Types and terms of a typed A-Calculus including constant symbols, free variables, A-binder and
application,

An infrastructure to define types and terms, a signature, that also assigns to constant symbols
types

An abstract type of theorem and logical operations on them

(Isabelle specific): a notion of theory, i.e. a container providing a signature and set (list) of
theorems.

2.2.1 Terms and Types

A basic data-structure of the kernel is $ISABELLE_HOME/src/Pure/term.ML

ML{ open Term;
signature TERM ' = sig

12

type indexname = string * int
type class = string
type sort = class list
type arity = string * sort list * sort
datatype typ =

Type of string * typ list |

TFree of string * sort |

TVar of indezname * sort
datatype term =

Const of string * typ |

Free of string = typ |

Var of indexname * typ |

Bound of int |

Abs of string * typ * term |

$ of term * term
exception TYPE of string * typ list x term list
exception TERM of string * term list

end

»

This core-data structure of the Isabelle Kernel is accessible in the Isabelle/ ML environment and serves
as basis for programmed extensions concerning syntax, type-checking, and advanced tactic programming
over kernel primitives and higher API’s. There are a number of anti-quotations giving support for
this task; since Const-names are long-names revealing information of the potentially evolving library
structure, the use of anti-quotations leads to a safer programming style of tactics and became therefore
standard in the entire Isabelle code-base.

The following examples show how term- and type-level antiquotations are used and that they can
both be used for term-construction as well as term-destruction (pattern-matching):

ML¢ val Const (HOL.implies, @{typ bool = bool = bool})
$ Free (A, @{typ bool})
$ Free (B, @Q{typ bool})
= Q{term A — B},

val HOL.bool = @{type-name bool};

(three ways to write type bool:Q x)
val Type(fun,[s, Type(fun,[@{typ bool}, Type(Q@{type-name bool},[])])]) = @{typ bool = bool = bool};

Note that the SML interpreter is configured that he will actually print a type Type ("HOL.bool", [1)
just as "bool": typ, so a compact notation looking pretty much like a string. This can be confusing
at times.

Note, furthermore, that there is a programming API for the HOL-instance of Isabelle: it is contained
in $ISABELLE_HOME/src/HOL/Tools/hologic.ML. It offers for many operators of the HOL logic specific
constructors and destructors:

ML«

HOLogic.boolT : typ;
HOLogic.mk-Trueprop: term —> term;
HOLogic.dest-Trueprop: term —> term;
HOLogic. Trueprop-conv: conv —> conv;
HOLogic.mk-setT: typ —> typ;
HOLogic.dest-setT: typ —> typ;

13

HOLogic.Collect-const: typ —> term;

HOLogic.mk-Collect: string = typ * term —> term,;
HOLogic.mk-mem: term * term —> term;
HOLogic.dest-mem: term —> term * term;
HOLogic.mk-set: typ —> term list —> term;
HOLogic.cong-intr: Proof.context —> thm —> thm —> thm,;
HOLogic.cong-elim: Proof .context —> thm —> thm % thm;
HOLogic.conj-elims: Proof.context —> thm —> thm list;
HOLogic.conj: term;

HOLogic.disj: term;

HOLogic.imp: term;

HOLogic.Not: term;

HOLogic.mk-not: term —> term;

HOLogic.mk-conj: term x term —> term;
HOLogic.dest-conj: term —> term list;
HOLogic.conjuncts: term —> term list;

)

2.2.2 Type-Certification (=checking that a type annotation is consistent)
ML{ Type.typ-instance: Type.tsig —> typ * typ —> bool (x raises TYPE-MATCH x))

there is a joker type that can be added as place-holder during term construction. Jokers can be
eliminated by the type inference.

ML{ Term.dummyT : typ)

ML
Sign.typ-instance: theory —> typ * typ —> bool,;

Sign.typ-match: theory —> typ = typ —> Type.tyenv —> Type.tyenv;

Sign.typ-unify: theory —> typ * typ —> Type.tyenv * int —> Type.tyenv * int;

Sign.const-type: theory —> string —> typ option;

Sign.certify-term: theory —> term —> term x typ * int; (x core routine for CERTIFICATION of typesx)
Sign.cert-term: theory —> term —> term; (x short—cut for the latter *)

Sign.tsig-of : theory —> Type.tsig (* projects the type signature *)

)

Sign.typ_match etc. is actually an abstract wrapper on the structure Type which contains the heart
of the type inference. It also contains the type substitution type Type.tyenv which is is actually a
type synonym for (sort * typ) Vartab.table which in itself is a synonym for ’a Symtab.table, so
possesses the usual Symtab.empty and Symtab.dest operations.

Note that polymorphic variables are treated like constant symbols in the type inference; thus, the
following test, that one type is an instance of the other, yields false:

ML«
val ty = Q{typ 'a option};
val ty' = Q{typ int option};

val Type(List.list,[S]) = @Q{typ ('a) list}; (x decomposition example *)

val false = Sign.typ-instance @{theory}(ty’, ty);
)

In order to make the type inference work, one has to consider schematic type variables, which are
more and more hidden from the Isar interface. Consequently, the typ antiquotation above will not work
for schematic type variables and we have to construct them by hand on the SML level:

ML«

14

val t-schematic = Type(List.list,|TVar(('a,0),@{sort HOL.type})]);
)

MIND THE ™" Il

On this basis, the following Type.tyenv is constructed:

ML«
val tyenv = Sign.typ-match (Q{theory})
(t-schematic, Q{typ int list})
(Vartab.empty);
val [(("a, 0), ((HOL.type], @{typ int}))] = Vartab.dest tyenv;
)

Type generalization — the conversion between free type variables and schematic type variables —
is apparently no longer part of the standard API (there is a slightly more general replacement in
Term_Subst.generalizeT_same, however). Here is a way to overcome this by a self-baked generaliza-
tion function:

ML«

val generalize-typ = Term.map-type-tfree (fn (str,sort)=> Term.T Var((str,0),sort));
val generalize-term = Term.map-types generalize-typ;

val true = Sign.typ-instance @{theory} (ty’, generalize-typ ty)

)

. or more general variants thereof that are parameterized by the indexes for schematic type variables
instead of assuming just O.

Example:
ML wval t = generalize-term @{term [}

Now we turn to the crucial issue of type-instantiation and with a given type environment tyenv. For
this purpose, one has to switch to the low-level interface Term_Subst.

ML«
Term-Subst.map-types-same : (typ —> typ) —> term —> term;
Term-Subst.map-aterms-same : (term —> term) —> term —> term;
Term-Subst.instantiate: ((indexname x sort) * typ) list x ((indezname * typ) * term) list —> term —> term;
Term-Subst.instantiateT: ((indexname * sort) * typ) list —> typ —> typ;
Term-Subst.generalizeT: string list —> int —> typ —> typ;
(x this is the standard type generalisation function !
only type— frees in the string—list were taken into account. %)
Term-Subst.generalize: string list x string list —> int —> term —> term
(x this is the standard term generalisation function !
only type—frees and frees in the string—lists were taken
into account. *)

Apparently, a bizarre conversion between the old-style interface and the new-style tyenv is necessary.
See the following example.

ML«
val S = Vartab.dest tyenv;
val S = (map (fn (s,(t,u)) => ((s,t),uw)) S) : ((indezname * sort) = typ) list;
(x it took me quite some time to find out that these two type representations,
obscured by a number of type—synonyms, where actually identical. *)
val ty = t-schematic;
val ty’ = Term-Subst.instantiateT S’ t-schematic;
val t = (generalize-term @{term [|});

val t' = Term-Subst.map-types-same (Term-Subst.instantiateT S') (t)

15

(x or alternatively :)
val t'" = Term.map-types (Term-Subst.instantiateT S') (t)
)

2.2.3 Type-Inference (= inferring consistent type information if possible)

Type inference eliminates also joker-types such as dummyT and produces instances for schematic type
variables where necessary. In the case of success, it produces a certifiable term.

ML
Type-Infer-Context.infer-types: Proof.context —> term list —> term list

»

2.2.4 thy and the signature interface

ML«

Sign.tsig-of : theory —> Type.tsig;
Sign.syn-of : theory —> Syntax.syntax;
Sign.of-sort : theory —> typ * sort —> bool ;
)

2.2.5 Thm'’s and the LCF-Style, "Mikro"-Kernel

The basic constructors and operations on theorems$ISABELLE_HOME/src/Pure/thm.ML, a set of derived
(Pure) inferences can be found in $ISABELLE_HOME/src/Pure/drule.ML.

The main types provided by structure thm are certified types ctyp, certified terms cterm, thm as well
as conversions conv.

ML«
signature BASIC-THM =
s1g
type ctyp
type cterm
exception CTERM of string * cterm list
type thm
type conv = cterm —> thm
exception THM of string * int x thm list
end;
)

Certification of types and terms on the kernel-level is done by the generators:

ML«
Thm.global-ctyp-of : theory —> typ —> ctyp;
Thm.ctyp-of: Proof.context —> typ —> ctyp;
Thm.global-cterm-of : theory —> term —> cterm;
Thm.cterm-of : Proof.context —> term —> cterm;

. which perform type-checking in the given theory context in order to make a type or term "admis-
sible" for the kernel.

We come now to the very heart of the LCF-Kernel of Isabelle, which provides the fundamental
inference rules of Isabelle/Pure.

Besides a number of destructors on thm’s, the abstract data-type thm is used for logical objects of
the form I' kg ¢, where I' represents a set of local assumptions, 6 the "theory" or more precisely the
global context in which a formula ¢ has been constructed just by applying the following operations
representing logical inference rules:

ML«

16

O, I, T'Fg:B
O,IILT —{p:A}-(Ap:A.q): (A= B)

(imp-intro)

(—)1.H1.F1F[J:(A:‘>B) (—)Q.HQ.FQF(]:A
01U, II) UL, Ty U2 Fpg: B

(imp-elim)

O, ILT Fplx] :Bx] x¢FVID (
O, IL T+ (Ax. p[r]) : (Ax. B[x])

all-intro)

O,IL,TFp: (Ax. Blx])
O,ILTFpa:Bla

(all-elim)

O,IL{p:A}Fp:A (assm) O, 1L T+plal: Bo] a¢TVD
O,IL T+ p[?a] : B[?a]

(type-gen)

(c:Al?a]) € © (axiom)
—————— (axiom o L pl2al - BI?
0,0,0F c:A[T] ©, 1L, [+ p[?a] : B[?a] (type-inst)
@ 11 T+ nlrl - RIT] .
(a) Pure Kernel Inference Rules I (b) Pure Kernel Inference Rules II

Figure 2.1:

(xinference rulesx)

Thm.assume: cterm —> thm;
Thm.implies-intr: cterm —> thm —> thm;
Thm.implies-elim: thm —> thm —> thm;
Thm.forall-intr: cterm —> thm —> thm,;
Thm.forall-elim: cterm —> thm —> thm;

Thm.transfer : theory —> thm —> thm;

Thm.generalize: string list = string list —> int —> thm —> thm;
Thm.instantiate: ((indeznamexsort)xctyp)list * ((indexnamextyp)*cterm) list —> thm —> thm;

They reflect the Pure logic depicted in a number of presentations such as M. Wenzel, Parallel Proof
Checking in Isabelle/Isar, PLMMS 2009, or simiular papers. Notated as logical inference rules, these
operations were presented as follows:

Note that the transfer rule:
| RSP pC o

TFo o

which is a consequence of explicit theories characteristic for Isabelle’s LCF-kernel design and a remark-
able difference to its sisters HOL-Light and HOL4; instead of transfer, these systems reconstruct proofs
in an enlarged global context instead of taking the result and converting it.

Besides the meta-logical (Pure) implication = = _, the Kernel axiomatizes also a Pure-Equality
= used for definitions of constant symbols:

ML«
Thm.reflexive: cterm —> thm,;
Thm.symmetric: thm —> thm;
Thm.transitive: thm —> thm —> thm;
)

The operation:

ML« Thm.trivial: cterm —> thm;)

17

... produces the elementary tautologies of the form A = A, an operation used to start a backward-
style proof.

The elementary conversions are:

ML«
Thm.beta-conversion: bool —> conv;
Thm.eta-conversion: conv;
Thm.eta-long-conversion: conv;

)

On the level of Drule, a number of higher-level operations is established, which is in part accessible
by a number of forward-reasoning notations on Isar-level.

ML«
op RSN: thm x (int x thm) —> thm;
op RS: thm x thm —> thm;
op RLN: thm list * (int * thm list) —> thm list;
op RL: thm list x thm list —> thm list;
op MRS: thm list x thm —> thm;
op OF: thm * thm list —> thm;
op COMP: thm x thm —> thm;

2.2.6 Theories

This structure yields the datatype hy*_which, becomes he content of
ontext.theory*. In a way, the LF-Kernel registers itself into the Nano-Kernel, which inspired me
(bu) to this naming.

ML
(x intern Theory.Thy;

datatype thy = Thy of
{pos: Position.T,
id: serial,
azxioms: term Name-Space.table,
defs: Defs. T,
wrappers: wrapper list * wrapper list};

%)
Theory.check: Proof .context —> string * Position.T —> theory;

Theory.local-setup: (Proof.context —> Proof .context) —> unit;
Theory.setup: (theory —> theory) —> wunit; (x The thing to extend the table of commands with parser —
callbacks. x)

Theory.get-markup: theory —> Markup. T,

Theory.aziom-table: theory —> term Name-Space.table;
Theory.axiom-space: theory —> Name-Space.T';

Theory.axioms-of : theory —> (string * term) list;
Theory.all-azioms-of : theory —> (string * term) list;
Theory.defs-of : theory —> Defs.T';

Theory.at-begin: (theory —> theory option) —> theory —> theory;
Theory.at-end: (theory —> theory option) —> theory —> theory;
Theory.begin-theory: string * Position.T —> theory list —> theory;
Theory.end-theory: theory —> theory;

»

18

2.3 Backward Proofs: Tactics, Tacticals and Goal-States

At this point, we leave the Pure-Kernel and start to describe the first layer on top of it, involving
support for specific styles of reasoning and automation of reasoning.

tactic’s are in principle relations on theorems thm; this gives a natural way to represent the fact
that HO-Unification (and therefore the mechanism of rule-instantiation) are non-deterministic in prin-
ciple. Heuristics may choose particular preferences between the theorems in the range of this relation,
but the Isabelle Design accepts this fundamental fact reflected at this point in the prover architec-
ture. This potentially infinite relation is implemented by a function of theorems to lazy lists over
theorems, which gives both sufficient structure for heuristic considerations as well as a nice algebra,
called TACTICAL’s, providing a bottom element no_tac (the function that always fails), the top-element
all_tac (the function that never fails), sequential composition op THEN, (serialized) non-deterministic
composition op ORELSE, conditionals, repetitions over lists, etc. The following is an excerpt of ~~/src/
Pure/tactical.ML:

ML«
signature TACTICAL =
519
type tactic = thm —> thm Seq.seq

val all-tac: tactic
val no-tac: tactic
val COND: (thm —> bool) —> tactic —> tactic —> tactic

val THEN: tactic * tactic —> tactic

val ORELSE: tactic * tactic —> tactic

val THEN": ('a —> tactic) * ('a —> tactic) —> 'a —> tactic
val ORELSE": ('a —> tactic) x ('a —> tactic) —> 'a —> tactic

val TRY : tactic —> tactic

val EVERY : tactic list —> tactic

val EVERY " ('a —> tactic) list —> 'a —> tactic
val FIRST': tactic list —> tactic

end
)

The next layer in the architecture describes tactic’s, i.e. basic operations on theorems in a backward
reasoning style (bottom up development of proof-trees). An initial goal-state for some property A — the
goal — is constructed via the kernel Thm. trivial-operation into A = A, and tactics either refine the
premises — the subgoals the of this meta-implication — producing more and more of them or eliminate
them in subsequent goal-states. Subgoals of the form [B1; Bs; A; Bs; By] = A can be eliminated
via the Tactic.assume_tac - tactic, and a subgoal C,, can be refined via the theorem [E;; E3; Es]
= ('}, the Tactic.resolve_tac - tactic to new subgoals E1,F5, E3. In case that a theorem used for
resolution has no premise F;, the subgoal C,, is also eliminated ("closed").

The following abstract of the most commonly used tactic’s drawn from ~~/src/Pure/tactic.ML
looks as follows:

ML«
assume-tac: Proof.contert —> int —> tactic;
compose-tac: Proof .context —> (bool x thm x int) —> int —> tactic;
resolve-tac: Proof.context —> thm list —> int —> tactic;
eresolve-tac: Proof .context —> thm list —> int —> tactic;
forward-tac: Proof.context —> thm list —> int —> tactic;
dresolve-tac: Proof.context —> thm list —> int —> tactic;
rotate-tac: int —> int —> tactic;

19

defer-tac: int —> tactic;
prefer-tac: int —> tactic;

)

*)

Note that "applying a rule" is a fairly complex operation in the Extended Isabelle Kernel, i.e. the
tactic layer. It involves at least four phases, interfacing a theorem coming from the global context 6
(=theory), be it axiom or derived, into a given goal-state.

generalization. All free variables in the theorem were replaced by schematic variables. For exam-
ple, x + y = y + x is converted into %z + 2y = %y + ?z. By the way, type variables were treated
equally.

lifting over assumptions. If a subgoal is of the form: [B;; B3] = A and we have a theorem [Dy;
Dy] = A, then before applying the theorem, the premisses were lifted resulting in the logical
refinement: [[Bi1; B2] = Ds; [B1; B2] = D3] = A. Now, resolve_tac, for example, will
replace the subgoal [B1; Bs] = A by the subgoals [By; B2] = D; and [By; Bs] = D,. Of
course, if the theorem wouldn’t have assumptions D and D, the subgoal A would be replaced
by nothing, i.e. deleted.

lifting over parameters. If a subgoal is meta-quantified like in: Az y z. A x y z then a theorem
like [D1; Do] = A is lifted to Az y z. [D1; D3] = A, too. Since free variables occurring in
D1, Dy and A have been replaced by schematic variables (see phase one), they must be replaced
by parameterized schematic variables, i. e. a kind of skolem function. For example, ?z + %y
= %y + %x would be lifted to /2y 2. 22 yz+ %yaxyz= 9%y zyz+ %caxy 2z This way,
the lifted theorem can be instantiated by the parameters x y z representing "fresh free variables"
used for this sub-proof. This mechanism implements their logically correct bookkeeping via kernel
primitives.

Higher-order unification (of schematic type and term wvariables). Finally, for all these schematic
variables, a solution must be found. In the case of resolve_tac, the conclusion of the (doubly
lifted) theorem must be equal to the conclusion of the subgoal, so A must be «/B-equivalent to
A’ in the example above, which is established by a higher-order unification process. It is a bit
unfortunate that for implementation efficiency reasons, a very substantial part of the code for HO-
unification is in the kernel module thm, which makes this critical component of the architecture
larger than necessary.

In a way, the two lifting processes represent an implementation of the conversion between Gentzen
Natural Deduction (to which Isabelle/Pure is geared) reasoning and Gentzen Sequent Deduction.

2.4

ML

The Isar Engine

Toplevel.theory;
Toplevel.presentation-context-of ; (x+ Toplevel is a kind of table with call—back functions x)

Consts.the-const; (x T is a kind of signature ... %)
Variable.import-terms;
Vartab.update;

fun control-antiquotation name sl s2 =
Thy-Output.antiquotation name (Scan.lift Args.cartouche-input)
(fn {state, ...} => enclose s1 s2 o Thy-Output.output-text state {markdown = false});

Output.output;

20

Syntazx.read-input ;
Input.source-content;

(x

basic-entity @Q{binding const} (Args.const {proper = true, strict = false}) pretty-const #>
*)
)

ML(
Config.get @{context} Thy-Output.display;
Config.get @{context} Thy-Output.source;
Config.get @Q{context} Thy-Output.modes;
Thy-Output.document-command;
(* is:
fun document-command markdown (loc, tat) =
Toplevel.keep (fn state =>
(case loc of
NONE => ignore (output-text state markdown txt)
| SOME (-, pos) =>
error (Illegal target specification —— not a theory context ~ Position.here pos))) o
Toplevel.present-local-theory loc (fn state => ignore (output-text state markdown txt));

end;

ML Thy-Output.document-command {markdown = true}))
ML(Latez.output-ascii;

Latex.output-token
(x Hm, generierter output for
subsectionx[Shaft- Encoder-characteristics|{ = Shaft Encoder Characteristics * } :

\ begin{isamarkuptext } %

\isa{{\isacharbackslash}label{\isacharbraceleft}general{\isacharunderscore} hyps{\isacharbraceright}}%

\ end{isamarkuptext }\isamarkuptrue%

\isacommand{subsection{\isacharasterisk}}\isamarkupfalse%

{\isacharbrackleft} Shaft{\isacharunderscore} Encoder{\isacharunderscore} characteristics{\isacharbrackright } {\isacharverbatimopen}\
Shaft\ Encoder\ Characteristics\ {\isacharverbatimclose}%

Generierter output for: text\<~cartouche>(\label{sec:Shaft— Encoder— characteristics}

\ begin{isamarkuptext } %
\label{sec:Shaft— Encoder— characteristics } %
\ end{isamarkuptext }\isamarkuptrue%

*)

ML

21

Thy-Output.maybe-pretty-source :
(Proof .context —> 'a —> Pretty.T) —> Proof.context —> Token.src —> 'a list —> Pretty.T list;

Thy-Output.output: Proof.context —> Pretty.T list —> string;
(* nuescht besonderes)

fun document-antiq check-file ctxt (name, pos) =
let
(* wal dir = master-directory (Proof-Context.theory-of ctxt); *)
(* wval - = check-path check-file ctxt dir (name, pos); *)
m
space-explode |/ name
|> map Latex.output-ascii
|> space-implode (Latex.output-ascii /| ~ \\discretionary{}{}{})
|> enclose \\isatt{ }
end;

)
ML(Type-Infer-Context.infer-types)
ML((Type-Infer-Context.prepare-positions))

2.4.1 Transaction Management in the Isar-Engine : The Toplevel

ML
Thy-Output.output-text: Toplevel.state —> {markdown: bool} —> Input.source —> string;
Thy-Output.document-command;

Toplevel.exit: Toplevel.transition —> Toplevel.transition;

Toplevel.keep: (Toplevel.state —> unit) —> Toplevel.transition —> Toplevel.transition;

Toplevel.keep”: (bool —> Toplevel.state —> unit) —> Toplevel.transition —> Toplevel.transition;
Toplevel.ignored: Position.T —> Toplevel.transition;

Toplevel.generic-theory: (generic-theory —> generic-theory) —> Toplevel.transition —> Toplevel.transition;
Toplevel.theory': (bool —> theory —> theory) —> Toplevel.transition —> Toplevel.transition;
Toplevel.theory: (theory —> theory) —> Toplevel.transition —> Toplevel.transition;

Toplevel.present-local-theory:
(zstring * Position.T) option —>

(Toplevel.state —> wunit) —> Toplevel.transition —> Toplevel.transition;
(x where text treatment and antiquotation parsing happens *)

(xfun document-command markdown (loc, tat) =
Toplevel.keep (fn state =>
(case loc of
NONE => ignore (output-text state markdown tat)
| SOME (-, pos) =>
error (Illegal target specification —— not a theory context ~ Position.here pos))) o
Toplevel.present-local-theory loc (fn state => ignore (output-text state markdown txt)); *)
Thy-Output.document-command : {markdown: bool} —> (xstring = Position.T) option x Input.source —>
Toplevel.transition —> Toplevel.transition;

(x Isar Toplevel Steuerung *)
Toplevel.keep : (Toplevel.state —> unit) —> Toplevel.transition —> Toplevel.transition;
(x val keep’ = add-trans o Keep;
fun keep f = add-trans (Keep (fn - => f));
*
)

22

Toplevel.present-local-theory : (zstring * Position.T) option —> (Toplevel.state —> unit) —>
Toplevel.transition —> Toplevel.transition;
(* fun present-local-theory target = present-transaction (fn int =>
(fn Theory (gthy, -) =>
let val (finish, lthy) = Named-Target.switch target gthy;
in Theory (finish lthy, SOME lthy) end
| - => raise UNDEF));

fun present-transaction f g = add-trans (Transaction (f, g));
fun transaction f = present-transaction f (K ());

%)

Toplevel.theory : (theory —> theory) —> Toplevel.transition —> Toplevel.transition;
(x fun theory' f = transaction (fn int =>
(fn Theory (Context. Theory thy, -) =>
let val thy' = thy
|> Sign.new-group
|> fint
|> Sign.reset-group;
in Theory (Context. Theory thy’, NONE) end
| - => raise UNDEF));

fun theory f = theory’ (K f); *)

Thy-Output.document-command : {markdown: bool} —> (zstring * Position.T) option * Input.source —>
Toplevel.transition —> Toplevel.transition;
(x fun document-command markdown (loc, txt) =
Toplevel.keep (fn state =>
(case loc of
NONE => ignore (output-text state markdown tzt)
| SOME (-, pos) =>
error (Illegal target specification —— not a theory context ~ Position.here pos))) o
Toplevel.present-local-theory loc (fn state => ignore (output-text state markdown txt));

*)

Thy-Output.output-text : Toplevel.state —> {markdown: bool} —> Input.source —> string ;
(x this is where antiquotation expansion happens : uses eval-antiquote *)

ML(

(* Isar Toplevel Steuerung *)
Toplevel.keep : (Toplevel.state —> unit) —> Toplevel.transition —> Toplevel.transition;
(* val keep’ = add-trans o Keep;
fun keep f = add-trans (Keep (fn - => f));

*)

Toplevel.present-local-theory : (zstring * Position.T) option —> (Toplevel.state —> unit) —>
Toplevel .transition —> Toplevel.transition;
(* fun present-local-theory target = present-transaction (fn int =>
(fn Theory (gthy, -) =>

23

let val (finish, lthy) = Named-Target.switch target gthy;
in Theory (finish lthy, SOME lthy) end
| - => raise UNDEF));

fun present-transaction f g = add-trans (Transaction (f, g));
fun transaction f = present-transaction f (K ());

*)

Toplevel.theory : (theory —> theory) —> Toplevel.transition —> Toplevel.transition;
(* fun theory' f = transaction (fn int =>
(fn Theory (Context. Theory thy, -) =>
let val thy' = thy
|> Sign.new-group
|> fint
|> Sign.reset-group;
in Theory (Context. Theory thy', NONE) end
| - => raise UNDEF));

fun theory f = theory' (K f); *)

Thy-Output.document-command : {markdown: bool} —> (zstring * Position.T) option * Input.source —>
Toplevel .transition —> Toplevel.transition;
(* fun document-command markdown (loc, tat) =
Toplevel.keep (fn state =>
(case loc of
NONE => ignore (output-text state markdown txt)
| SOME (-, pos) =>
error (Illegal target specification —— not a theory context ~ Position.here pos))) o
Toplevel.present-local-theory loc (fn state => ignore (output-text state markdown txt));

*)

Thy-Output.output-text : Toplevel.state —> {markdown: bool} —> Input.source —> string ;
(x this is where antiquotation expansion happens : uses eval-antiquote)

2.4.2 Configuration flags of fixed type in the Isar-engine.

ML({
Config.get Q{context} Thy-Output.quotes;
Config.get @{context} Thy-Output.display;

val C = Synchronized.var Pretty.modes latEEez;
(x Synchronized: a mechanism to bookkeep global
variables with synchronization mechanism included)
Synchronized.value C;
(x
fun output ctxt prts =
603 prts
604 |> Config.get ctzt quotes ? map Pretty.quote
605 |> (if Config.get ctxt display then

606 map (Pretty.indent (Config.get ctat indent) #> string-of-margin ctzt #> Output.output)
607 #> space-implode \\isasep\\isanewline%\n

608 #> Latex.environment isabelle

609 else

24

610
611
612
613
614

map
((if Config.get ctxt break then string-of-margin ctxt else Pretty.unformatted-string-of)
#> Output.output)
#> space-implode \\isasep\\isanewline%\n

#> enclose \\isa{ });

25

3 Front End

Introduction ... TODO

3.1 Basics: string, bstring and xstring

string is the basic library type from the SML library in structure String. Many Isabelle opera-
tions produce or require formats thereof introduced as type synonyms bstring (defined in structure
Binding and xstring (defined in structure Name_Space. Unfortunately, the abstraction is not tight
and combinations with elementary routines might produce quire crappy results.

ML<wal b = Binding.name-of @{binding here})
... produces the system output val it = "here": bstring, but note that it is trappy to believe it
is just a string.

ML <String.explode b

MUL<(String.explode(Binding.name-of

(Binding.conglomerate| Binding. qualified-name X .z,
@{binding here}])

However, there is an own XML parser for this format. See Section Markup.

ML« fun dark-matter x = XML.content-of (YXML.parse-body z))

3.2 Parsing issues
Parsing combinators represent the ground building blocks of both generic input engines as well as the
specific Isar framework. They are implemented in the structure Token providing core type Token.T.

ML open Token))
ML

(* Provided types : *)
(x

type 'a parser = T list —> 'a * T list

type 'a context-parser = Context.generic x T list —> 'a * (Context.generic * T list)
*)
(* conversion between these two : *)
fun parser2contextparser pars (ctwt, toks) = let val (a, toks") = pars toks

in (a,(ctxt, toks')) end;

val - = parserZ2contexrtparser : ‘a parser —> ‘a contert-parser;

(* bah, is the same as Scan.lift x)
val - = Scan.lift Args.cartouche-input : Input.source context-parser;

Token.is-command,
Token.content-of ; (x textueller kern eines Tokens. *)

27

Tokens and Bindings

ML((
val H = @Q{binding here}; (x There are bindings consisting of a text—span and a position,
where “positions” are absolute references to a file *)

Binding.make: bstring x Position.T —> binding;
Binding.pos-of Q{binding erzerzer};
Position.here: Position.T —> string;

(x Bindings x)

MIN\<~cartouche>wal X = Q{here};

»

3.2.1 Input streams.

ML(
Input.source-explode : Input.source —> Symbol-Pos.T list;

(x conclusion: Input.source-explode converts f @Q{thm refl}
into:
[(, {offset=14, id=—2769}), (f, {offset=15, id=—2769}), (, {offset=16, id=—2769}),
(Q, {offset=17, id=—2769}), ({, {offset=18, id=—2769}), (t, {offset=19, id=—2769}),
(h, {offset=20, id=—2769}), (m, {offset=21, id=—2769}), (, {offset=22, id=—2769}),
(r, {offset=23, id=—2769}), (e, {offset=24, id=—2769}), (f, {offset=25, id=—2769}),
(I, {offset=26, id=—2769}), (}, {offset=27, id=—2769})]

)

3.2.2 Scanning and combinator parsing.

Is used on two levels:

1. outer syntax, that is the syntax in which Isar-commands are written, and

2. inner-syntax, that is the syntax in which lambda-terms, and in particular HOL-terms were written.

A constant problem for newbies is this distinction, which makes it necessary that the " ... " quotes

have to be used when switching to inner-syntax, except when only one literal is expected when an
inner-syntax term is expected.

ML«

Scan.peek : (‘la —> 'b —> ‘cx 'd) —=> 'a x 'b —> ‘c x ('a * 'd);
Scan.optional: ('a —> 'b * 'a) —> b —> 'a —> 'b * 'a;
Scan.option: (‘a —> b x 'a) —> 'a —> b option * 'a;
Scan.repeat: ('a —> b * ‘a) —> ‘a —> 'b list * 'a;

Sean.lift : ('a —> "bx 'c) —> 'd x '"a —> 'b x ('d * 'c¢);
Scan.lift (Parse.position Args.cartouche-input);

)

"parsers" are actually interpreters; an ’a parser is a function that parses an input stream and com-
putes(=evaluates, computes) it into ’a. Since the semantics of an Isabelle command is a transition =>
transition or theory = theory function, i.e. a global system transition. parsers of that type can be
constructed and be bound as call-back functions to a table in the Toplevel-structure of Isar.

The type ’a parser is already defined in the structure Token.

Syntax operations : Interface for parsing, type-checking, "reading" (both) and pretty-printing. Note
that this is a late-binding interface, i.e. a collection of "hooks". The real work is done ... see below.

28

Encapsulates the data structure "syntax" — the table with const symbols, print and ast translations,
... The latter is accessible, e.g. from a Proof context via Proof_Context.syn_of.

ML«

Parse.nat: int parser;

Parse.int: int parser;

Parse.enum-positions: string —> 'a parser —> ('a list * Position.T list) parser;
Parse.enum: string —> 'a parser —> 'a list parser;

Parse.input: 'a parser —> Input.source parser;

Parse.enum : string —> 'a parser —> ’a list parser;
Parse Wl : (T list —> 'a) —> T list —> 'a;
Parse.position: 'a parser —> ('a * Position.T) parser;

(* Ezamples *)
Parse.position Args.cartouche-input;
)

Inner Syntax Parsing combinators for elementary Isabelle Lexems

ML«

Syntazx.parse-sort : Proof.context —> string —> sort;
Syntax.parse-typ : Proof.context —> string —> typ;
Syntax.parse-term : Proof .context —> string —> term;
Syntazx.parse-prop : Proof.context —> string —> term;
Syntax.check-term : Proof.context —> term —> term;
Syntax.check-props: Proof .context —> term list —> term list;
Syntazx.uncheck-sort: Proof.context —> sort —> sort;
Syntax.uncheck-typs: Proof.context —> typ list —> typ list;
Syntax.uncheck-terms: Proof.context —> term list —> term list;)

In contrast to mere parsing, the following operators provide also type-checking and internal reporting
to PIDE — see below. I did not find a mechanism to address the internal serial-numbers used for
the PIDE protocol, however, rumours have it that such a thing exists. The variants _global work on
theories instead on Proof.contexts.

ML«

Syntazx.read-sort: Proof.context —> string —> sort;
Syntazx.read-typ : Proof.context —> string —> typ;
Syntazx.read-term: Proof.context —> string —> term;
Syntax.read-typs: Proof.context —> string list —> typ list;
Syntazx.read-sort-global: theory —> string —> sort;
Syntazx.read-typ-global: theory —> string —> typ;
Syntazx.read-term-global: theory —> string —> term;
Syntax.read-prop-global: theory —> string —> term;

)

The following operations are concerned with the conversion of pretty-prints and, from there, the
generation of (non-layouted) strings.

ML«

Syntax.pretty-term: Proof .context —> term —> Prelty.T;
Syntax.pretty-typ: Proof .context —> typ —> Pretty.T;
Syntax.pretty-sort: Proof .context —> sort —> Pretty.T;
Syntax.pretty-classrel: Proof.context —> class list —> Pretty.T;
Syntax.pretty-arity: Proof.context —> arity —> Pretty. T,
Syntax.string-of-term: Proof.context —> term —> string;
Syntaz.string-of-typ: Proof.context —> typ —> string;
Syntax.lookup-const : Syntax.syntax —> string —> string option;
)

29

ML
fun read-terms ctxt =
grouped 10 Par-List.map-independent (Syntaz.parse-term ctxt) #> Syntaz.check-terms ctat;

»

ML«

(x More High—level, more Isar—specific Parsers)
Args.name;

Args.const;

Args.cartouche-input: Input.source parser;
Args.text-token: Token.T parser;

val Z = let val attribute = Parse.position Parse.name ——
Scan.optional (Parse.$$$ = |—— Parse!ll Parse.name) ;
in (Scan.optional(Parse.$$$, |—— (Parse.enum , attribute))) end ;
(* this leads to constructions like the following, where a parser for a x)
fn name => (Thy-Output.antiquotation name (Scan.lift (Parse.position Args.cartouche-input)));
)

3.3

ML<Sign.add-trrules)

3.4 The PIDE Framework

3.4.1 Markup

Markup Operations, and reporting. Diag in Isa_DOF Foundations TR. Markup operation send via
side-effect annotations to the GUI (precisely: to the PIDE Framework) that were used for hyperlinking
applicating to binding occurrences, info for hovering, ...

ML(

(x Position.report is also a type consisting of a pair of a position and markup. *)
(x It would solve all my problems if I find a way to infer the defining Position.report
from a type definition occurence ... *)

Position.report: Position.T —> Markup.T —> unit;
Position.reports: Position.report list —> unit;

(x 2 2 2 I think this is the magic thing that sends reports to the GUI. x)
Markup.entity : string —> string —> Markup.T;
Markup.properties : Properties. T —> Markup.T —> Markup.T ;
Properties.get : Properties. T —> string —> string option;
Markup.enclose : Markup.T —> string —> string;

(x example for setting a link, the def flag controls if it is a defining or a binding
occurence of an item x)
fun theory-markup (def:bool) (name:string) (id:serial) (pos:Position.T) =

if id = 0 then Markup.empty

else

Markup.properties (Position.entity-properties-of def id pos)
(Markup.entity Markup.theoryN name);

Markup.theoryN : string;

serial(); (% A global, lock—guarded seriel counter used to produce unique identifiers,

30

be it on the level of thy—internal states or as reference in markup in
PIDE)

(*x From Theory:
fun check ctxt (name, pos) =
let
val thy = Proof-Context.theory-of ctat;
val thy' =
Context.get-theory thy name
handle ERROR msg =>
let
val completion =
Completion.make (name, pos)
(fn completed =>
map Context.theory-name (ancestors-of thy)
|> filter completed
|> sort-strings
|> map (fn a => (a, (Markup.theoryN, a))));
val report = Markup.markup-report (Completion.reported-text completion);
in error (msg ~ Position.here pos ~ report) end;
val - = Context-Position.report ctxt pos (get-markup thy');
in thy' end;

fun init-markup (name, pos) thy =

let
val id = serial ();
val - = Position.report pos (theory-markup true name id pos);

i map-thy (fn (-, -, azioms, defs, wrappers) => (pos, id, axioms, defs, wrappers)) thy end;

fun get-markup thy =
let val {pos, id, ...} = rep-theory thy
in theory-markup false (Context.theory-name thy) id pos end;

*)
(x

fun theory-markup def thy-name id pos =
if id = 0 then Markup.empty
else
Markup.properties (Position.entity-properties-of def id pos)
(Markup.entity Markup.theoryN thy-name);

fun get-markup thy =

let val {pos, id, ...} = rep-theory thy
in theory-markup false (Context.theory-name thy) id pos end,;

fun init-markup (name, pos) thy =

let
val id = serial ();
val - = Position.report pos (theory-markup true name id pos);

in map-thy (fn (-, -, azioms, defs, wrappers) => (pos, id, azioms, defs, wrappers)) thy end;

fun check ctzt (name, pos) =
let

31

val thy = Proof-Context.theory-of ctxt;
val thy' =
Context.get-theory thy name
handle ERROR msg =>
let
val completion =
Completion.make (name, pos)
(fn completed =>
map Context.theory-name (ancestors-of thy)
|> filter completed
|> sort-strings
|> map (fn a => (a, (Markup.theoryN, a))));
val report = Markup.markup-report (Completion.reported-text completion);
in error (msg ~ Position.here pos ~ report) end;
val - = Context-Position.report ctxt pos (get-markup thy');
in thy' end;

*)
»

3.5 Output: Very Low Level

ML«

Output.output; (* output is the structure for the hooks with the target devices. x)
Output.output bla-1:;

)

3.6 Output: LaTeX

ML«
Thy-Output.verbatim-text;
Thy-Output.output-text: Toplevel.state —> {markdown: bool} —> Input.source —> string;
Thy-OQutput.antiquotation:
binding —>
‘a context-parser —>
({ context: Proof.context, source: Token.src, state: Toplevel.state} —> 'a —> string) —>
theory —> theory;

Thy-Output.output: Proof.context —> Pretty.T list —> string;
Thy-Output.output-text: Toplevel.state —> {markdown: bool} —> Input.source —> string;

Thy-OQutput.output : Proof.context —> Pretty.T list —> string;
)

ML
Syntax-Phases.reports-of-scope;

»

ML((

32

(* interesting piece for LaTeX Generation:
fun verbatim-text ctxt =
if Config.get ctxt display then

split-lines #> map (prefiz (Symbol.spaces (Config.get ctat indent))) #> cat-lines #>

Latex.output-ascii #> Latex.environment isabellett
else

split-lines #>

map (Latex.output-ascii #> enclose \\isatt{ }) #>

space-itmplode \\isasep\\isanewline%\n;

(x From structure Thy-Output *)
fun pretty-const ctzt ¢ =
let

val t = Const (¢, Consts.type-scheme (Proof-Context.consts-of ctat) c)

handle TYPE (msg, -, -) => error msg;
val ([t'], -) = Variable.import-terms true [t] ctxt;
in pretty-term ctat t' end;

basic-entity Q{binding const} (Args.const {proper = true, strict = false}) pretty-const #>

*)

Pretty.enclose :

string —> string —> Pretty.T list —> Pretty.T; (* not to confuse with: String.enclose *)

(x At times, checks where attached to Pretty — functions and exceptions used to

stop the execution/validation of a command)
fun pretty-theory ctxt (name, pos) =
Pretty.enclose;
Pretty.str;
Pretty.mark-str;
Pretty.text bla-d;

Pretty.quote; (x Pretty. T transformation adding)
Pretty.unformatted-string-of : Pretty. T —> string ;

Latex.output-ascit;

Latex.environment isa bg;
Latex.output-ascii a-b:c’é;

(x Note: *)

space-implode sd &e sf dfg [qs,er,alpal;

(x

(Theory.check ctat (name, pos); Pretty.str name);

fun pretty-command (cmd as (name, Command {comment, ...})) =

Pretty.block
(Pretty.marks-str

([Active.make-markup Markup.sendbackN {implicit = true, properties = [Markup.padding-line]},

command-markup false cmd], name) :: Pretty.str :

*)

)j

ML

Thy-Output.output-text;

(* 1is:

fun output-text state {markdown} source =

:: Pretty.brk 2 :: Pretty.text comment);

33

let
val is-reported =
(case try Toplevel.context-of state of
SOME ctxt => Context-Position.is-visible ctxt
| NONE => true);

val pos = Input.pos-of source;
val syms = Input.source-explode source;

val - =
if is-reported then
Position.report pos (Markup.language-document (Input.is-delimited source))
else ();

val output-antiquotes = map (eval-antiquote state) #> implode;
fun output-line line =

(if Markdown.line-is-item line then \\item else)
output-antiquotes (Markdown.line-content line);

fun output-blocks blocks = space-implode \n\n (map output-block blocks)
and output-block (Markdown.Par lines) = cat-lines (map output-line lines)
| output-block (Markdown.List {kind, body, ...}) =
Latez.environment (Markdown.print-kind kind) (output-blocks body);
m
if Toplevel.is-skipped-proof state then
else if markdown andalso exists (Markdown.is-control o Symbol-Pos.symbol) syms
then
let
val ants = Antiquote.parse pos syms;
val reports = Antiquote.antig-reports ants;
val blocks = Markdown.read-antiquotes ants;
val - = if is-reported then Position.reports (reports @ Markdown.reports blocks) else ();
in output-blocks blocks end
else
let
val ants = Antiquote.parse pos (Symbol-Pos.trim-blanks syms);
val reports = Antiquote.antig-reports ants;
val - = if is-reported then Position.reports (reports @ Markdown.text-reports ants) else ();
in output-antiquotes ants end
end;

ML
Outer-Syntaz.print-commands Q{theory};

Outer-Syntaz.command : Outer-Syntaz.command-keyword —> string —>
(Toplevel.transition —> Toplevel.transition) parser —> unit;
(x creates an implicit thy-setup with an entry for a call—back function, which happens
to be a parser that must have as side—effect a Toplevel—transition—transition.
Registers Toplevel.transition —> Toplevel.transition parsers to the Isar interpreter.

*)

(xEzample: text is :

34

val - =
Outer-Syntaz.command (text, Q{here}) formal comment (primary style)
(Parse.opt-target —— Parse.document-source >> Thy-Output.document-command {markdown = true});
*)

(* not exported: Thy-Output.output-token; Ich glaub, da passierts ... *)
Thy-Output.present-thy;

»

Even the parsers and type checkers stemming from the theory-structure are registered via hooks (this
can be confusing at times). Main phases of inner syntax processing, with standard implementations
of parse/unparse operations were treated this way. At the very very end in ~~/src/Pure/Syntax/
syntax_phases.ML, it sets up the entire syntax engine (the hooks) via:

Thus, Syntax Phases does the actual work, including markup generation and generation of reports.
Look at:

end

35

	1 SML and Fundamental SML libraries
	1.1 ML, Text and Antiquotations
	1.2 The Isabelle/Pure bootstrap
	1.3 Elements of the SML library

	2 Prover Architecture
	2.1 The Nano-Kernel: Contexts, (Theory)-Contexts, (Proof)-Contexts
	2.1.1 Mechanism 1 : Core Interface.
	2.1.2 Mechanism 2 : global arbitrary data structure that is attached to the global and local Isabelle context

	2.2 The LCF-Kernel: terms, types, theories, proof_contexts, thms
	2.2.1 Terms and Types
	2.2.2 Type-Certification (=checking that a type annotation is consistent)
	2.2.3 Type-Inference (= inferring consistent type information if possible)
	2.2.4 thy and the signature interface
	2.2.5 Thm's and the LCF-Style, "Mikro"-Kernel
	2.2.6 Theories

	2.3 Backward Proofs: Tactics, Tacticals and Goal-States
	2.4 The Isar Engine
	2.4.1 Transaction Management in the Isar-Engine : The Toplevel
	2.4.2 Configuration flags of fixed type in the Isar-engine.

	3 Front End
	3.1 Basics: string, bstring and xstring
	3.2 Parsing issues
	3.2.1 Input streams.
	3.2.2 Scanning and combinator parsing.

	3.4 The PIDE Framework
	3.4.1 Markup

	3.5 Output: Very Low Level
	3.6 Output: LaTeX

