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Preface

An ontology typically provides a vocabulary describing a domain of interest and a
specification of the meaning of terms in that vocabulary. Depending on the precision
of this specification, the notion of ontology encompasses several data or conceptual
models, e.g., classifications, database schemas, fully axiomatised theories. Ontolo-
gies tend to be everywhere. They are viewed as the silver bullet for many appli-
cations, such as database integration, peer-to-peer systems, e-commerce, semantic
web services, social networks (Fensel 2004). They are, indeed, a practical means to
conceptualise what is expressed in a computer format (Brodie et al. 1984; Guarino
2009). However, in open or evolving systems, such as the semantic web, different
parties would, in general, adopt different ontologies. Thus, merely using ontologies,
like using XML, does not reduce heterogeneity: it raises heterogeneity problems to
a higher level.

For instance, imagine two organisations dealing with books: one is a cultural
product electronic commerce site (which sells books, music, movies, etc.) and the
other is a university library. Both organisations deal with some related products,
the books, but are concerned with different aspects of these: the seller is concerned
by the margin, the publisher or the type of binding; the library, in turn, pays more
attention to the topic, the size and the year of publication. Both are concerned by
the price and the author. Yet they may consider these differently, because the price
can include tax and shipping fees or not and being expressed in different currencies
or because the authors can be denoted by individual objects or by the character
string of their names. Moreover, the seller may organise books according to their
commercial types and the library according to their literary types. In summary, these
two organisations will obviously have different and heterogeneous ontologies.

The book seller and the library may have to interact, for example, because the
latter wants to order books to the former or because the former wants to digitise
the collections of the latter. In order to do so seamlessly, they need to find the corre-
spondences between the entities in their respective ontologies. The correspondences
may express that what is called a book in the ontology of the seller stands for what
is called a volume in that of the library. Furthermore, the price in the seller ontol-
ogy should be multiplied by a tax rate for obtaining the corresponding price in the
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viii Preface

library ontology. The process of finding these correspondences is called ‘ontology
matching’.

This book is devoted to ontology matching as a solution to the semantic het-
erogeneity problem faced by computer systems. Ontology matching aims at finding
correspondences between semantically related entities of different ontologies. These
correspondences may stand for equivalence as well as other relations, such as conse-
quence, subsumption, or disjointness, between ontology entities. Ontology entities,
in turn, usually denote the named entities of ontologies, such as classes, proper-
ties or individuals. However, these entities may also be more complex expressions,
such as formulas, concept definitions, queries or term building expressions. Ontol-
ogy matching results, called alignments, can thus express with various degrees of
precision the relations between the ontologies under consideration.

Alignments can be used for various tasks, such as ontology merging, query an-
swering, data translation or for browsing the semantic web. In the above mentioned
example, the library can take advantage of alignments for automatically ordering
a book and the seller can use them for checking the availability of a reference by
the library. Matching ontologies enables the knowledge and data expressed in the
matched ontologies to interoperate. It is thus of utmost importance for the above
mentioned applications whose interoperability is jeopardised by heterogeneous on-
tologies.

Many different matching solutions have been proposed so far from various view-
points, e.g., databases, information systems, artificial intelligence. They take advan-
tage of various properties of ontologies, e.g., structures, data instances, semantics,
or labels, and use techniques from different fields, e.g., statistics and data analy-
sis, machine learning, automated reasoning, and linguistics. These solutions share
some techniques and tackle similar problems, but differ in the way they combine
and exploit their results. As a consequence, they are quite difficult to compare and
describe, lacking a uniform framework.

About Ontology Matching

Ontology Matching aims at being a reference book that presents currently available
work in the topic in a uniform framework. In particular, though we use the word
ontology, the work and the techniques considered in this book can equally be applied
to database schema matching, catalogue integration, XML schema matching and
other related problems. The objectives of the book include presenting (i) the state
of the art and (ii) the latest research results in ontology matching by providing a
detailed account of matching techniques and matching systems in a systematic way
from theoretical, practical and application perspectives. The main emphasis of this
book is thus on technical solutions for matching.

We have aimed at a sufficiently comprehensive and documented book so that
readers can find and learn about almost any subject related to ontology matching
and be referred to further reading. Several topics are not covered in full depth but
presented only in some salient details for completeness purpose.



Preface ix

It is not the goal of this book to advocate one approach to ontology matching
against the others, but rather to show the variety of approaches and their adequacy
in different contexts. We are convinced that there is not one unique approach to
ontology matching. We concentrate, however, on automatic solutions for matching.
Many applications require submitting matching results to user scrutiny and control
before using them, but the better the automated part of the task, the easier the con-
trol.

This book provides a comprehensive coverage of ontology matching for the re-
searcher and the practitioner. In particular, it reconsiders former frameworks and
classifications, broadening their scope and accounting for more solutions. It goes
as far as describing in detail basic techniques used in matching systems, reviewing
available systems, providing a framework for their evaluation and discussing their
applications. This unified view of ontology matching techniques and solutions aims
at being the starting point to implementing matching solutions dedicated to a par-
ticular application context or developing new techniques. So readers should find in
this book inspiration for implementing and understanding matching, they should not
expect the ultimate matching solution to be unveiled.

Ontology Matching is not meant to be a textbook, though it features exercises
for a selected number of chapters. These exercises can help readers in evaluating
their understanding of some technical concepts. This book is also complemented by
a web site1 which features additional information and resources.

Novelty of the Second Edition

Six years have passed since the first edition of Ontology Matching, during which
the field has made considerable progress Shvaiko and Euzenat (2013). Although,
this did not affect the relevance of the first edition, we felt the need to update its
content and introduce several novel topics.

A new trend that has risen during the few past years is linked data and the subse-
quent need for data interlinking. Data interlinking falls technically under the defini-
tion that we gave for ontology matching and shares enough similarity, so we address
this topic to a certain extent (see, in particular, Sects. 1.3, 5.4.2, and 12.4). In fact,
ontology matching and data interlinking can be used for improving each other. How-
ever, we think that the subject deserves a full autonomous treatment as such.

The new Chap. 3 provides methodological guidelines for people wanting to start
a project involving ontology matching. This chapter introduces the alignment life
cycle and presents the articulation of the various techniques presented in this book.

Due to the development of matching techniques, the former Chaps. 4 (‘Basic
techniques’) and 5 (‘Matching strategies’) have been reorganised into three chapters:
Chap. 5 covering most of the former Chap. 4 and concerned with local comparison
measures, Chap. 6 gathering matching methods working globally on ontologies,

1http://book.ontologymatching.org.

http://book.ontologymatching.org
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which were dispatched in the two former chapters, and Chap. 7 covering most of its
former counterpart. The proposed ‘Classification of ontology matching techniques’
(Chap. 4) has also been revised in light of new techniques. The respective number
of matching systems and frameworks overviewed in Chaps. 8 and 10 increased from
50 to over 100.

We renamed Chap. 11, ‘Explaining alignments’, into ‘User involvement’. This is
to account for the various ways in which users can participate in the matching task
beyond being simply explained the output of the process.

Finally, several topics have been worth a new specific section due to their impor-
tance in the current matching theory and practice, such as partitioning and pruning
(Sect. 7.1.1), context-based matching (Sect. 7.3), matcher tuning (Sect. 7.6), and
alignment metadata (Sect. 10.2), to mention a few.

Outline of the Book

This book is organised in five parts.
Part I is dedicated to the motivation and the definition of the ontology matching

problem. The motivation is given in Chap. 1 through the presentation of various
applications that can take advantage of matching ontologies and the presentation of
how matching contributes to these applications. In Chap. 2, the ontology matching
problem is technically defined in various instances of ontology matching occurring
in different contexts, such as folksonomies, classifications, databases, XML and
entity–relationship schemas and finally formal ontologies. It justifies the empha-
sis of this book on ontology matching and provides definitions for the vocabulary
used. Finally, it technically defines the ontology expression languages, the ontology
matching process and its result: the alignment. Chapter 3 provides methodological
guidelines for carrying out an ontology matching project through the whole align-
ment life cycle: from matching ontologies to evolving alignments. It articulates most
of the remaining chapters in a rational process plan.

Part II provides a comprehensive coverage of the techniques currently used for
ontology matching. It is the main part of the book. Chapter 4 defines a classifica-
tion of matching approaches. Chapter 5 presents the basic similarity or dissimilarity
measures that can be used for comparing ontology entities. These techniques are the
basis of most ontology matchers. Chapter 6 discusses more elaborate techniques,
which match ontologies by comparing them globally. This may involve propagating
similarities globally, from basic measures, to reach an equilibrium. The composition
of ontology matching systems from these techniques is considered in Chap. 7, which
presents techniques that do not perform matching themselves, but rather manipulate
matchers and alignments.

Part III is devoted to packaged matching systems that can be manipulated in ap-
plications. Chapter 8 presents a large panel of state-of-the-art matching systems.
The reader will find that the basic techniques presented before can lead to a large
diversity of systems. Chapter 9 is dedicated to the evaluation of matching solutions.
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It presents techniques for discriminating empirically among these systems and eval-
uating their suitability to a particular application.

Part IV is devoted to the use of the ontology matching results in applications once
they have been obtained. Chapter 10 considers how alignments can be expressed ei-
ther for being stored or for being communicated between systems. This chapter also
presents frameworks in which alignments may be both obtained and used in various
ways. Chapter 11 deals with user involvement. This is important when matching is
not expected to be automatic. Finally, Chap. 12 addresses the ultimate use of on-
tology matching results through their implementation as effective procedures, e.g.,
rules, articulation axioms, mediators that can be used within applications.

Part V concludes the book, summarising the current state of ontology match-
ing and emphasising remaining problems that will have to be addressed by further
research.

A graphical representation of this organisation is presented below. The arrows
offer different independent reading paths through the book.

1.
Applications

2. Definitions

3.
Methodology

4.
Classification

5. Similarity

6. Global
matching

7. Strategy

8. Systems

9. Evaluation

10. Representation

11. User involvement

12. Processing

13.
Conclusion

Part I Part II Part III

Part IV Part V

Readership and Lecture Guide

This book is intended for researchers and practitioners of information and ontology
engineering.

The book outline provides a progressive presentation of the ontology match-
ing field and can be read in its entirety. However, each chapter considers ontology
matching under a different perspective and can be read in isolation (though it is ad-
vised to read the first part before any other). Those who are only interested in getting
acquainted with ontology matching can start by reading Chaps. 1, 2 and 13.

For researchers and students dealing with the problem of semantic heterogeneity,
we provide not only a comprehensive overview of the state of the art in ontology
matching, but also present in detail recent research developments. They show how
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ontology matching technologies are going to evolve, indicating which research top-
ics are in the academic agenda and which of them represent the scientific challenges.
A course on ontology matching should take some motivations from Chap. 1, explain
the concepts introduced in Chap. 2, get inspiration from the guidelines presented in
Chap. 3, use the classification of Chap. 4 for exposing Chaps. 5, 6 and 7 and cer-
tainly provide some insights from Chap. 9.

For information technology practitioners, both from industry and academia, who
want to implement an ontology matching component, this book will help take ad-
vantage of state-of-the-art solutions. These readers will take more profit in Chaps. 5,
6, 7, 8, 10, 11 and 12.

For professionals in the areas of e-commerce and knowledge management, the
book provides decision support on the use of ontology matching technologies, in-
formation about potential problems, and guidelines for the successful application of
existing approaches. These readers will take more profit in Chaps. 1, 2, 3, 4, 8, 9, 10
and 12.

We only expect from readers a basic knowledge about data and conceptual mod-
elling and graph theory. Knowledge about logics can also be helpful, though not
strictly necessary.
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Chapter 1
Applications

This chapter overviews the major ontology matching applications. These applica-
tions are presented from a technological point of view, such as ontology integration
or linked data, rather than from an economic sector or a domain of interest point
of view, such as biomedicine or electronic government. Ontology matching is an
enabling operation spreading all domains of interest (running in heterogeneous set-
tings).

Matching models is an important operation in traditional applications, such as
ontology integration, schema integration, or data warehouses. Typically, these ap-
plications are characterised by heterogeneous structural models that are analysed
and matched either manually or semi-automatically at design time. In such applica-
tions, matching is a prerequisite of running the actual system.

A line of applications that can be characterised by their dynamics, e.g., agents,
peer-to-peer systems, web services, has emerged. Such applications, contrary to tra-
ditional ones, require a run-time matching operation and often take advantage of
more explicit conceptual models.

We first present some well-known applications where matching has been recog-
nised as a plausible solution for a long time. These are ontology engineering
(Sect. 1.1) and information integration, including schema integration, catalogue
integration, data warehouses and data integration (Sect. 1.2). Then, we discuss
some recently emerged new applications, such as linked data (Sect. 1.3), peer-
to-peer information sharing (Sect. 1.4), web service composition (Sect. 1.5), au-
tonomous communication systems, including agents and mobile devices communi-
cation (Sect. 1.6), navigation and query answering on the web (Sect. 1.7). For each
class of technological applications we provide a concise motivating scenario from a
domain of interest. Finally, the legends to the figures illustrating applications under
consideration can be found in Appendix A.

1.1 Ontology Engineering

A context in which users are confronted with heterogeneous ontologies is ontology
engineering, and, more generally, the task of designing, implementing and maintain-
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ing ontology-based applications. This activity requires ontology matching support
because ontology engineering has to deal with multiple, distributed and evolving
ontologies. Below we provide a short motivating scenario from the biomedical do-
main, which is concerned with ontology evolution.

Motivating Scenario from the Biomedical Domain Development of ontologies
in the biomedical domain started more than a decade ago. In this context, the most
prominent example of ontology development is that of the gene ontology project.1

This is a collaborative effort to develop and use ontologies to support biologi-
cally meaningful annotation of genes and their products in a wide variety of or-
ganisms (Gene Ontology Consortium 2008). It covers molecular functions, asso-
ciated biological processes and cellular components. The gene ontology is main-
tained through a CVS repository, which traces only syntactic differences; hence,
for instance, differences between class versions, splits or merges of concepts are
not captured, though such differences may invalidate annotations. These differences
may be revealed with the help of matching. Moreover, there exist several infras-
tructures promoting the development and use of ontologies in biomedicine, such as
OBO Foundry (Smith et al. 2007) and BioPortal (Musen et al. 2012). For example,
BioPortal offers a repository of more than 270 biomedical ontologies, with support
services for annotating, retrieving or performing analytics over data (Sect. 12.7.1).

1.1.1 Ontology Editing and Import

Ontology heterogeneity may be first faced while designing an ontology for a do-
main of interest. Ontology-based system designers often have to integrate different
ontologies, either for the sake of enforcing reuse, and thus not multiplying ontolo-
gies on the same topic, or because it is necessary for interconnecting various relevant
resources.

It is often the case that application engineering requires an external set of on-
tologies to be put together. For instance, building a library cataloguing ontology
may require assembling ontologies for people, books and topics as well as ontolo-
gies for measurement units, geographic coordinates, book identification numbers, metadata,
etc. These ontologies share related concepts, for instance, the friend-of-a-friend
(FOAF2) ontology (which can be used as a starting point for modelling people)
offers a Document concept that has to be related to the classes of the book identification

numbers ontology.
Ontology engineers need support for (i) identifying the relevant ontologies and

(ii) matching and recording the relations between entities in these ontologies. Ad-
ditionally, they may want to import the identified ontologies and merge them (in

1http://www.geneontology.org.
2http://www.foaf-project.org.

http://www.geneontology.org
http://www.foaf-project.org
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which case, they will use some axioms generated from the result of the matching
phase) or to use data expressed under another ontology in the application (in which
case, they will generate a mediator from the matching result).

The situation under consideration is simple because it is static. In fact, ontologies
are encountered at design time and mediators can be built at that moment. Thus,
application developers can find correspondences and design the necessary trans-
formations manually. Some ontology engineering tools provide support for find-
ing the correspondences, for example, Protégé through the Prompt suite of tools
(Sect. 10.3.5). Newer ontology development environments will have to take into
account, from the beginning, the existence of multiple ontologies and the need for
mediators between them. For instance, Schemr offers a search engine to look for
schemas from a metadata repository, such that schema fragments can be reused,
thereby providing an immediate bootstrap path for a modelling issue at hand (Chen
et al. 2011).

1.1.2 Ontology Evolution and Versioning

It is natural that domains of interest, application requirements and the way in which
knowledge engineers conceptualise these by means of ontologies undergo changes
and evolve over time. Moreover, ontology development, similar to software develop-
ment, is often performed in a distributed and collaborative manner. Therefore, multi-
ple versions of the same ontology, e.g., the gene ontology, often exist. Some applica-
tions keep their ontologies up to date, while others may continue to use old ontology
versions and update them on their own. This situation arises because knowledge en-
gineers and developers usually do not have a global view of how and where the
ontologies have changed. In fact, change logs may not always be available (which
is often the case in distributed ontology development). Therefore, developers need
to manage and maintain the different versions of their ontologies.

The matching operation can help here (see Fig. 1.1). Its main focus is on dis-
covering the differences, e.g., which ontology entities have been added, deleted or
renamed, between two ontology versions (Roddick 1995; Noy and Klein 2004; Noy
and Musen 2002b, 2004; Kirsten et al. 2011; Hartung et al. 2013).

1.2 Information Integration

Information integration is one of the oldest classes of applications where matching
is viewed as a solution. Under the information integration heading, we gather here
such problems as schema integration (Batini et al. 1986; Sheth and Larson 1990;
Spaccapietra and Parent 1991; Parent and Spaccapietra 1998), data warehousing
(Bernstein and Rahm 2000; Dessloch et al. 2008), data integration (also known
as enterprise information integration) (Chawathe et al. 1994; Wache et al. 2001;
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Fig. 1.1 Ontology evolution. In this scenario it is useful to (1) match the old version ot and the new
version ot+n of the ontology, thus resulting in an alignment (A) between these versions, (2) gener-
ate a transformation by using this alignment and (3) translate the underlying data instances dt to
dt+n.

Draper et al. 2001; Halevy et al. 2005; Seligman et al. 2010; Doan et al. 2012), and
catalogue integration (Agrawal and Srikant 2001; Ichise et al. 2003; Bouquet et al.
2003b; Giunchiglia et al. 2005a). Below we provide a short motivating scenario
from the cultural heritage domain, which is concerned with data integration.

Motivating Scenario from the Cultural Heritage Domain A typical situation in
the cultural heritage domain consists of having several large thesauri, such as Icon-
class3 (25 000 entities) and the Aria4 collection (600 terms) from the Rijksmuseum
(Amsterdam). The documents indexed by these thesauri are illuminated manuscripts
and masterpieces, i.e., image data. The labels are gloss-like, i.e., sentences or
phrases describing the concept, since they have to capture what is depicted on a
masterpiece. Examples of labels from Iconclass include city-view, and landscape with

man-made constructions and earth, world as celestial body. In contrast to Iconclass, Aria
uses simple terms as labels. Examples of these include landscapes, personifications

and wild animals. Matching between these thesauri, which may be performed at de-
sign time, is required in order to enable integrated access to the masterpieces of both
collections. Specifically, alignments can be used as navigation links within a multi-
faceted browser to access a collection via thesauri it was not originally indexed with
(van Gendt et al. 2006).

A general information integration scenario is presented in Fig. 1.2: given a set of
local information sources (local ontologies LO1, . . . ,LOn) potentially storing their
data in different formats, e.g., SQL DDL, XML, or RDF, provide users with a uni-
form query interface via the mediated (or global) ontology CO, to all the local infor-

3http://www.iconclass.nl.
4http://www.rijksmuseum.nl/en/research-and-library.

http://www.iconclass.nl
http://www.rijksmuseum.nl/en/research-and-library
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Fig. 1.2 General (centralised) information integration. The data sources (SQL, RDF, etc.) are
wrapped (wrapperi ) to ontologies (LOi ) which (1) are matched against a common ontology (CO).
The alignments (Ai ) between these (2) help generate mediators (mediatori ) which in turn (3) trans-
form queries against the common ontology into a query to the information source and (4) translate
the answers in the other way.

mation sources. This allows users to avoid querying the local information sources
one by one, and to obtain a result from them just by querying a common ontology.

For example, if users pose queries like find a book about Logics to a common
ontology, then, an information integration system communicates with information
sources, e.g., bookstores or libraries, and returns a reconciled result based on the
input provided by these sources. In general, the information integration system per-
forms several macro steps. These include

− interpreting, i.e., rewriting, the query in terms of the common ontology;
− identifying correspondences between semantically related entities of the local

information sources and the common ontology;
− translating the relevant data instances of the local information sources, involved

in handling the query, into the knowledge representation formalism of the infor-
mation integration system; and

− reconciling the results obtained from multiple information sources, namely de-
tecting and eliminating, redundancies and duplications, before returning the final
answer.

Identifying the correspondences between semantically related entities of the local
information sources and the common ontology is a matching step. We limit our
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vision of matching to the description above for the moment; we will expand it to
some extent in the next sections.

In some concrete information integration scenarios, the common ontology can
be either materialised, i.e., physically existing, or virtual. Below, we discuss these
options in more details.

1.2.1 Schema Integration

Schema integration is the oldest scenario (Batini et al. 1986; Sheth and Larson 1990;
Parent and Spaccapietra 1998). Assume that two (or more) enterprises want to per-
form either a merger or an acquisition among them. Ultimately, these enterprises
have to integrate their databases into a single one. Usually, a first technical step is
to identify correspondences between semantically related entities of the schemas
before merging the databases. This step, known as matching, is required even if the
databases to be integrated are coming from the same domain of interest, e.g., book
selling, car rentals. This may be because the schemas have been designed and de-
veloped independently, or because people follow diverse modelling principles and
patterns, even if they have to encode the same real-world object. Finally, the schemas
to be integrated might have been developed according to different business goals.
This makes the matching problem even harder.

Other scenarios may be classified under the schema integration heading, such
as (tightly-coupled) federated databases (Sheth and Larson 1990). These typically
have one global schema providing a unified access to the federation of component
databases. Component databases, in turn, are autonomous. Thus, in this application
when, for example, one component schema of the federated database is changed,
the federated (global) schema has consequently to be also reconsidered. Matching
can help in identifying these changes.

Finally, it is worth noting the applications that we are not discussing here, e.g.,
distributed databases systems (Özsu and Valduriez 2011). These are usually de-
signed in a centralised way, e.g., by a database administrator, and therefore, semantic
heterogeneity does not exist there by construction (Elmagarmid et al. 1999).

1.2.2 Catalogue Integration

In Business-to-Business (B2B) applications, trade partners store information about
their products in electronic catalogues. Typical examples of catalogues are product
directories of electronic sale portals, such as Amazon or eBay. In order for a mer-
chant to participate in the marketplace, it has to determine correspondences between
entries of its catalogues and those of the marketplace catalogue (see Fig. 1.3). This
process of finding correspondences among entries of the catalogues is referred to
as catalogue matching (Bouquet et al. 2003b). Looking at this problem from a mer-
chant viewpoint, matching has to be performed for each marketplace in which it
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Fig. 1.3 Catalogue integration with matching. Each merchant (1) matches its catalogue (si ) with
that of the marketplace (s). From the resulting alignment (Ai ), (2) a data translation program
(translatori ) is generated which is (3) used for loading the catalogue (cati ) to the marketplace.
Users can ask queries to the marketplace and (4) receive answers based on the integrated catalogue.

would like to participate. Having identified the correspondences between catalogue
entries, they are further analysed in order to generate query expressions that auto-
matically translate data instances between the catalogues. Finally, having matched
the catalogues, users of a marketplace have a unified access to the products which
are on sale. Such a situation, involving interactions between marketplaces and mer-
chants, is described in Fig. 1.3. It can be viewed as a typical example of integrating
local data sources into a data warehouse, see also (Bernstein and Rahm 2000).

Another catalogue integration scenario deals with (typically large-scale) product
classifications, such as UNSPSC5 (The United Nations Standard Products and Ser-
vices Code) and eCl@ss6 (Standardised Material and Service Classification). In a
sense, this scenario can be thought of as one which enables interoperability among
multiple B2B marketplaces, thus, facilitating product exchange between the enter-
prises subscribing to different product classifications (Schulten et al. 2001). This is
achieved by establishing correspondences between semantically related entities of
the standardised product classifications, which is a matching operation as well.

1.2.3 Data Integration

Data integration is an approach where integration of information coming from mul-
tiple local sources is performed without first loading their data into a central ware-

5http://www.unspsc.org.
6http://www.eclass.de.

http://www.unspsc.org
http://www.eclass.de
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house (Halevy et al. 2005). This allows interoperation across multiple local sources
having access to the up-to-date data. The data integration system has to update the
central warehouse of the marketplace, instead of merchants in the catalogue integra-
tion situation.

The scenario, depicted in Fig. 1.4, is as follows. First, local information sources
participating in the application, e.g., bookstore, library, museum, are identified.
Then, a virtual common ontology is built. Queries are posed over the virtual com-
mon ontology, and are then reformulated into queries over the local information
sources, e.g., such as in cultural heritage scenario outlined in Sect. 1.2. In order to
enable semantics-preserving query answering, correspondences between semanti-
cally related entities of the local information sources and the virtual ontology have
to be established. Establishing these correspondences is known as matching.

Fig. 1.4 Data integration with matching. Depending on whether the global schema (g) is con-
sidered as matched against existing local schemas (li ) or the other way around, this describes the
global-as-view or local-as-view approach, respectively. Usually, (1) matching, resulting in align-
ments (Ai ), is performed off-line, (2) generating mediators (mediatori ) for each local database.
The query is sent to a broker calling the necessary mediators. They (3) translate the query, evalu-
ate it against the database and (4) translate the answer before returning it.

Query answering is then performed by using these correspondences (mappings)
within the Local-as-View (LAV), Global-as-View (GAV), or Global-Local-as-View
(GLAV) settings (Lenzerini 2002). In the local-as-view approach, local schemas
are defined in terms of the global schema, i.e., mappings are specified by defining
each local schema construct as a view over global schema constructs. Queries are
processed by means of an inference mechanism that re-expresses the atoms of the
global schema in terms of atoms of the local schemas. In global-as-view, a global
schema is defined in terms of the local schemas, i.e., mappings are specified by
writing a definition of each global schema construct as a view over local schema
constructs. Queries are processed by means of unfolding, i.e., by expanding the
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atoms according to their definitions (so as to come up with local schema relations).
Global-local-as-view is a variation of the local-as-view approach that allows the
head of the view definition to contain any query on the local schemas.

Finally, as noticed in (Lenzerini 2002), the main task in these applications is to
establish mappings, i.e., to perform the matching operation. Besides using matching
results for creating the global (respectively local) views, it can also be used for
maintaining them when schemas evolve.

1.3 Linked Data

The web of data is made of data published following the following four principles
(Berners-Lee 2009; Heath and Bizer 2011):

1. Resources are identified by URIs.
2. URIs are dereferenceable.
3. When a URI is dereferenced, a description of the identified resource should be

returned, ideally adapted through content negotiation.
4. Published web data sets must contain links to other web data sets.

Although not explicitly specified, linked data sources are more usable if they are
published with semantic web technologies: URIs for identifying resources, RDF for
describing them, OWL for defining the used vocabularies and SPARQL for access-
ing data. The ‘five stars rating’, to be interpreted as incremental steps, has been
introduced for measuring how much of this usability is achieved, namely:

� Publish data on the web in any format, e.g., a scan of a table in PDF, which
is typically done through catalogues or portals;

�� Use structured data formats, e.g., a table in Excel instead of its scan in
PDF;

� � � Use non-proprietary formats, e.g., CSV instead of Excel, such that users
have direct access to the raw data;

� � �� Use universal formats to represent data, such as RDF, which encapsulates
both syntax and semantics;

� � � � � Link data to other data sets on the web, thereby providing context.

The first three stars are easy to reach and these already enable some data reuse.
However, humans still have to handle all the semantic issues related to integration. In
order to have data that is more easily discoverable and interoperable, it is necessary
to arrive to the fourth and the fifth stars. This may be achieved by publishing data in
RDF, describing the vocabulary in OWL, providing access points in SPARQL and
expressing links with the owl:sameAs predicate.

Below we provide a short motivating scenario from the Public Sector Information
(PSI) domain, which is concerned with enabling data interlinking (the fifth star)
between data sets of the linked open data cloud.7

7http://lod-cloud.net.

http://lod-cloud.net
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Motivating Scenario from the Public Sector Information Domain Public Sec-
tor Information is viewed as the single largest source of information in Europe. Re-
leasing government information as open, from both legal and technical viewpoints,
linked data facilitates transparency and data reuse, which in turn stimulates genera-
tion of new business opportunities and favours economic development. The domain
is characterised by a variety of information, of variable granularity and quality cre-
ated by different institutions and represented in heterogeneous formats. Typically,
public data is released in the form of catalogues describing the available contents,
such as the UK national PSI catalogue of data.gov.uk or the US catalogues of data.gov.
An important aspect of opening public information, is its links to the other identical
or similar pieces of data available on the web. They increase PSI discoverability,
integration, and thus, its reuse (Shadbolt et al. 2011; Shvaiko et al. 2012). The task
of data interlinking can be facilitated by matching first the entities of the respective
PSI catalogues, thus narrowing down the search space of the possible links.

As mentioned above, one important issue in linked data is to be able to estab-
lish links between data sets. The current practice consists of finding, in different
data sets, entities representing the same resource and linking their URIs with the
owl:sameAs construct. Finding such links is reminiscent of entity resolution in nat-
ural language processing or record linkage in databases (see Sect. 5.4.2). The main
difference with record linkage or deduplication is that it is usually performed within
one single database, i.e., all entities are described under the same schema. On the
web of data, data providers express data with respect to multiple and heterogenous
schemas or ontologies.

Fig. 1.5 Data interlinking and ontology matching (inspired from (Scharffe and Euzenat 2011)).
In linked data, matching is useful to help generating links between different data sets. It starts
with (1) matching the ontologies (o and o′) under which data sets (d and d ′) are expressed, before
(2) using the resulting alignment (A) for interlinking the two data sets, i.e., generating sameAs
relations or links (L) between resources of both data sets. These links can also be efficiently used
for (3) improving matching.

http://www.data.gov.uk
http://www.data.gov


1.4 Peer-to-Peer Information Sharing 13

Data interlinking and ontology matching can be seen as dual operations. On the
one hand, when confronted with two data sets using different ontologies, data in-
terlinking can take advantage of ontology matching. On the other hand, ontology
matching can implement extensional methods, or instance-based methods, which
may take advantage of data interlinking (see Fig. 1.5). Hence, the two processes
may be used for reinforcing each other. Matching can start with any of them for
contributing to the result of the other, or it may be iterated until their eventual con-
vergence (Scharffe and Euzenat 2011).

1.4 Peer-to-Peer Information Sharing

Peer-to-Peer (P2P) is a distributed communication model in which parties, called
peers, have equivalent functional capabilities in providing each other with data and
services (Zaihrayeu 2006). P2P networks became popular through the file, e.g., pic-
tures, music, videos, books, sharing paradigm. There exist several widely used P2P
file sharing systems, e.g., BitTorrent. These applications describe file contents by a
simple schema (set of attributes, such as title of a song, author) to which all peers
in the network have to subscribe. These schemas cannot be modified locally by a
single peer. Therefore, in the above mentioned systems the semantic heterogeneity
problem, at the schema level, does not exist by construction. The use of a single
system schema violates the total autonomy of peers. Although robust P2P systems
allow peers to connect to and disconnect from the network at any time, thereby re-
specting some forms of peers autonomy, such as participation autonomy, they still
restrict the design autonomy of peers, in matters such as how to describe the data
and what constraints apply on the data (Zaihrayeu 2006).

If peers are meant to be totally autonomous, they may use different terminolo-
gies and metadata models in order to represent their data, even if they refer to the
same domain of interest. Below we provide a short motivating scenario from the
emergency response domain, which is concerned with P2P data exchange.

Motivating Scenario from the Emergency Response Domain In a typical emer-
gency situation, such as flooding, or fire in a urban centre, the central control centre
routes evacuation information to people in need. However, if this centralised sys-
tem (or a part of it) breaks down, a backup decentralised system might need to be
activated. For example, a bus driver (an institutional peer) evacuating flood victims
may need a more detailed map to find an alternative operational road if the fol-
lowed one is destroyed and the control centre is out of reach. Various geo-agencies
(other institutional peers) typically operate on a territory, such as civil protection,
urban planning, traffic control, and are usually responsible for providing a specific
subset of information for a geographic area and might have the details that the bus
driver looks for. Similarly, citizens (volunteer peers) may signal that a certain road
is becoming blocked. These non-institutional and institutional peers are expected to
establish rapidly a P2P network by forming a community of diverse people engaged
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in an emergency. Since there is no a priori knowledge or agreement between peers,
on-the-fly matching is needed to automatically make commitments on the vocabu-
lary used between them, e.g., to understand that XMin_BB and XMin refer to the same
spatial coverage of a map requested by the bus driver (Vaccari et al. 2009). Thus,
matching supports modifying rapidly the emergency plan under the new constraints,
such as new information or missing capabilities, based on the best match available
at a given time.

1.4.1 Semantic P2P Systems

Semantic P2P systems (Staab and Stuckenschmidt 2006) use more complex spec-
ifications of their contents, such as database schemas (Bernstein et al. 2002), or
formal ontologies (Rousset et al. 2006), than the classical P2P systems mentioned
above. The main idea behind this is to improve search accuracy by providing a
finer-grained description of items. For example, users who want to share their book
library with their friends may index them by authors, topics, and years of publica-
tion. This tagging approach will benefit from using some ontological descriptions,
e.g., for retrieving books on mathematics written by Cambridge authors before 1920
as opposed to books by Bertrand Russell in 1908 on logic. For instance, the BibSter
system (Haase et al. 2004) uses a bibliographic ontology expressed in RDF.

Systems as BibSter still follow a single ontology approach. More advanced se-
mantic P2P systems relax the homogeneity requirement of classical P2P systems:
they allow peers to use independent schemas and ontologies (see Fig. 1.6).

Fig. 1.6 P2P query answering. In this scenario, it is useful to (1) match relevant parts of ontolo-
gies o and o′, thus resulting in alignment A, (2) generate a mediator between peer and peer′ for
translating queries and sometimes for translating answers.

Such applications pose additional requirements on matching solutions. In P2P
settings which respect total autonomy of peers, an assumption that all the peers
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rely on one global schema, as in data integration, cannot be made because the
global schema may need to be updated any time the system evolves (Giunchiglia
and Zaihrayeu 2002). While, in the case of data integration, schema matching can
be performed at design time, in P2P applications, peers need to coordinate their
databases on-the-fly, therefore ultimately requiring run-time schema matching. Fi-
nally, incomplete and approximate answers, as long as they are good enough for
the application, are also acceptable in such settings. This is the case because some
correspondences involved in query answering may become temporarily unavailable
or invalid (Shvaiko et al. 2006).

Some examples of P2P data exchange which rely on different peer metadata mod-
els, including relational database schemas, XML schemas, RDF schemas, or OWL
ontologies are described in (Bernstein et al. 2002; Zaihrayeu 2006; Ives et al. 2004;
Nejdl et al. 2002; Rousset et al. 2006; Montanelli and Castano 2008). For exam-
ple, applications like SomeWhere (Rousset et al. 2006) integrate peer databases and
connect them through mappings expressed in Horn clauses from one database to
another. When a peer needs to answer a query, the system computes possible expan-
sions of the query with regard to these mappings, i.e., it follows the local-as-view
approach (Sect. 1.2.3). Then it sends to each relevant peer the queries that may help
answer the initial query and answers are returned and integrated as soon as they ar-
rive. This approach assumes that peer database schemas have been matched off-line
beforehand. Thus, only the query answering part of the system takes into account
the dynamics of the P2P environment.

1.4.2 Emergent Semantics Between Peers

Emergent semantics (Aberer et al. 2004a, 2004b; Montanelli et al. 2011) is the
process by which a set of peers gradually converges towards a consensus ontol-
ogy through constantly interacting and negotiating the meaning of the terms they
use (Atencia and Schorlemmer 2012). This process mimics to some extent the one
exhibited by a society of humans and may never reach an end but at least it im-
proves discourse understanding. Since consensus is built incrementally, emerging
from different local point-to-point peer agreements, an alignment between ontolo-
gies of peers is viewed as a practical means for establishing those local agreements.
Thus peers will have to constantly update the relations between their ontologies.
These updates can be achieved by matching. The process of emerging semantics
between two peers is illustrated in Fig. 1.7.

Constantly matching ontologies can trigger the confrontation and revision of
these ontologies themselves. In fact, users may want to establish more consensual
ontologies from this confrontation (Zhdanova et al. 2005). There are several ways
in which alignments may help:

− Alignments provide a basis from which the negotiation between peers can start
(like agent protocols for arguing about correspondences, see Sect. 1.6.1).
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Fig. 1.7 Peer-to-peer and emergent semantics: after a first matching between ontologies o and o′,
the resulting alignment A causes (dotted line) the peers (peer and peer′) to evolve their ontologies
into o1 and o′1, respectively. In turn, these ontologies (o1 and o′1) can again be matched, thus
resulting in alignment A1, and so on and so forth. Ultimately, the peers may converge to a common
ontology (o3).

− Matching algorithms are very often able to compute a distance between ontolo-
gies. This is useful when, for instance, a peer wants to find the ‘closest’ ontology.

− By building a network of ontologies together with alignments between them and
by exploiting, with the help of social network analysis techniques, the distance
between the ontologies, it is also possible to determine the proximity between
users or agents (Jung and Euzenat 2007; Atencia et al. 2011). This, in turn, facil-
itates customising the query answering process, and even consensus building.

These results will help users and communities in consolidating their ontologies
by gradually achieving agreements with similar domain representations as well as
for determining the most central ontology (in social network analysis terms) for the
domain of interest.

1.5 Web Service Composition

Web services are processes that expose their interfaces to the web so that users
can invoke them. Semantic web services provide a richer and more precise way to
describe services through the use of knowledge representation languages and on-
tologies (Fensel et al. 2007). Web service discovery and integration is the process
of finding a web service able to deliver a particular service and composing several
services in order to achieve a particular goal (Paolucci et al. 2002; Medjahed and
Bouguettaya 2005; Oundhakar et al. 2005; Algergawy et al. 2010). Below we pro-
vide a short motivating scenario from the e-commerce domain, which is concerned
with adapter development for web service integration.
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Motivating Scenario from the E-commerce Domain A typical situation in elec-
tronic commerce is that of service adaptation for handling shopping carts (Nezhad
et al. 2010). For example, XWebCheckOut8 offers management of the standard
shopping cart checkout process to client applications, involving basket, shipping,
billing, credit card, and receipt, which are to be integrated within a merchant web
site. Similar functionalities are also offered by Google Wallet.9 Functionally equiv-
alent or closely similar services have to be compatible and replaceable to facilitate
business process automation. However, these services are using different interface
and protocol specifications. Interfaces define the set of operations as well as mes-
sage formats and data types, while protocols define the order in which the operations
can be called. So, message names and types can be different as well as message
exchange flow can be different. For example, it should be identified that AddOrder-

Request is a corresponding message to PlaceOrder. This is a web service interface
matching task.

As mentioned previously, web services have been designed for being independent
and replaceable. So web service processors are able to incorporate new services in
their workflows, and therefore customers can dynamically choose new and more
promising services. For that purpose, they must be able to compare the descriptions
of these services, in order to know if they are indeed relevant, and to route the
knowledge they process, in order to compose different services by routing the output
of some service to the input of another service.

However, in the case of semantic web services, which are described with regard
to ontologies, imposing a central common ontology (like in single ontology P2P
systems), as real-world experiences demonstrate, is not realistic and would freeze
the evolution of such services. Henceforth, both for finding the adequate service
and for interfacing services, a data mediator comes into play as a bridge between
different vocabularies (Bussler et al. 2002; Fensel et al. 2007). From the correspon-
dences between the terms of the descriptions, mediators can translate the output of
one service into a suitable input for another service (see Fig. 1.8).

Thus, the core part of a mediator definition is an alignment between two on-
tologies. This, in turn, can be provided through matching the corresponding ontolo-
gies either off-line when someone is designing a preliminary service composition,
or dynamically (on-line), when new services are sought for completing a request
(Giunchiglia et al. 2006b; Robertson et al. 2006).

For instance, assume that an on-line library service provides its output descrip-
tion in some ontology and a parcel shipping service uses a second ontology for
describing its input. Matching these ontologies is useful for: (i) checking that what
is delivered by the first service, e.g., a Book, matches what is expected by the sec-
ond one, e.g., an Object, (ii) verifying preconditions of the second service, e.g., size

in centimetres against dimensions in inches, and (iii) generating a mediator able to
transform the output of the first service in order to be input to the second one (see
Fig. 1.8).

8http://www.programmableweb.com/api/xwebcheckout/.
9https://developers.google.com/commerce/wallet/.

http://www.programmableweb.com/api/xwebcheckout/
https://developers.google.com/commerce/wallet/
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Fig. 1.8 Web service composition. In this scenario it is useful to (1) match relevant parts of ontolo-
gies o and o′ used in service descriptions, thus resulting in alignment A, (2) generate a mediator
between service and service′ in order to enable transforming the actual data.

1.6 Autonomous Communication Systems

Other kinds of applications also involve autonomous entities that can meet on a net-
work and which have been designed independently. When these entities are software
programs, they have been considered as agents for a long time (Sect. 1.6.1). How-
ever, if they are a combination of hardware and software they are a matter of am-
bient computing (Sect. 1.6.2). Obviously, as we have already discussed in previous
sections, such entities cannot share a common ontology. Thus, if they want to com-
municate, it is useful to match their ontologies. Below we provide a short motivating
scenario from the urban services domain, which is concerned with location-based
services.

Motivating Scenario from the Urban Services Domain Nowadays, traditional
paper maps are progressively replaced by digital maps and location-based services.
This facilitates reuse of such digital information and services. However, this reuse
is hindered by heterogeneity of the respective (ontological) descriptions, which are
typically defined as partial abstraction views of the reality. Urban infrastructures,
such as highways or buildings, already report through sensors their states and ac-
tivities, thereby providing the respective real-time and location-based information.
Environmental information, e.g., on wind or humidity, is also acquired through sen-
sors on a large scale, e.g., at city scale, and is usually maintained by different or-
ganisations. Urban services, such as on traffic conditions, environmental status, e.g.,
air quality, energy consumption, can be delivered on a personal device, e.g., smart-
phone or tablet. They can be improved by making them more personalised, efficient
or precise depending on the context. Hence, vast amounts of urban data (streams)
should be constantly discovered and processed. The ultimate goal of such services is
to create more efficient urban systems, so some faults can be predicted in advance or
some resource consumption can be reduced. They will also provide more accurate
information to citizens and decision makers. Ontology matching has a role to play
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in this context because data streams are heterogeneous and the more precise they
are, the more likely it is that they use different ontologies.

1.6.1 Multiagent Communication

Agents are software entities characterised by their autonomy and capacity of inter-
action. They are often divided into cognitive agents and reactive agents. Reactive
agents implement a simple behaviour and the strength of these agents is their ca-
pacity to let a global behaviour emerge from the individual behaviour of many such
agents. Cognitive agents have a rather more elaborate behaviour often characterised
as the ability to pursue goals, to plan their actions and to negotiate with other agents
in order to achieve their goals.

Agents communicate by exchanging messages expressed in an agent communi-
cation languages, such as the FIPA Agent Communication Language (FIPA 2002a,
2002b). These languages determine the ‘envelope’ of the messages and enable
agents to position themselves within a particular interaction context. However, they
do not specify the actual content of the message, which is often expressed with re-
spect to some ontology accessible to the agent. Current standards for expressing
these messages provide slots for declaring the content language and the ontology
used.

As a consequence, when two autonomous and independently designed agents
meet, they have the opportunity to exchange messages but little chance to understand
one another if they do not share the same content language and ontology. It is thus
useful to help these agents to match their ontologies in order to either translate
their messages or integrate bridge axioms in their own models. Several proposals
have been made to assess the correspondences between the terms of the ontologies
(van Eijk et al. 2001; Wiesman et al. 2002; Bailin and Truszkowski 2002; Wang and
Gasser 2002; Euzenat et al. 2005).

Agents confronted with heterogeneous ontologies have to find the correspon-
dences between these ontologies in order to start understanding each other’s mes-
sages. They can perform ontology matching by themselves or by taking advantage
of alignment libraries or matching services. Once an alignment is obtained, agents
can start a negotiation phase (Laera et al. 2006; Trojahn et al. 2011) in which they
exchange arguments for or against correspondences. When they find a mutual agree-
ment they can transform the resulting alignment to a program that translates the
exchanged messages or to axioms which, once integrated in the agent knowledge,
enable interpretation of messages (see Fig. 1.9).

1.6.2 Matching Contexts in Ambient Computing

In ambient computing, applications running on mobile or embedded devices take
advantage of the surrounding environment for providing services to users. Natu-
rally, this environment undergo changes, e.g., with regard to user locations, and
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Fig. 1.9 Agent communication. In this scenario, it is useful to (1) match relevant parts of on-
tologies o and o′ used by the agents, thus resulting in alignment A, (2) generate bridge axioms

between two ontologies, and (3) incorporate the axioms into o′. Alternatively, the process can (2′)
generate a message translator from ontology o to ontology o′ and (3′) apply this translator to the
message.

applications must always keep track of these changes, including newly appearing
devices and sensors. Characterising the context in ambient computing goes through
finding the information about the current situation in the environment by using var-
ious devices available in that environment, e.g., sensors. By doing so, applications
provide context-aware solutions. If one wants to design flexible and smart ambi-
ent computing applications, it is useful to take advantage of the ontologies of these
various devices, those of sensors available in the environments and their capabili-
ties (Coutaz et al. 2005). Similar to web service descriptions, these ontologies will
provide descriptions of the devices, even of abstract devices, such as a temperature
service, and the way to interact with them.

Once again, it is expected that device providers will develop different ontologies
adapted to their products or will extend some standard ontologies. Moreover, since
applications evolve in ever changing environments in which devices can fail and
new ones can appear, there is no way to freeze once and for all the ontologies that
are relevant and available at a particular moment.

Therefore, in order to properly operate in ambient computing environments, ap-
plications have to be expressed in terms of generic features that are matched against
the actual environment. This can take advantage of ontology matching (Euzenat
et al. 2008b; Suarez Meza et al. 2011), since similar devices are likely to be used
by similar applications. Thus, providing a service for reconciling various ontolo-
gies and storing the results obtained from previous interactions should help these
applications in sharing and reusing the established alignments.

1.7 Navigation and Query Answering on the Web

This section presents several applications some of which extend the web experi-
ence to the semantic web by using resources such as formal ontologies. Operating
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in an open environment, these applications most often require matching. In partic-
ular, the applications under consideration include navigation on the semantic web
(Sect. 1.7.1), query answering on the web (Sect. 1.7.2), and query answering on
the deep web (Sect. 1.7.3). Below we provide a short motivating scenario from the
travelling domain, which is concerned with vertical search engines.

Motivating Scenario from the Travelling Domain A typical situation when one
plans a business or a vacation trip is that of choosing a flight leading to a destination.
This often happens through comparing fares, airports and times of the multiple com-
peting alternatives. Thus, various flights are examined, a suitable one is selected, for
instance, based on its price, and a ticket is purchased. The compared data comes
from dynamic resources, whose contents are accessible through querying on-line
databases, and cannot be accessed directly through static URL links. Traditional
access to such (deep) web resources is performed by manually filling the multiple
underlying query interfaces one by one. In turn, automatic access, provided by do-
main portals or vertical search engines, needs understanding of such interfaces and
submission of valid values to the respective resources in order to offer a unified
access and view on the search data, such as on airfares (Chang 2009). Matching is
needed to identify the corresponding fields across relevant resources available on the
web in order to enable appropriate query reformulation and answering with respect
to each of the engaged resources.

1.7.1 Navigation on the Semantics Web

Browsers such as Magpie (Dzbor et al. 2003, 2004; Gridinoc et al. 2008) are de-
signed to take advantage of semantic annotations associated with web pages. For
instance, Magpie can recognise manifestations of instances of an ontology in a web
page, display these instances specifically (different colours for different classes) and
add services such as linking to the instance web page.

In open web browsing, the key point is to be able to select, at run time, the
appropriate ontologies for the given browsing context. Indeed, web pages are linked
to other web pages whose content may notably differ from that of the source page. In
order to improve user experience, it is necessary to take new ontologies into account
dynamically and to be able to connect them to the already available ontologies.
Thus, ontology matching is needed to match between a set of terms that describes
the topic of the current page and the relevant on-line ontologies.

For instance, the following short news story is about both trips to exotic locations
and talks (Sabou et al. 2006):

For April and May 2005, adventurer Lorenzo Gariano was part of a ten-man collabora-
tive expedition between 7summits.com and the 7summits club from Russia, led by Alex
Abramov and Harry Kikstra, to the North Face of Everest. This evening he will present a
talk on his experiences, together with some of the fantastic photos he took.

http://7summits.com
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An ontology that covers such concepts as adventurer, expedition, talk and photos should
be selected or discovered from the web. This requires that the above mentioned
concepts are matched to the corresponding concepts from the available on-line on-
tologies. In addition, if some of the search terms cannot be found in an ontology,
correspondences with more or less general concepts in the ontology are acceptable.
Finally, not all the entities of the ontology need to be involved in matching. It is
sufficient to consider only those entities that are similar to the terms found on the
web page.

1.7.2 Query Answering on the Web

Contrary to the information integration scenario (Sect. 1.2), information on the web
is not described by a global schema over which queries can be expressed. Moreover,
users are used to query the web using their own terminology. Then, a semantic query
answering system on the web has to rewrite the query with respect to available
ontologies in order to use reasoning for providing answers.

For instance, a query answering system such as AquaLog (Lopez et al. 2005)
is aware of an ontology about academic life which has been populated to describe
knowledge related to some university (Sabou et al. 2006). For answering a query
such as Which projects are related to researchers working with ontologies?, Aqua-
Log interprets it in terms of entities available in the system ontology. For this, it first
translates this query into the following triples: 〈projects, related to, researchers〉 and
〈researchers,working, ontologies〉. Then it attempts to match these triples to the con-
cepts of the underlying ontology. For example, the term projects should be identified
to be equivalent to the ontology concept Project and ontologies is assumed equiva-
lent to the ontologies instance of the Research-Area concept. If Action is a subclass of
Project, the system will be able to take actions into account in its answers.

The scope of AquaLog is limited by the amount of knowledge encoded in the
ontology of the system. This is similar to the efforts brought by search engines to
promote one common schema: schema.org.10 A latter version of AquaLog, called
PowerAqua (Lopez et al. 2006), extends its predecessor, as well as some other sys-
tems with similar goals, such as Observer (Mena et al. 1996), towards open query
answering. PowerAqua aims at selecting and aggregating information derived from
multiple heterogeneous ontologies on the web. Matching constitutes the core of this
selection task. Unlike in AquaLog, matching is now performed between the triples
and many on-line ontologies (not just the single ontology of the system). It is not
necessary to match all query triples within one ontology. When no ontology concept
is found for an element of a triple, the use of more general concepts is also accept-
able. Moreover, it is not necessary to try to match the whole ontology against the
query, but only the relevant fragments. Finally, an early version of the Aqua question
answering system (Vargas-Vera and Motta 2004) was also coupled with the DSSim
(Sect. 8.1.44) matching system.

10http://schema.org.

http://schema.org
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1.7.3 Query Answering on the Deep Web

The so-called deep web is made of the web sites searchable via query interfaces
(HTML forms) giving access to one or more back-end databases. It is believed that
it contains much more information (Chang et al. 2004; He et al. 2007; Chang 2009;
Cafarella et al. 2011) than the billions of static HTML pages. At the moment, search
engines are not very effective at crawling and indexing the deep web, since they
cannot handle meaningfully the query interfaces.

Thus, users have difficulties, first in discovering the relevant deep web resources
and then in querying them. A standard travelling scenario was described in the
beginning of Sect. 1.7. Another example concerns buying a book with the lowest
price among multiple on-line book stores. Query interfaces can be viewed as simple
schemas (sets of terms). For example, in the book selling domain, the query interface
of an on-line bookstore can be considered as a schema represented as a set of con-
cept attributes, namely Author, Title, Subject, ISBN, Publisher. Thus, in order to enable
query answering from multiple sources on the deep web, it is necessary to identify
semantic correspondences between the attributes of the query interfaces of the web
sites. This is akin to ontology matching. Ultimately, these correspondences are used
for the on-the-fly translation of a query between interfaces of the web databases.

1.8 Summary

The above panorama shows a widespread need for ontology (in a wide sense) match-
ing. Moreover, the need for matching is not limited to one particular application. In
fact, it exists in any application that communicates through ontologies. Thus, it is
natural that in the future more fine-grained or evolved examples of applications re-
quiring matching will appear, e.g., ontology repair (McNeill 2006) and web APIs
discovery (Taheriyan et al. 2012), or new ones, such as data interlinking on the web
of data.

Since semantic heterogeneity is an intrinsic problem of any application involving
more than one party, it is reasonable to consider ontology matching as a unified
object of study. However, there are notable differences in the way these applications
use matching. Application-related differences must be clearly identified in order to
provide the best suited solution in each case.

Figure 1.10 orders these applications according to their dynamics, i.e., autonomy
of parties participating in an application and rate of changes in an application. This
shows that agent communication and query answering have a more dynamic profile
compared to other applications. In fact, agents, besides having the ability to enter
or leave the network or to change their ontologies at any moment (as in the peer-
to-peer case), are also able to negotiate alignments and potential mismatches. Data
integration, data interlinking, and merchant catalogue matching, due to the multi-
plicity of stakeholders, have a higher dynamics than ontology import and schema
integration, where typically only a small and limited number of parties participate.
Finally, the three bottom applications represent traditional applications, while the
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Fig. 1.10 Distribution of some applications with regard to their dynamics.

three top applications can be considered as dynamic applications. The uneven step
in the middle of the dynamics axis in Fig. 1.10 is used to stress the above mentioned
distinction.

Another dimension along which these applications differ is the purpose for which
they perform matching:

− ontology engineering requires the ability to transform relevant ontologies or
some parts of these ontologies into an ontology focussing on a domain of interest
being modelled or to generate a set of bridge axioms that will help in identifying
corresponding concepts (the transformations apply at the ontological level);

− schema integration requires the ability to merge schemas under consideration
into a single schema (the transformations apply at the ontological level and in-
stance translation applies at the data level);

− data integration requires the ability to translate data instances residing in mul-
tiple local schemas according to a global schema definition in order to enable
query answering;

− data interlinking requires to link data instances on the web of data;
− peer-to-peer systems and more generally query answering systems require bidi-

rectional mediators able to transform queries (ontological level) and translate
back answers (data level);

− agent communication requires translators for messages sent by one agent to an-
other, which apply at the data level; similarly, semantic web services require
one-way data translations for composing services.

As this brief overview indicates, there are many different applications which re-
quire or can take advantage of matching ontologies. However, in spite of a common
need for matching, application matching requirements are quite different. In partic-
ular, one can distinguish between traditional and dynamic applications both from
the dynamics standpoint and the requirement standpoint. These two observations
justify both the unified treatment of matching that we take in this book and the po-
sition of considering ontology matching being a separate operation, as opposed to
considering merging or mediating being the primitive operations.

The next chapter will provide a more precise definition to this unified view of
matching.



Chapter 2
The Matching Problem

In a distributed and open system, such as the semantic web and many of the applica-
tions presented in the previous chapter, heterogeneity cannot be avoided. Different
actors have different interests and habits, use different tools and knowledge, and
most often, at different levels of detail. These various reasons for heterogeneity lead
to diverse forms of heterogeneity, and, therefore, should be carefully taken into con-
sideration.

In this chapter, we first present existing ways of expressing knowledge that are
found in diverse applications (Sect. 2.1). We then discuss in more detail ontologies
and ontology languages as knowledge representation formalisms (Sect. 2.2). We
introduce several justifications for heterogeneity (Sect. 2.3). These should help in
designing a matching strategy with respect to the kind of heterogeneity that has
to be faced. Then, we briefly review some terminology related to matching and
alignment as well as provide the meaning that will be used for these terms in this
book (Sect. 2.4). Finally, we give a formal account of the matching problem by
offering a semantics for the matching result, i.e., the alignment (Sect. 2.5).

Our goal here is not to close the debate by providing some ultimate semantics
for alignments or by settling the definitive meaning of terms, but rather to give
definitions that help readers in understanding better the matching solutions that are
presented in this book, as well as the results they produce.

2.1 Vocabularies, Schemas and Ontologies

So far we have considered ontologies without being precise about their meaning.
An ontology can be viewed as a set of assertions that are meant to model some
particular domain. Usually, they define a vocabulary used by a particular application.
In various areas of computer science, there are different data and conceptual models
that can be thought of as ontologies. These are, for instance, folksonomies, database
schemas, UML models, directories, thesauri, XML schemas and formal ontologies
(axiomatised theories). These and other examples are given in decreasing order of
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formality in Fig. 2.1. Thus, a top-level ontology is supposed to have a well-defined
explicit semantics, whereas the interpretation of directories in a file system is mostly
implicit. In fact, it depends only on what its creator had in mind, i.e., the meaning of
labels, the background knowledge, and the context in which these labels occur are
all implicit, and therefore, these are not a part of the directory specification.

Fig. 2.1 Various forms of ontologies ordered by their expressivity (adapted from (Uschold and
Gruninger 2004)).

We provide below examples of various forms of ontologies of Fig. 2.1 and illus-
trate some heterogeneity problems encountered in these forms.

2.1.1 Tags and Folksonomies

Tags and folksonomies are used as very simple ways to describe a corpus of knowl-
edge by just giving names, called tags, to them. This is used in popular web sites,
such as del.icio.us1 for web site annotation, or Flickr2 for annotating pictures. An
example of tags for books and book collections is given in Fig. 2.2.

Fig. 2.2 Fragments of two folksonomies.

1http://del.icio.us.
2http://www.flickr.com.

http://del.icio.us
http://www.flickr.com
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Obviously, different users use different tags. Even if these tags remain internally
coherent for users who created them, this internal structure is not explicit for the
machine. It is difficult to find relations between the tags of two folksonomies. More-
over, the fact that these tags do not have direct relations with each other (in one folk-
sonomy) makes that problem even harder. However, there has been work aiming at
inducing a structure between the tags, e.g., Flickr clusters. These are based mostly
on the set of objects, e.g., pictures, web sites, that are indexed by the corresponding
tags.

2.1.2 Directories

A taxonomy is a partially ordered set of taxons (classes) in which one taxon is
greater than another one only if what the former denotes includes what is denoted
by the latter. Directories or classifications are taxonomies that are used by compa-
nies for presenting goods on sale, by libraries for storing books, or by individuals
to classify files on a personal computer. Some well-known examples of directories
include that of Yahoo3 and the Open Directory Project.4 These directories are hier-
archies of folders identified by labels and containing items, such as bookmarks, or
goods. The semantics of these folders is given by the items they ultimately contain
(Giunchiglia et al. 2006a). Of course, each independent entity tends to develop its
own directory based on its own needs and tastes (see Fig. 2.3).

Fig. 2.3 Fragments of two directories.

In Fig. 2.3, the directory on the left represents the set of items of a bookstore
or a cultural good seller, while the one on the right is the directory of a person
that illustrates the content of his or her personal library. These directories encode

3http://www.yahoo.com.
4http://dmoz.org.

http://www.yahoo.com
http://dmoz.org
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the domain under consideration at different levels of details, since these directories
have been designed independently and for different purposes, i.e., selling versus
classifying.

Finally, there exist some consensus classifications. In library science, the Dewey
classification has been used for more than a century for classifying books by top-
ics (Chan et al. 1996). In natural sciences, the principled classification of species
represents another example (Schuh 1999). In medicine, UMLS5 (Unified Medical
Language System) (Bodenreider 2004) is a unification of medical thesauri which is
widely used.

2.1.3 Relational Database Schemas

Relational databases require data to be organised in a predefined way as tables or
relations. A relational schema specifies the names of the tables as well as their types:
the names and types of the columns of each table. The relational model also includes
the notion of a key for each table: a subset of the columns that uniquely identifies
each row (see Fig. 2.4). Finally, a column in a table may be specified as a foreign
key pointing to a column in another table. This is used to keep referential constraints
among various entities.

The schemas of Fig. 2.4 are presented with some data instances in tables. They
display similar collections of information about books and authors, however, these
are presented in different ways.

Relational databases, in a sense, are relatively restricted: table cells can only
contain primitive data types, such as string or integer and cannot refer to some indi-
vidual. For instance, the right-hand side schema of Fig. 2.4, in order to express the
relationship between a book and its authors, requires an additional table expressing
the authorship relation by joining the keys of both book and writer. Moreover, the
relational model lacks the facility to organise data in a taxonomy. In both schemas
of Fig. 2.4, tables corresponding to books have a type column assigning their class
names to the objects. However, they indeed define a vocabulary used for expressing
information. Several approaches have been proposed for overcoming this expres-
sivity problem. For example, (i) by using a more expressive model, like the entity–
relationship model (see Sect. 2.1.5) at design time and by generating a database out
of it, or (ii) by using a more elaborate model, such as the object-oriented database
model.

Widely used languages for specifying relational schemas, such as Structured
Query Language (SQL) as well as some of its recent versions, e.g., SQL:1999 and
SQL:2003, support many modelling capabilities, such as user-defined types, aggre-
gation, generalisation, etc.

Finally, the use of a fixed schema tends to vanish with the current trend of dealing
with large amount of data in a non-relational and flexible data model, often called

5http://www.nlm.nih.gov/research/umls/.

http://www.nlm.nih.gov/research/umls/
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Fig. 2.4 Fragments of two populated database schemas.

NoSQL (since data can be accessed through simpler operations than those in SQL).
Schema matching can then be replaced by query matching if there are regularities
in queries.

2.1.4 XML Schemas

Document Type Definitions (DTDs) and XML schemas have been introduced for
specifying the structure of XML documents. The main ingredients of XML schemas
include elements, attributes, and types. Elements can be either complex for specify-
ing nested subelements, or simple for specifying built-in data types, such as string,
for an element or attribute. XML schemas are rather complementary to directories:
instead of describing how things are classified, they describe how things are made
from the inside. For instance, the schema at the top of Fig. 2.5 describes the Product

element that comprises a name element which is a string, an id which is a URI, a
price which is a nonnegative integer, and topics which are a strings. It also describes
a Book element which is a Product that, in addition, has a sequence of authors which,
in turn, are Person elements, and exactly one publisher. Even if element definitions
can be extended or restricted as subcategories of a classification, the emphasis is on



30 2 The Matching Problem

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="Person">
<sequence><element name="name" type="xsd:string"/></sequence>

</complexType>

<simpleType name="creator"><restriction base="Person"/></simpleType>
<simpleType name="author"><restriction base="creator"/></simpleType>

<complexType name="Product">
<sequence>
<element ref="creator" minOccurs="1"/>
<element name="name" type="xsd:string" minOccurs="1"/>
<element name="id" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>
<element name="price" type="xsd:nonNegativeInteger" minOccurs="1"/>
<element name="topic" type="xsd:string"/>
</sequence>

</complexType>

<complexType name="Book">
<complexContent>
<extension base="Product">

<sequence>
<element ref="author" type="xsd:any"/>
<element name="publisher" type="Publisher" minOccurs="1" maxOccurs="1"/>

</sequence>
</extension>
</complexContent>

</complexType>
</schema>
<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="Volume">
<sequence>
<element name="author" type="Writer" minOccurs="1"/>
<element name="title" type="xsd:string" minOccurs="1"/>
<element name="year" type="xsd:decimal"/>
</sequence>
<attribute name="isbn" type="xsd:anyURI"/>

</complexType>

<complexType name="Essay">
<complexContent>
<extension base="Volume">

<sequence><element name="subject" type="xsd:any"/></sequence>
</extension>
</complexContent>

</complexType>

<complexType name="Human">
<sequence>
<element name="firstname" type="xsd:string"/>
<element name="middlename" type="xsd:string"/>
<element name="lastname" type="xsd:string"/>
</sequence>

</complexType>

<complexType name="Writer">
<complexContent><extension base="Human"/></complexContent>

</complexType>
</schema>

Fig. 2.5 Fragments of two XML schemas.
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their structure: the extension of an element is made by providing the elements which
are modified in this structure. The sequential aspect of XML documents is part of
the element specification, though it may be overruled.

In fact, these schemas are a shape according to which future documents are cre-
ated, as opposed to an ontology, which is a description of existing, external objects.
The specialisation hierarchy in XML schema is a type hierarchy that defines which
kind of elements can occupy the place of another kind. For instance, if a shelf con-
tains books, then putting a biography on this shelf is authorised. In principle, this
classification structure does not have to correspond to any natural classification of
the objects. Finally, it is worth noting that an XML-based description language,
such as WSDL (Chinnici et al. 2007), is used to provide web service descriptions
that often have to be matched in order to enable web service integration (Sect. 1.5).

2.1.5 Conceptual Models

Often, database researchers do not consider directly the relational schema but are
rather concerned with the underlying entity–relationship model (Madhavan et al.
2002). Conceptual models cover what was properly described as such in (Brodie
et al. 1984), as well as entity–relationship models (Chen 1976) that aim at abstract-
ing databases, and UML (Booch et al. 1998) models that aim at abstracting object-
oriented programs.

Fig. 2.6 Fragments of two conceptual models as UML class diagrams. Boxes describe entities and
their internal structure; Specialisation is expressed by vertical triangular arrows; other relationships
are displayed as regular arrows bearing a multiplicity indication.

These models offer a rich way of expressing entities which in this case can be
meant as entities of some modelled domain, like people in a database, or specifica-
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tion of entities to be created, like programs. They offer constructors for organising
classes in a hierarchy as well as constructors for describing the internal structure
of objects. They thus offer the best of both worlds: directories and databases. For
instance, Fig. 2.6 describes two UML class diagrams corresponding to the same
sort of models as presented before: a taxonomy of classes from an e-commerce site
selling cultural goods on the left and a book library on the right. They both offer a
complete description of the items through the specification of their properties and
a taxonomy of classes. Moreover, they can express relationships between classes,
e.g., that the author of a Book is a Person in the model on the left. The two models of
Fig. 2.6 express comparable domains, e.g., a Volume will correspond to a Book, and
yet largely different, e.g., there is no Product superclass in the right-hand side model.

2.1.6 Ontologies

It is nowadays common to see directories or conceptual models promoted as on-
tologies. Ontologies contain most of the features of entity–relationship models, and
thus, most parts of the kinds of schemas considered above. The ontologies of Fig. 2.7
syntactically correspond to the models of Fig. 2.6.

Various types of ontologies can be distinguished: foundational ontologies are
those providing an axiomatisation of other ontologies in terms of fundamental con-
cepts (perdurant, endurant, etc.). They are very often complemented by an upper-
level ontology, which defines commonplace non-foundational concepts (vehicles,
people, etc.). They may be seen as horizontal ontologies. Examples are the up-
per Cyc ontology (Lenat and Guha 1990), the Suggested Upper Merged Ontology
(SUMO) (Niles and Pease 2001), the Unified Foundational Ontology (UFO) (Guiz-
zardi 2005), and Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) (Gangemi et al. 2003).

Domain ontologies are vertical ontologies that consider concepts relevant to a
particular domain such as cooking or biology. This is typically the case of the Foun-
dational Model of Anatomy6 (FMA) developed at the University of Washington
in the medical field of anatomy. Finally, application-specific ontologies contain the
concepts specific to a particular application, e.g., the gene ontology for genes.

The distinctive feature of ontologies is the existence of a model-theoretic seman-
tics: ontologies are logic theories. Ontology interpretation is not left to users who
read the diagrams or to knowledge management systems implementing them, it is
specified explicitly. The semantics provides the rules for interpreting the syntax that
do not provide the meaning directly, but constrains the possible interpretations of
what is declared.

It is commonplace in theoretical database research to consider relational
databases with a first-order semantics. However, this is not part of the official SQL

6http://sig.biostr.washington.edu/projects/fm/.

http://sig.biostr.washington.edu/projects/fm/
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Fig. 2.7 Fragments of two ontologies.

standard (Melton 2003). Moreover, the relational algebra used in database schemas
is not very expressive: expressiveness resides in the query language.

For these reasons of rich expressiveness and presence of a model-theoretic se-
mantics, we will specifically focus on ontologies. Traditionally, ontologies were
considered different from knowledge bases, like a database schema is different from
a database that uses it. We will not enforce this distinction here and only use the
term ‘ontology’. We thus discuss ontologies in more detail with the idea that these
discussions are for part relevant to other kinds of conceptual models.

The semantics of ontologies may be constrained by additional axioms. This could
be, in some languages, the opportunity to add statements, such as an autobiography is

a biography whose topic is the author:

∀x, Autobiography(x) ⇒ ∃y; Person(y)∧ author(x, y)∧ topic(x, y)

For the sake of completeness, we give in the next section a syntax and semantics
for a minimal ontology language.

2.2 Ontology Language

Ontologies are expressed in an ontology language. There are a large variety of lan-
guages for expressing ontologies (Staab and Studer 2004). Fortunately, most of these
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languages share the same kinds of entities, often with different names but compa-
rable interpretations. We briefly describe which entities are found in ontology lan-
guages. It is not our purpose to commit to one particular language, however this
section aims to facilitate the understanding of some of the forthcoming examples
which are given in OWL (Motik et al. 2009a, 2009b), an ontology language recom-
mended by the W3C.

2.2.1 Ontology Entities

Ontology languages usually deal with the following kinds of entities:

Classes or concepts are the main entities of an ontology. These are interpreted as a
set of individuals in the domain. They are introduced in OWL by the owl:Class
construct. For example, in Fig. 2.7, Book and Person are classes.

Individuals or objects or instances are interpreted as particular individual of a do-
main. These are introduced in OWL by the owl:Thing construct. For example,
in Fig. 2.7, the objects Albert Camus: La chute and Bertrand Russell: My life are indi-
viduals.

Relations are the ideal notion of a relation independently to what it applies. Re-
lations are interpreted as a subset of the product of the domain. These are in-
troduced in OWL by the owl:ObjectProperty or owl:DatatypeProperty
construct. For example, in Fig. 2.7, creator and topic are relations.

Data types are particular parts of the domain which specify values. Contrary to
individuals, values do not have identities. For example, in Fig. 2.7, String and
Integer are data types.

Data values are simple values. For example, in Fig. 2.7, the string ‘My life’ is a
data value that can be the title of an Autobiography.

These entities do not have to be named. They may be constructed out of other
entities. In OWL, a concept can be created out of the restriction of a relation. For
example, this occurs if one defines the class Writer as the set of individuals that have
written something:
<owl:Restriction>

<owl:onProperty rdf:resource="#hasWritten" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1

</owl:cardinality>
</owl:Restriction>

Alternatively, a new class can also be constructed by combining two other
classes. For example, when considering that a low price pocket book for children is a
Pocket book that is also a Children and LowPrice book:
<owl:intersectionOf>

<owl:Class rdf:resource="#Pocket" />
<owl:Class rdf:resource="#Children" />
<owl:Class rdf:resource="#LowPrice" />

</owl:intersectionOf>

Entities may be connected by various kinds of relations, including:
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Specialisation, or subsumption, between two classes or two properties is inter-
preted as inclusion of the interpretations. For instance, in Fig. 2.7, the class Book

is a specialisation of the class Product. Specialisation is introduced in OWL by
the rdfs:subClassOf or rdfs:subPropertyOf constructs.

Exclusion, or disjointness, between two classes or two properties is interpreted
as the emptyness of the intersection of their interpretations. For instance, in
Fig. 2.7, the class Product could be declared to be exclusive to the class Person.
Exclusion is introduced in OWL by the owl:disjointWith construct.

Instantiation, or typing, between individuals and classes, property instances and
properties, values and data types is interpreted as membership. For instance, in
Fig. 2.7, the product presented as Bertrand Russell: My life is an instance of the
class Popular. Instantiation is expressed in OWL with the rdf:type construct.

Example 2.1 The class Book of Fig. 2.7 can be expressed in OWL as follows:

<owl:Class rdf:ID="Book">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">book</rdfs:label>
<rdfs:comment xml:lang="en">A book.</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#publisher" />
<owl:allValuesFrom rdf:resource="#Publisher" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In particular, this defines two classes by restricting the cardinality of the author rela-
tion and restricting the range of the publisher relation. It also relates the defined Book

class to these classes and the Product class by specialisation (rdfs:subClassOf).

In summary, we can assume an ontology to be characterised as follows.

Definition 2.2 (Ontology) An ontology is a tuple o = 〈C,I,R,T ,V,	,⊥,∈,=〉,
such that

C is the set of classes;
I is the set of individuals;
R is the set of relations;
T is the set of data types;
V is the set of values (C, I , R, T , V being pairwise disjoint);
	 is a relation on (C ×C)∪ (R×R)∪ (T × T ) called specialisation;
⊥ is a relation on (C ×C)∪ (R×R)∪ (T × T ) called exclusion;
∈ is a relation over (I ×C)∪ (V × T ) called instantiation;
= is a relation over I ×R× (I ∪ V ) called assignment.



36 2 The Matching Problem

Ontology formulas may contain more than these assertions, e.g., quantified as-
sertions or assertions related by logical connectors. We will restrict ourselves to
relations between entities.

Many algorithms transform these ontologies into labelled graphs, where nodes
are typed. We use such a notation in the diagrams of this book (see Fig. A.1 of
Appendix A for details).

2.2.2 Ontology Language Semantics

The semantics of ontology languages is usually given through model theory. In par-
ticular, it defines an interpretation function that maps each ontology entity to a set
D called the domain of interpretation.

Definition 2.3 (Interpretation) Given an ontology o= 〈C,I,R,T ,V,	,⊥,∈,=〉,
an interpretation of o is a pair 〈I,D〉, such that D is called the domain of interpre-
tation and I is a function called the interpretation function, such that

− ∀c ∈ C,I (c)⊆D,
− ∀r ∈R,I (r)⊆D × (D ∪ V ),
− ∀i ∈ I, I (i) ∈D,
− ∀t ∈ T , I (t)⊆ V ,
− ∀v ∈ V, I (v) ∈ V .

An assertion expressed in an ontology language is said to be satisfied by an in-
terpretation if the interpretation is coherent with this assertion.

Definition 2.4 (Satisfaction of a formula) Given an ontology o= 〈C,I,R,T ,V,	,

⊥,∈,=〉, and a formula δ, the satisfaction of δ by an interpretation 〈I,D〉 of o

(denoted by I |= δ), is defined as follows:

I |= c	 c′ if and only if I (c)⊆ I (c′)

I |= r 	 r ′ if and only if I (r)⊆ I (r ′)

I |= t 	 t ′ if and only if I (t)⊆ I (t ′)

I |= c⊥c′ if and only if I (c)∩ I (c′)= ∅
I |= r⊥r ′ if and only if I (r)∩ I (r ′)= ∅
I |= t⊥t ′ if and only if I (t)∩ I (t ′)= ∅
I |= i ∈ c if and only if I (i) ∈ I (c)

I |= v ∈ t if and only if I (v) ∈ I (t)

I |= i.r = i′ if and only if 〈I (i), I (i′)〉 ∈ I (r)

I |= i.r = v if and only if 〈I (i), I (v)〉 ∈ I (r)
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So, an ontology is a set of assertions that selects the set of interpretations that
satisfies them. These interpretations are called models. They constitute the possible
interpretations of an ontology.

Definition 2.5 (Model) Given an ontology o, a model of o is an interpretation m=
〈I,D〉 of o, which satisfies all the assertions in o:

∀δ ∈ o, m |= δ

The set of models of an ontology o is denoted by M(o).

Finally, an important notion is the set of assertions that are consequences of an
ontology. These are the assertions implicitly entailed by an ontology and they deter-
mine the answers to queries.

Definition 2.6 (Consequence) Given an ontology formula δ, δ is a consequence of
an ontology o, if and only if, it is satisfied by all models of o. This is denoted by
o |= δ.

Given a model m, we will denote by m(e) the application of the interpretation
function of the model to some ontology entity e.

This digression introduced more precisely, albeit generally, a simplified syntax
and semantics for ontologies. This will be useful when considering the meaning of
matching ontologies.

2.3 Types of Heterogeneity

The goal of matching ontologies is to reduce heterogeneity between them. Hetero-
geneity does not lie solely in the differences between goals of the applications ac-
cording to which they have been designed or in the expression formalisms in which
ontologies have been encoded. There have been many different classifications to
types of heterogeneity (Batini et al. 1986; Sheth and Larson 1990; Breitbart 1990;
Kim and Seo 1991; Goh 1997; Hull 1997; Kashyap and Sheth 1998; Benerecetti
et al. 2000; Wache et al. 2001; Klein 2001; Euzenat 2001; Corcho 2005; Hameed
et al. 2004; Ghidini and Giunchiglia 2004; Bouquet et al. 2004a). Some of them fo-
cus on mismatches (Klein 2001), others rather mention interoperability levels (Eu-
zenat 2001). We consider here the most obvious types of heterogeneity:

Syntactic heterogeneity occurs when two ontologies are not expressed in the same
ontology language. This obviously happens when comparing, for instance, a di-
rectory with a conceptual model. This also happens when two ontologies are
modelled by using different knowledge representation formalisms, for instance,
OWL and F-logic. This kind of mismatch is generally tackled at the theoreti-
cal level when one establishes equivalences between constructs of different lan-
guages. Thus, it is sometimes possible to translate ontologies between different
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ontology languages whilst still preserving their meaning (Euzenat and Stucken-
schmidt 2003).

Terminological heterogeneity occurs due to variations in names when referring to
the same entities in different ontologies. This may be caused by the use of dif-
ferent natural languages, e.g., Paper vs. Articulo, different technical sublanguages,
e.g., Paper vs. Memo, or the use of synonyms, e.g., Paper vs. Article.

Conceptual heterogeneity, also called semantic heterogeneity in (Euzenat 2001)
and logical mismatch in (Klein 2001), stands for the differences in modelling
the same domain of interest. This may happen due to the use of different (and,
sometimes, equivalent) axioms for defining concepts or due to the use of to-
tally different concepts, e.g., geometry axiomatised with points as primitive ob-
jects or geometry axiomatised with spheres as primitive objects. As noted in
(Klein 2001) and (Visser et al. 1998), there is a difference between the con-
ceptualisation mismatch, which relies on the differences between modelled con-
cepts, and the explicitation mismatch, which relies on the way these concepts
are expressed. (Visser et al. 1998) provides a precise classification of these mis-
matches.
Finally, in the context of conceptual differences, (Benerecetti et al. 2001) iden-
tifies three important reasons for these to hold. We discuss these below and give
examples with the help of the notion of a geographic map:

− Difference in coverage occurs when two ontologies describe different, possi-
bly overlapping, domains at the same level of detail and from a unique per-
spective. This is obviously the case for two partially overlapping geographic
maps.

− Difference in granularityoccurs when two ontologies describe the same do-
main from the same perspective but at different levels of detail. This applies
to geographic maps with different scales, e.g., one displays buildings, while
another depicts whole cities as points.

− Difference in perspective, also called difference in scope (Chalupsky 2000),
occurs when two ontologies describe the same domain, at the same level of
detail, but from a different perspective. This occurs for maps with different
purposes: a political map and a geological map do not display the same ob-
jects.

Semiotic heterogeneity, also called pragmatic heterogeneity in (Bouquet et al.
2004a), is concerned with how entities are interpreted by people. Indeed, en-
tities which have exactly the same semantic interpretation are often interpreted
by humans with regard to the context, for instance, of how they are ultimately
used. This kind of heterogeneity is difficult for the computer to detect and even
more difficult to solve, because it is out of its reach. The intended use of entities
has a great impact on their interpretation, therefore, matching entities which are
not meant to be used in the same context is often error-prone. Given the limited
grasp that a computer can have on these issues, we do not deal with semiotic
heterogeneity here.



2.4 Terminology 39

Usually, several types of heterogeneity occur together. This book is only con-
cerned with reducing the terminological and conceptual types of heterogeneity.
Techniques for dealing with these types individually are presented in Chap. 5, while
techniques for considering them together are provided in Chaps. 6 and 7.

2.4 Terminology

As can be observed from what we have presented so far, in the area of ontology
matching, different authors including ourselves use different terms to refer to similar
concepts, and, vice versa, sometimes different concepts are referred to by the same
term (Chalupsky 2000; Klein 2001; Euzenat 2001; Noy and Klein 2004; Kalfoglou
and Schorlemmer 2003b; Bouquet et al. 2004a; Bellahsene et al. 2011). This is
especially confusing since these terms can be used for describing both an action
and its result, e.g., mapping. In this section, we provide a working glossary with the
definitions of terms as they are going to be used in this book. They are stable and
have not changed since its first edition, though several new entries have been added,
such as networks of ontologies and data interlinking.

Matching is the process of finding relationships or correspondences between enti-
ties of different ontologies.

Alignment is a set of correspondences between two or more (in case of multi-
ple matching) ontologies (by analogy with molecular sequence alignment). The
alignment is the output of the matching process.

Correspondence is the relation holding, or supposed to hold according to a par-
ticular alignment, between entities of different ontologies. These entities can be
as different as classes, individuals, properties or formulas. Some authors use the
term mapping instead, however, it will not be used in this sense in this book.

Anchor is a correspondence between two ontology entities, which are usually re-
quired prior to performing other tasks, such as reasoning, partitioning and also
matching.

Mapping is the oriented, or directed, version of an alignment: it maps the entities
of one ontology to at most one entity of another ontology. This complies with
the mathematical definition of a mapping instead of that of a general relation.
The mathematical definition would in principle require that the mapped object
is equal to its image, i.e., that the relation is an equivalence relation. A mapping
can be seen as a collection of mapping rules all oriented in the same direction,
i.e., from one ontology to the other, and such that the elements of the source
ontology appear at most once.

Mapping rule is a correspondence which maps an entity of one ontology into an-
other one from another ontology.

Ontology merging is the creation of a new ontology from two, possibly overlap-
ping, source ontologies. The initial ontologies remain unaltered. The merged
ontology is assumed to contain the knowledge of the initial ontologies, e.g.,
consequences of each ontology are consequences of the merge. This concept is
closely related to that of schema integration in databases.
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Ontology integration is the inclusion in one ontology of another ontology and as-
sertions expressing the glue between these ontologies, usually as bridge axioms.
The integrated ontology is assumed to contain the knowledge of both initial on-
tologies. Contrary to merging, the first ontology is unaltered while the second
one is modified.

Bridge axioms or articulation axioms are formulas, in an ontology language, that
express the alignments such that it is possible to integrate the entities of an on-
tology within one another. Bridge axioms are the basis for ontology merging
when the ontologies are expressed in the same language.

Ontology translation is the process of transforming an ontology from one ontol-
ogy language to another. By extension, it is a program for translating ontologies.

Ontology transformation is the process of expressing the entities of an ontology
with respect to the entities of another ontology, i.e., relations between entities
of the first ontology and those of the second one are added to the first ontology.
So the initial consequences of the first ontology are still consequences of the
transformation result. The two initial ontologies are unaltered and a third on-
tology, the transformation result, is created. By extension, it is a program that
transforms ontologies.

Data translation is the process of transforming data or instances from one ontol-
ogy into corresponding data or instances expressed with respect to another on-
tology. By extension, it is a program that translates data.

Data interlinking is the process of establishing explicit links, e.g., equivalences,
between instances from different data sources.

Mediation consists of interfacing two software components by dynamically alter-
ing the information stream between these. By extension, a mediator is a program
performing mediation. In web service composition, a mediator translates the out-
put of a service into the input of another one: it thus performs data translation.
In query answering applications it is a dual pair of translations that transforms
the query from one ontology to another and that translates the answers back.

Networks of ontologies are made of a set of ontologies and a set of alignments
between these ontologies. The ontologies may be related for several reasons:
they may be complementary; they may be two independent domain ontologies,
e.g., sales and tyres, refinement; there may be a domain ontology specialising
a top-level ontology; or they may be supplementary, e.g., a version replacing
another version or two ontologies about the same domain.

Linked data, also known as web of data, is a global data space, which is made of
structured data sources published on the web, e.g., in RDF, that are explicitly
interlinked.

Ontology version of an ontology is the ontology resulting from the application of
modifications to this ontology.

Ontology reconciliation is a process that harmonises the content of two or more
ontologies, typically requiring changes on one of the two sides or even on both
sides (Hameed et al. 2004). In this case, there is no merging of the ontologies
but co-evolution. Ontology reconciliation can be performed for the purpose of
merging two ontologies or for the purpose of making them independent.
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2.5 The Ontology Matching Problem

There have been different formalisations of matching and its result (Bernstein et al.
2000; Lenzerini 2002; Kalfoglou and Schorlemmer 2003b; Bouquet et al. 2004a;
Zimmermann et al. 2006; Bellahsene et al. 2011). We provide here a general defi-
nition. It does not pretend to solve each particular problem nor to strictly cover the
complete field. It aims at serving as a guide for this book.

2.5.1 The Matching Process

The matching operation determines an alignment A′ for a pair of ontologies o and o′.
There are some other parameters that can extend the definition of the matching pro-
cess, namely (i) the use of an input alignment A, as known as anchor alignment,
which is to be extended or completed by the process, (ii) the matching parameters,
p, e.g., weights, thresholds, and (iii) external resources used by the matching pro-
cess, r , e.g., common knowledge and domain-specific thesauri.

Technically, this process can be defined as follows:

Definition 2.7 (Matching process) The matching process can be seen as a function
f which, from a pair of ontologies to match o and o′, an input alignment A, a set of
parameters p and a set of oracles and resources r , returns an alignment A′ between
these ontologies:

A′ = f (o, o′,A,p, r)

This can be schematically represented as illustrated in Fig. 2.8.

Fig. 2.8 The matching
process.

We use interchangeably the terms ‘matching operation’ (focussing on the input
and the result), ‘matching task’ (focussing on the goal and the insertion of the task
in a wider context) and ‘matching process’ (focussing on the internal processing).

It can be useful to specifically consider matching more than two ontologies
within the same process. We call this multiple matching.

Definition 2.8 (Multiple matching process) The multiple matching process can be
seen as a function f which, from a set of ontologies to match {o1, . . . on}, an input
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alignment A, a set of parameters p and a set of oracles and resources r , returns an
alignment A′ between these ontologies:

A′ = f (o1, . . . on,A,p, r)

The matching process is the main subject of this book. However, before dis-
cussing its internals, let us first consider what it provides: the alignment.

2.5.2 Structure of an Alignment

Alignments express correspondences between entities belonging to different ontolo-
gies. All definitions here are given for matching between two ontologies. In case of
multiple matching, the definitions can be straightforwardly extended by using n-ary
correspondences. A correspondence must consider the two corresponding entities
and the relation that is supposed to hold between them. We provide a definition of
alignments extending (Euzenat 2004; Bouquet et al. 2004a).

Since the related entities are an important part of alignments, they have to be
defined. We separate the matched entities from the ontology language because it
can be desirable to have a different language for identifying the matched entities.
Given an ontology language, we use an entity language for expressing those entities
that will be put in correspondence by matching. The expressions of this language
depend on the ontology on which expressions are defined.

Definition 2.9 (Entity language) Given an ontology language L, an entity language
QL is a function from any ontology o ⊆ L which defines the matchable entities of
ontology o.

The entity language can be simply made of all the formulas of the ontology lan-
guage based on the ontology vocabulary. It can restrict its scope to particular kinds
of formulas from the language, for instance, atomic formulas, or even to terms
of the language, like class expressions. It can also restrict the entities to be only
named entities. This is convenient in the context of the semantic web to restrict
entities to those identifiable by their URIs. The entity language can also be an ex-
tension of the ontology language: this can be a query language, such as SPARQL
(Prud’hommeaux and Seaborne 2008), adding operations for manipulating ontol-
ogy entities that are not available in the ontology language itself, like concatenating
strings or joining relations. Finally, the entity language may combine both extension
and restriction, e.g., by authorising any Boolean operations over named ontology
entities.

In the following we assume that each ontology interpretation can be extended to
an interpretation of the entity language associated with the ontology.

The next important component of the alignment is the relation that holds be-
tween the entities. We identify a set of relations Θ that is used for expressing the
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relations between entities. Matching algorithms primarily use the equivalence rela-
tion (=), meaning that the matched objects are the same or are equivalent if these are
formulas. It is possible to use relations from the ontology language within Θ . For in-
stance, using OWL, it is possible to take advantage of the owl:equivalentClass,
owl:disjointWith or rdfs:subClassOf relations in order to relate classes
of two ontologies. These relations correspond to set-theoretic relations between
classes: equivalence (=); disjointness (⊥); less general (≤). They can be used with-
out reference to any ontology language. Finally, relations can be of any type and
are not restricted to relations present within the ontology language, such as fuzzy
relations or probability distributions over a complete set of relations, or similarity
measures. Algebras of relations provide an alternative generalisation of these ad hoc
sets of relations (Euzenat 2008).

With these ingredients, it is possible to define the correspondences that have to
be found by matching algorithms.

Definition 2.10 (Correspondence) Given two ontologies o and o′ with associated
entity languages QL and QL′ and a set of alignment relations Θ , a correspondence
is a triple:

〈e, e′, r〉,
such that

− e ∈QL(o) and e′ ∈Q′
L′(o

′);
− r ∈Θ .

The correspondence 〈e, e′, r〉 asserts that the relation r holds between the ontol-
ogy entities e and e′.

In the first edition of this book, this definition (numbered Definition 2.11) had
two additional components: an identifier for each correspondence and a confidence
measure. We now consider it better to keep correspondences as simplest expressions
in order to facilitate the presentation. Identifiers and confidence measures, which
are useful in practice, may be added to correspondences (see Example 2.11). In
particular, we consider confidence measures as metadata (see Sect. 3.8).

Example 2.11 (Correspondence) For example, a simple kind of correspondence is
as follows:

http://book.ontologymatching.org/example/culture-shop.owl#Book =
http://book.ontologymatching.org/example/library.owl#Volume

It asserts the equivalence relation between what is denoted by two URIs, namely
the Book class in one ontology and the Volume class in another one. Some examples
of more complex correspondences are as follows:

Book(x)

author(x, concat(w.firstname,w.lastname)) ⇐.85 ∧ writtenBy(x,w)

∧Writer(w),

http://book.ontologymatching.org/example/culture-shop.owl#Book
http://book.ontologymatching.org/example/library.owl#Volume
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which is a Horn clause expressing that, if there exists a Book x written by Writer w, the
author of x in the first ontology is identified by the concatenation of the first and last
name of w. This clause is additionally assigned a confidence degree of .85. Such a
statement is also known as a full tuple-generating dependency.

Correspondences may also be expressed between queries as follows:
SELECT ?x ?y
WHERE { ?x rdf:type o’:Book .

?x o’:author ?w .
?w o’:name ?y .
?x o’:topic ?y . }

=
SELECT ?x ?y AS (?u+" "+?v)
WHERE { ?x rdf:type o:Autobiography .

?x o:author ?z .
?z o:firstname ?u .
?z o:lastname ?v . }

which matches two queries returning a resource and a string representing pairs of
books and person names, such that the book is the autobiography of the person.

There can be several possible correspondences for the same entities depending
on the language in which correspondences are expressed. For instance, one could
have the simple correspondence that speed in one ontology is equivalent to velocity

in another one:

speed= velocity

or record that they are expressed in miles per hour and metre per second, respec-
tively:

speed= velocity× 2.237

0.447× speed= velocity

For pragmatic reasons, the relationship between two entities is often assigned a
degree of confidence which can be viewed as a measure of trust in the fact that the
correspondence holds—‘I trust 70 % the fact that the correspondence is correct or
reliable’—and can be compared with the certainty measures provided by meteoro-
logical forecasts. This measure is taken from a confidence structure.

Definition 2.12 (Confidence structure) A confidence structure is an ordered set of
degrees 〈Ξ,≤〉 for which there exists the greatest element � and the smallest ele-
ment ⊥.

The usage of confidence degrees is such that the higher the degree with regard
to ≤, the more likely the relation holds. It is convenient to interpret the greatest ele-
ment as the Boolean true and the least element as the Boolean false. In the following,
we use the function κA(μ) :QL(o)×Q′

L′(o
′)×Θ →Ξ to provide the confidence

for a correspondence μ in an alignment A.
The most widely used structure is based on the real number unit interval [0 1], but

some systems simply use the Boolean lattice. The lattice structure provides a way
to aggregate measures (there always exist greatest lower bound and smallest upper
bound to two confidences) and the stronger total order structure guarantees that it
is always possible to compare two confidences. This is useful in evaluation (see
Chap. 9). Some other possible structures are fuzzy degrees (Gal 2011), probabilities
(Atencia et al. 2012a) or other lattices.
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Fig. 2.9 Alignment between the ontologies of Fig. 2.7. Correspondences are shown as thick ar-
rows that connect an entity from one ontology with an entity from another ontology. They are
annotated with the relation that is expressed by the correspondence. By default the relation is =;
otherwise, these are mentioned near the arrows.

Finally, an alignment is defined as a set of correspondences.

Definition 2.13 (Alignment) Given two ontologies o and o′, an alignment is a set
of correspondences between pairs of entities belonging to QL(o) and QL′(o′) re-
spectively.

Example 2.14 (Alignment) Figure 2.9 displays a possible alignment for the pair of
ontologies of Fig. 2.7. It can be expressed by the following correspondences:

Book= Volume name≥ title

id≥ isbn author= author

Person= Human Science≤ Essay

These definitions can be generalised to an arbitrary number of alignments and
ontologies captured in the concept of a network of ontologies (or distributed sys-
tem in the sense of (Ghidini and Serafini 1998; Franconi et al. 2003)), i.e., sets of
ontologies and alignments.
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Definition 2.15 (Network of ontologies) A network of ontologies 〈Ω,Λ〉 is made
of a set Ω of ontologies and a set Λ of alignments between these ontologies. We
denote by Λ(o,o′) the set of alignments in Λ between o and o′.

The definition of alignments as sets of pairs of entities from two ontologies may
seem simplistic. In fact it is very general and covers most of the cases encountered
in the literature. Indeed, there are at least three types of n:m, multiple or complex
alignments:

1. alignments involving more than two ontologies produced by multiple matching,
that we may call multialignments,

2. alignments involving correspondences between more than two entities (still be-
longing to two ontologies),

3. alignments with entities involved in more than one correspondence that are de-
noted by the use of * (zero-or-more) or + (more-than-zero) in their cardinalities.

In case of multiple matching (1), the alignments must contain correspondences
relating more than two entities. The definitions above must then be extended ac-
cordingly. This is not covered further here.

The second kind of correspondences (2) can be thought of as using nonbinary
relations. For instance, in schema matching, some authors (Sheth and Larson 1990;
Rahm and Bernstein 2001) tend to consider that a correspondence like

address = street+ “ ”+ number

is a ternary complex relation (· = · + “ ” + ·) between three entities address, street

and number. However, given the nature of the ontology matching problem, we will
consider that these objects can be grouped by operators in the entity language QL.
These may include operators, such as concatenation, arithmetic operations or logi-
cal connectors, for that purpose. Hence, in our setting, the correspondence above is
a simple correspondence in which the binary relation is equivalence (=) and the on-
tology entities are address and street+ “ ”+ number. This is the main reason why we
consider ontology entities: the latter entity is a term built on strings and operations
on strings (here concatenation, +). In its simplest expression, the only construction
can be a set.

Option (3) is related to the multiplicity of the alignment if it is considered as a
relation. By analogy with mathematical functions, it is useful to define some proper-
ties of the alignments. These apply when the only considered relation is equivalence
(=) and confidence measures are not taken into account. One may ask for a total
alignment with regard to one ontology, i.e., each of the entities of one ontology
must be successfully mapped to another one. This property is purposeful whenever
thoroughly transcribing knowledge from one ontology to another is the goal: there
is no entity that cannot be translated.

One may also require the alignment to be injective with regard to one ontology,
i.e., all the entities of the other ontology is part of at most one correspondence. In-
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jectivity is useful in ensuring that entities that are distinct in one ontology remain
distinct in the other one. In particular, this contributes to the reversibility of align-
ments.

Definition 2.16 (Total alignment, injective alignment) Given two ontologies o

and o′, an alignment A over o and o′ is called a total alignment from o to o′ if
and only if

∀e ∈QL(o),∃e′ ∈QL′(o
′); 〈e, e′,=〉 ∈A

and, it is called an injective alignment from o to o′ if and only if

∀e′ ∈QL′(o
′),∃e1, e2 ∈QL(o); 〈e1, e

′,=〉 ∈A∧ 〈e2, e
′,=〉 ∈A ⇒ e1 = e2

These properties tightly depend on the ontology entity languages which are cho-
sen for alignments.

Usual mathematical properties apply to these alignments. In particular, a total
alignment from o to o′ is a surjective alignment from o′ to o. A total alignment from
both o and o′, which is injective from one of them, is a bijection. In mathematical
English, an injective function is said to be one-to-one and a surjective function to be
onto. Due to the wide use among matching practitioners of the term one-to-one for a
bijective, i.e., both injective and surjective, alignment, we will only use one-to-one
for bijective.

Finally, we can extend these definitions when correspondence relations are not
equivalences. In such a case, they do not ensure the same properties. For instance,
injectivity does not guarantee reversibility of the alignment used as a transformation.

In conceptual models and databases, the term multiplicity denotes the constraints
on a relation. Usual notations are 1:1 (one-to-one), 1:m (one-to-many), n:1 (many-
to-one) or n:m (many-to-many). If we consider only total and injective properties,
denoted by 1 for injective and total, ? for injective, + for total and * for none, and
the two possible orientations of the alignments, from o to o′ and from o′ to o, the
multiplicities become: ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1,
+:*, *:+, *:* (Euzenat 2003).

Example 2.17 (Alignment multiplicity) The alignment of Example 2.14 is ?:?. If
we add the correspondence Product ≥ Volume, then it is ?:*. If we now consider
relating any entity of the second ontology to another entity of the first one, then it
becomes ?:+.

The four pictures below display some of the possible configurations for two on-
tologies composed of three classes each.
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Fig. 2.10 Relations between ontologies, alignment α(o, o′) and the corresponding model-theo-
retic interpretation. Each ontology in the top of the figure is represented by its set of models in
the bottom. These ontologies correspond to an initial (possibly empty) ontology, two ontologies
(o and o′) approximating some ideal ontology m (itself approximating some even more complete
ontology). α(o, o′) is an alignment of o and o′ with regard to the way it approximates them and
μ(o, o′) is their merge with regard to the way o and o′ approximate it.

2.5.3 Towards a Semantics for Matching and Alignments

As an introduction to the ideas behind matching, we present here a very simple yet
powerful description. It relies on the principle that ontologies can approximate other
ontologies and that ontologies to be matched are approximation of a common ideal
ontology. We give the classical interpretation of it in both model-theoretic terms and
categorical terms. This is informally presented in Fig. 2.10.

Let approximation be a relation between ontologies which expresses that one
ontology a is a representation of at least the same modelled domains as another
α(o, o′). In logic, this relation corresponds to entailment. In category theory, the
ontology is called an object and the approximation is called a morphism. One can
define other relations between ontologies, such as having at least one common ap-
proximated ontology. Syntactically, it is possible to provide a set of generators that
will complete an ontology, e.g., adding a constraint on a class, classifying an indi-
vidual, providing an approximated ontology.
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Model-theoretic semantics assigns to any ontology the set of its models (see
Sect. 2.2.2). If the ontology is correctly designed, the modelled domain is part of
these. Model-theoretic semantics provides a formal meaning to the intuitions be-
hind such a notion as approximation: an ontology is approximated by another if its
models are also models of the other: this is the standard interpretation of entailment.
Thus, the more approximated an ontology, the fewer models it has.

In these very general terms, matching two ontologies o and o′ consists of finding
a most specific ontology α(o, o′) that approximates both ontologies. If one ontology
is approximated by another, the result of matching should be the latter α(o, o′)= o.
In model-theoretic terms, it corresponds to finding an ontology whose set of models
is maximal for inclusion and is included in the intersection of the set of models of
two aligned ontologies. In categorical terms, this means that there exists an object
α(o, o′) and a pair of morphisms from it to the ontologies o and o′, and for every
other object satisfying these conditions there exists a morphism from it to α(o, o′).

This general description of alignments can be compared to three cases explain-
ing reasons for the existence of conceptual heterogeneity that were introduced in
Sect. 2.3. In fact, if we take these cases literally:

Coverage mismatch, corresponding to two ontologies modelling totally different
domains, resorts to α(o, o′)= ∅, ∅ being an empty ontology;

Granularity mismatch, corresponding to two ontologies modelling the same do-
main with different precisions, corresponds to the case where α(o, o′)= o, i.e.,
one ontology is an approximation of the other;

Perspective mismatch, corresponding to the representation of different aspects of
the same domain at the same granularity, is the general case presented here.

Of course, in real-world matching tasks, the most frequent cases do not distinctly
belong to one of these cases but rather mix them.

This general intuition about matching, similar to that of (Kalfoglou and Schor-
lemmer 2003b), strongly resembles a category-theoretic framework. Indeed, work
towards more precise categorical definitions of ontology matching has been devel-
oped (Hitzler et al. 2005; Zimmermann et al. 2006; Kalfoglou et al. 2007). In partic-
ular, in categorical terms the merge corresponds to a push-out construction (Bench-
Capon and Malcolm 1999; Alagic and Bernstein 2001) or its generalisation as a
colimit (Hitzler et al. 2005). Such a categorical definition was used for designing
matchers in (Atencia and Schorlemmer 2012). We provide a simple semantic foun-
dation for alignments. It is useful to understand what is expected from a matching
algorithm. However, the semantics of alignments defines how alignments must be
interpreted and not how alignments must be found by a matching algorithm. In this
respect, it is only a semantics for interpreting alignments and not for the matching
operation.

The usual way of providing a semantics for related conceptual systems is through
modal logic of knowledge and belief (Fagin et al. 1995; Wooldridge 2000). In line
with the work on data integration, we only give a first-order model-theoretic seman-
tics because, so far, networks of ontologies do not offer a language for expressing
statements about knowledge and belief. It depends on the semantics of ontologies
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(Sect. 2.2.2) but does not interfere with it. From a network of ontologies, the seman-
tics of the whole system is defined with respect to the semantics of each individual
ontology.

Given a network of ontologies, the first problem arising is the possible noncom-
patibility of their domains of interpretation. It is possible to consider different posi-
tions with regard to the domain of interpretation:

(a) For all these ontologies, there is a unique domain of interpretation D. This ap-
proach is useful when ontologies describe a set of well defined entities, like the
set of files shared in a peer-to-peer system. This approach has been taken in
(Calvanese et al. 2002b, 2004).

(b) Each ontology has a domain of interpretation disjoint from the others. This is es-
pecially useful for computational purposes as it allows ordered reasoning across
connected ontologies. Such a formalism has been developed as E-connections
in which only specific relations can connect entities of the different ontologies
(Kutz et al. 2004; Cuenca Grau et al. 2006).

(c) For each ontology o, the domain Do may be different. Domains are related with
the help of domain relations ro,o′ which map elements of Do to corresponding
elements of Do′ . This approach is used in (Borgida and Serafini 2003; Bao et al.
2009).

(d) There is no constraint on the domain of interpretation of ontologies. For dealing
with this assumption, a universal domain U is used, that may be defined as the
union of all the domains under consideration, and an equalising function γ or
rather a set of equalising functions: γo :Do −→ U . This is the assumption that
is considered in (Zimmermann and Euzenat 2006).

We call reduced semantics the technique which consists of merging the ontolo-
gies with the correspondences transformed into ontological statements (Meilicke
et al. 2009). This technique interprets alignments under option (a). It only works
when the ontologies are in the same language or through translating both ontologies
and the alignment into a more classical logic.

(Zimmermann and Euzenat 2006) considers the implications of options (a), (c)
and (d). The first edition of this book provided a semantic framework tied to the
latter option. We now provide a more neutral and more general perspective.

For that purpose, correspondences are interpreted with respect to three features:
a pair of models from each ontology and a semantic structure, denoted by Δ, which
depending on the interpretations may be empty, be an equalising function or be
a domain relation structure (Zimmermann 2013). Hence, the semantics of corre-
spondences are given with respect to ontology models and the semantic structure
supporting correspondences. The models have to be adequately extended to entity
languages used in the alignments.

Definition 2.18 (Satisfied correspondence) A correspondence μ= 〈e, e′, r〉 is sat-
isfied by two models m, m′ of o, o′ for some semantic structure Δ if and only if

〈m(e),m′(e′)〉 ∈ rΔ,
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such that rΔ provides the interpretation of the relation r in the structure. This is
denoted by m,m′ |=Δ μ.

Example 2.19 (Interpretation of relations) In the language used as example, if m

and m′ are respective models of o and o′ and Δ interprets relations as their set-
theoretic counterpart:

m,m′ |=Δ 〈c, c′,=〉 iff m(c)=m′(c′)

m,m′ |=Δ 〈c, c′,≤〉 iff m(c)⊆m′(c′)

m,m′ |=Δ 〈c, c′,≥〉 iff m(c)⊇m′(c′)

m,m′ |=Δ 〈c, c′,⊥〉 iff m(c)∩m′(c′)= ∅
This is typically what happens for option (a).

Definition 2.20 (Models of alignments) Given two ontologies o and o′ and an
alignment A between these ontologies, a model of this alignment is a triple
〈m,m′,Δ〉 with m ∈ M(o), m′ ∈ M(o′), and Δ a semantic structure, such that
∀μ ∈A, m,m′ |=Δ μ (denoted by m,m′ |=Δ A).

As usual, an alignment is said satisfiable or consistent if there are models of the
aligned ontologies that can be combined in such a way that all of its correspondences
are satisfied. Otherwise, the alignment is said inconsistent. It is said valid if any
of the ontology model correspondences have this property. The satisfiable set of
alignments is far larger than the set of valid ones. By analogy with ontologies, the
coherence of an alignment is defined as the ability for any class to have instances,
i.e., that no class interpretation is empty in all models.

Models of networks of ontologies extends models of alignments. They select vec-
tors of compatible models of each ontology in the network in the style of (Ghidini
and Giunchiglia 2001). Compatibility consists of satisfying all the alignments of the
network.

Definition 2.21 (Models of networks of ontologies) Given a network of ontolo-
gies 〈Ω,Λ〉 with n = |Ω|, a model of 〈Ω,Λ〉 is a n+ 1-uple 〈m1 . . .mn,Δ〉 with
m1 ∈ M(o1) . . . and mn ∈ M(on), such that for each alignment A ∈ Λ(oi, oj ),
mi,mj |=Δ A. The set of models of 〈Ω,Λ〉 is denoted by M(〈Ω,Λ〉).

In that respect, alignments act as model filters for the ontologies. They select
the ontology interpretations which are coherent with the alignments. This allows
for transferring information from one ontology to another since reducing the set of
models will entail more consequences in each aligned ontology.

From these definitions of models, it is possible to define the usual notions, such as
consistency or consequences for an alignment or network of ontologies: a network
of ontologies is consistent if it has at least one model, otherwise it is inconsistent.
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We have introduced the notion of α-consequences as the correspondences which
are consequences of a particular set of ontologies and alignments (Euzenat 2007).

Definition 2.22 (α-Consequence of networks of ontologies) Given a finite set of n

ontologies Ω and a finite set of alignments Λ between pairs of ontologies in Ω , a
correspondence μ between two ontologies oi and oj in Ω is an α-consequence
of 〈Ω,Λ〉 (denoted by |=Ω,Λ μ or 〈Ω,Λ〉 |= μ) if and only if for all models
〈m1, . . .mn,Δ〉 of 〈Ω,Λ〉, mi,mj |=Δ μ.

The set of α-consequences of a network of ontologies is called its α-closure.
From the alignment semantics, it is possible to decide if an alignment is a con-

sequence of another or if the alignment makes the set of ontologies and alignments
inconsistent. This has been used for:

− deducing alignments, i.e., computing α-consequences for finding missing align-
ments between two ontologies or completing an existing alignments (see
Sect. 6.5);

− checking alignment consistency and repairing alignments (see Sect. 7.8.2);
− evaluating alignments (see Sect. 9.3.2); and
− evolving alignments (see Sect. 12.8).

This definition coincides with a coherent model of the world in which all models
satisfy all alignments. This is the standpoint of an omniscient observer and it cor-
responds to the global knowledge of a distributed system as defined in (Fagin et al.
1995).

However, if one ontology is inconsistent then the network of ontologies has no
model. Therefore, even agents not connected to the inconsistent ontology cannot
compute reasonable models. Moreover, an agent knowing an ontology and the re-
lated alignments would like to use the system by gathering information from its
neighbours and considering only the models of this information. Thereby, it would
be able to compute consequences through some complete deduction mechanisms.
This is important when asking agents to answer queries and corresponds to local
knowledge in (Fagin et al. 1995). This is the knowledge an agent can achieve by
communicating only with the agents it is connected to in a network of ontologies.

From that standpoint, there can be several ways to select the acceptable mod-
els given the distributed system (here, X |=Δ λ(o, o′) is to be interpreted as ∀A ∈
Λ(o,o′),X |=Δ A):

M0
Ω,Λ(o)=M(o)

M∃
Ω,Λ(o)= {m ∈M(o); ∃Δ; ∀o′ ∈Ω,∃m′ ∈M(o′);m,m′ |=Δ λ(o, o′)}

M∃∗
Ω,Λ(o)= {m ∈M(o); ∃Δ; ∀o′ ∈Ω,∃m′ ∈M∃∗

Ω,Λ(o′);m,m′ |=Δ λ(o, o′)}
M↑∃

Ω,Λ(o)= {m ∈M(o); ∀o′ ∈Ω,∃〈 �m,Δ〉 ∈M(〈Ω,Λ〉); �mo =m}
M∀∗

Ω,Λ(o)= {m ∈M(o); ∃Δ; ∀o′ ∈Ω,∀m′ ∈M∀∗
Ω,Λ(o′);m,m′ |=Δ λ(o, o′)}



2.6 Summary 53

M∀
Ω,Λ(o)= {m ∈M(o); ∃Δ; ∀o′ ∈Ω,∀m′ ∈M(o′);m,m′ |=Δ λ(o, o′)}

M↑∀
Ω,Λ(o)= {m ∈M(o); ∀o′ ∈Ω,∀〈 �m,Δ〉 ∈M(〈Ω,Λ〉); �mo =m}

These approaches have been ordered from the more optimistic to the more cau-
tious. M∃

Ω,Λ selects the models that satisfy each alignment in at least one model of

the connected ontology. M∀
Ω,Λ is very strong since all alignments must be satisfied

by all models of the connected ontologies. M∃∗
Ω,Λ and M∀∗

Ω,Λ are fixed point char-
acterisations that, instead of considering the initial models of the connected agents,
consider their selected models by the same function. This contributes to propagat-
ing the constraints to the entire connected components of the network of ontologies.
While for M∃∗

Ω,Λ this strengthens the constraints, for M∀∗
Ω,Λ, this relaxes them with

respect to M∀
Ω,Λ. Here, an inconsistent model is a problem only to related agents

and only for versions M∃
Ω,Λ, and M∃∗

Ω,Λ, which require the existence of a model

for each related ontology. M↑∃
Ω,Λ and M↑∀

Ω,Λ are global versions, which consider
models of the whole network of ontologies supporting the filtered models. The sat-
isfaction of λ(o, o′) is entailed by the choice of m and �mo′ in a model of the network.

Each of these options allows for specialising the semantics of ontologies in a
network based on the models of networks of ontologies considered above. It is also
analogous to the distributed knowledge of the system following (Fagin et al. 1995).

One can be even more restrictive by considering only a subset of the possible
models of each ontology.

When dealing with ontology matching between a pair of ontologies, the matter of
semantics between ontologies is not related to the alignment but to the interpretation
of the full network of ontologies, for instance, depending on whether one wants to
enforce global consistency or not. In this book we will not take a position on such a
matter and will only retain the basic interpretation framework provided above.

Finally, such a formalism contributes to the definition of the meaning of align-
ments: it describes what are the consequences of ontologies with alignments, i.e.,
what can be deduced by an agent. However, it does not describe what the correct
alignments are: matching is not a deductive task, but an inductive one. The frame-
work is nevertheless particularly useful for deciding if delivered alignments are
consistent, i.e., if networks of ontologies have a model or not. Hence, it is useful
for specifying what is expected from matching algorithms and how they should be
designed or evaluated.

2.6 Summary

In this chapter, we have first described different kinds of data and conceptual models
and observed their expressivity. Formal ontologies turn out to be their most elaborate
form. This means that, by developing and reviewing ontology matching, this book
will cover other areas as well.
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In fact, on the one hand, schema matching is usually performed with the help of
techniques trying to guess the meaning encoded in the schemas. On the other hand,
ontology matching systems primarily try to exploit knowledge explicitly encoded
in the ontologies. In real-world applications, schemas and ontologies usually have
both well defined and obscure terms and contexts in which they occur, therefore,
solutions for both problems would be mutually beneficial. Consequently, we focus
our attention on ontology matching as a task that comprises many characteristics of
other forms of matching between data and conceptual models.

Then, we focussed on identifying what semantic heterogeneity is and why it re-
quires matching. We have presented various reasons why mismatches may occur
between ontologies. Their variety and the fact that they often occur together con-
strain to develop multiple approaches for matching ontologies. These techniques
will be classified in Chap. 4 and further detailed in the forthcoming ones.

Finally, we have defined the action of matching ontologies and its result: the
alignment. The interpretation of alignments has been provided first generally but
informally, before introducing a semantics for it in networks of ontologies. This
semantics should help the reader to understand how the results of ontology matching
have to be interpreted and what is expected from ontology matchers.



Chapter 3
Methodology

Ontology matching is an important operation in modern ontology engineering be-
cause of the heterogeneous environments in which ontologies are designed, devel-
oped and supposed to work. Methodologically, it is worthwhile to express relations
between ontologies since this allows for: (i) working with small and self-sufficient
modules, instead of monolithic ontologies, (ii) expressing the links between two ver-
sions of the same ontology, and thus, updating data from one ontology to another,
or (iii) putting back an ontology in the context of an upper-level ontology, allowing
it to become more consensual with other ontologies of that domain.

Hence, a methodology for ontology matching is required and needs to be sup-
ported for helping engineers to develop applications. Yet, at present, almost no sup-
port exists for such an activity at the methodological or at the tool level. Even in
the database field, where similar problems have been considered for years, there is
no consensus methodology on how database schema matching may be conducted.
The first edition of this book covered many facets of ontology matching, but not
explicitly a methodology for it. Very few works have focussed on matching method-
ology: (Mochol 2009) dedicated a whole doctoral thesis to the topic of matcher se-
lection; (Corcho 2005) considered more specifically the methodology for designing
an ontology translation method, including a matcher; (Euzenat et al. 2008a) is more
methodological, but not specifically focussed on the individual act of matching.

This chapter provides guidance for matching ontologies based on existing partial
guidelines and overall experience collected so far in the field. We will illustrate
this methodology through the fictitious example of a research library wanting to
improve its services to consumers by offering its catalog on the web and linking it
with other on-line resources, such as its national library or publisher data sources.
For that purpose, it will have to identify these external resources and find or establish
alignments between its own ontology (here the Bibliography ontology) and those of
the external resources.

In what follows, we provide methodological guidelines for ontology matching
following (Euzenat and Le Duc 2012). First, we consider the alignment life cycle,
from which we derive a methodological workflow (Sect. 3.1). Then, this methodol-
ogy is detailed in eight steps:

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_3,
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− define the characteristics of the concrete problem to solve (Sect. 3.2);
− find if available and suitable alignments exist for the given problem (Sect. 3.3);
− select or build a matcher if necessary (Sect. 3.4);
− run the matcher (Sect. 3.5);
− evaluate the obtained alignment (Sect. 3.6);
− improve it by reiterating the matching process (Sect. 3.7);
− document and share the satisfying alignment (Sect. 3.8); and finally
− process the alignment via a generator suitable for the given application task

(Sect. 3.9).

3.1 The Alignment Life Cycle

Contrary to ontology engineering, which is ultimately an open (design) activity,
ontology matching is an inductive task bounded by the ontologies to be matched.
Hence, a methodology for it can be more focussed.

We do not consider ontology matching as an independent activity. Instead, we
consider it as related to ontology management: when ontologies evolve, alignments
must follow this evolution as well. Moreover, ontology matching should be con-
sidered in a dynamic perspective in which the result of matching has its own life
cycle, which has to be maintained and evolved as well (Euzenat et al. 2008a). This
is illustrated in Fig. 3.1, which shows the alignment life cycle. It takes into account
the evolution of alignments as well as the importance of considering alignments as
first class objects, which can be shared. As such, alignments can be manipulated
to better suit the needs of users. We consider this ontology alignment life cycle and
further investigate the methodology for supporting it. This methodology emphasises
alignments as these are particularly useful in open environments (Suárez-Figueroa
et al. 2012).

Based on the time at which ontology matching is supposed to take place, two
different matching activities may occur. If ontology matching is supposed to occur at
design time, then its goal is to match two ontologies for either using it immediately
on static data or using it at run time under the form of a generated program, e.g.,
query mediator, message translator. In turn, if matching has to occur at run time,
then the goal of the activity is to generate a matching process that achieves the
results on-the-fly, for example, for composing semantic web services. In such a case,
ontologies to be matched are not known in advance. The distinction between run-
time and design-time ontology matching is important in practice because the output
of these two operations is different.

When ontology matching is performed at design time, only the resulting align-
ment is available at run time: no more matching is necessary. So, there is no run-time
constraint on matching. When it is performed at run time, no design-time alignment
is available. So, the goal of the designer is to design a matching process instead of
an alignment. In this case, run-time constraints (speed, memory) become important.
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Fig. 3.1 The ontology alignment life cycle (adapted from (Euzenat et al. 2008a)). Alignments
are first created through a matching process. Then they can go through an iterative loop of eval-
uation and enhancement. Evaluation consists of assessing properties of the obtained alignment.
Enhancement may be obtained through manual change of the alignment, or through application
of refinement procedures, e.g., selecting some correspondences by applying thresholds. When an
alignment is deemed worth publishing, then it can be stored and communicated to other parties
interested in such an alignment. Finally, the alignment can be exploited, e.g., transforming it into
another form or interpreted for performing actions, like mediation or merging. Most of the actions
of the life cycle may be performed either manually or automatically.

However, from the functional point of view, these two operations can also be seen
as the same since, in practice, they generate an ontology matching process, which is
executed at different moments. Hence, the methodology that we apply is the same
in both cases because it consists of choosing software components and procedures,
which are applied at different times.

Our methodological guidelines are summarised by the workflow of Fig. 3.2. Each
step of this workflow is described in the following subsections. The workflow ad-
dresses matching from a strictly technical perspective and it does not take into ac-
count all the needs, e.g., solution deployment, of an end-to-end service delivery.
Such issues as the integration of this workflow in work process or data privacy is-
sues are not addressed. It is assumed that these matters are dealt with independently.

3.2 Identifying Ontologies and Characterising Needs

The first task identifies the ontologies to be matched and characterises the need.
Indeed, the type of required alignment is different if the goal is to merge two
ontologies in a knowledge-based system or to add yet another data source to a
query mediator. In the former case, the alignment will have to be strictly correct—
otherwise the system may draw incorrect inferences—, but the relationships can be
diverse: subsumption and disjointness assertions may be useful. In the latter case,
lack of completeness is not a problem—because other sources may return the miss-
ing answers—, but relations other than equivalence are not straightforwardly used
in query mediation.

It is also useful to characterise the kind of ontologies: Are they labelled in the
same natural language? What is their expressiveness? Are they populated by avail-
able individuals?
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Fig. 3.2 The matching
methodology workflow. It
goes step-by-step through
characterising the problem,
selecting existing alignments,
selecting appropriate
matchers, running the
matchers, evaluating the
results and correcting the
choices made before
(matchers, parameters),
documenting and publishing
good results, and finally using
them.

Characterising the situation in which matching will be performed should not be
neglected. It will determine the choice of matchers or alignments as well as the
parameters to care for. From the discussion of Chap. 1, different requirements were
identified for different applications. These requirements concern:

− the type of available input a matching system can rely on, such as schema or
instance information. There are cases when data instances are not available, for
instance, due to security reasons (Clifton et al. 1997) or when there are no in-
stances given beforehand. Therefore, these applications mandate a matching so-
lution that can work without instances (here schema-based method).

− some specific behaviour of matching, such as requirements of (i) being auto-
matic, i.e., not relying on user feedback; (ii) being correct, i.e., not delivering in-
correct matches; (iii) being complete, i.e., delivering all the matches; and (iv) be-
ing performed at run time.

− the use of the resulting alignments as described above. In particular, how the
identified alignment is going to be processed, e.g., by merging the data or con-
ceptual models under consideration or by translating data instances among them.

Table 3.1 summarises what we found to be the most important requirements for
the matching operation in the applications considered in Chap. 1. This is obviously
a general approximation that must be adapted to each particular application.

Some of these hard requirements can be derived into comparative (or nonfunc-
tional) requirements, such as speed, resource consumption (in particular memory
requirements), degree of correctness or completeness. They are useful for compar-
ing solutions on a scale instead of an absolute (yes/no) comparison. Moreover, they
allow trading a requirement, e.g., completeness, for another more important one,
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Table 3.1 Summary of application requirements.
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Ontology evolution (Sect. 1.1)
√ √ √

transformation

Schema integration (Sect. 1.2)
√ √ √

merging

Catalogue integration (Sect. 1.2)
√ √ √

data translation

Data integration (Sect. 1.2)
√ √ √

query mediation

Linked data (Sect. 1.3)
√ √

data interlinking

P2P information sharing (Sect. 1.4)
√

query mediation

Web service composition (Sect. 1.5)
√ √ √

data mediation

Multiagent communication (Sect. 1.6)
√ √ √ √

data translation

Context matching in ambient computing (Sect. 1.6)
√ √ √

data translation

Semantic web browsing (Sect. 1.7)
√ √

navigation

Query answering (Sect. 1.7)
√ √ √

query reformulation

e.g., speed. These general requirements for applications will be used in Chap. 8
for assessing the capacity of matching systems to be applied to particular applica-
tions, in Chap. 9 for designing evaluation procedures related to applications, and in
Chap. 12 to classify the operations performed after matching.

Example 3.1 (Characterising matching needs) The requirements for the library ap-
plication are, on the one hand, to have alignments with other standard bibliographic
ontologies so that queries may be translated and data can be exported to these on-
tologies, and, on the other hand, to have an alignment with the web indexing on-
tology schema.org. Matching will be performed off-line, without time constraints.
The ontologies, having been developed independently and for different purposes,
are not expected to match exactly. Correct correspondences are expected, complete-
ness is secondary. More precisely, on the first type of ontology, correctness is very
important, but for schema.org completeness is more important. The types of oper-
ation to be performed with the resulting alignments are data export (for exposing
data as linked data and annotating web pages in RDFa) and query transformation
(for interrogating remote resources).

The source ontology is bibo (the Bibliography ontology). It offers a comprehen-
sive description of publications and documents of various origins, featuring classes
such as Magazine, Interview, LegalDocument together with Thesis. In turn, Schema.org
is an ontology designed for annotating web pages, so that web search engines are
aware of their content. It is thus a very general ontology not specific to the domain.

In such a setting, Watson (d’Aquin and Motta 2011) and LOV1 (Linked Open
Vocabularies) allow for finding further ontologies that may be useful. These are (see
Table 3.2):

1http://lov.okfn.org.

http://lov.okfn.org
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− bibtex: an ontology defined from the BibTeX tool that expresses bibliographies
used in scientific articles,

− frbr (Functional Requirements for Bibliographic Records): an ontology designed
by the International Federation of Library Associations, which is widely used in
linked data produced by national libraries. It redefines the Dublin core annota-
tions,

− biblio: another citation-oriented bibliographic ontology that was derived from
bibo, and so can be expected to share many common concepts with it.

Other ontologies are available, such as upper-level ontologies or the bibliographic
ontologies used in the Ontology Alignment Evaluation Initiative (OAEI) campaigns
(Sect. 9.1.3).

A quick study of these ontologies reveals the following characteristics:

Table 3.2 Characteristics of the considered ontologies.

Ontology URL Lang. Form. Classes Relations Properties

bibo http://purl.org/ontology/bibo/ OWL en 69 51 55

schema.org http://schema.org/ OWL en 295 113 69

bibtex OWL en 13 5 27

biblio http://purl.org/net/biblio OWL en 57 1 0

frbr http://purl.org/vocab/frbr/core OWL en 73 52 6

The ontologies to be matched are all in OWL and written in English. Beside the
bibtex ontology, which is smaller, and schema.org, which is larger, these ontolo-
gies have a comparable size and structure (they define very few properties). It will
be necessary to use matchers able to handle such characteristics, and multilingual
matchers are not mandated.

The type of mismatch between these ontologies is expected to be different:
schema.org is a broad general-purpose ontology, so matches are rather expected at
the higher level of ontologies. On the contrary, bibtex is rather small and focussed,
so only a part of the information may overlap.

3.3 Retrieving Existing Alignments

Retrieving existing alignments which satisfy the need of the application is the sec-
ond step. Alignments can be found on the web or through specialised directories.
Reusing existing alignments should be privileged because of the cost of generating
such alignments and their presumably good quality. For that purpose, the sharing
step (see Sect. 3.8) prepares alignment retrieving.

http://purl.org/ontology/bibo/
http://schema.org/
http://purl.org/net/biblio
http://purl.org/vocab/frbr/core
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Ideally, alignments should come with annotations characterising their level of
trustworthiness, the purpose for which they were built and the type of relations they
use.

These alignments must concern the ontologies to be matched and have to satisfy
the alignment constraints established in Sect. 3.2. In particular, correctness and com-
pleteness are criteria to use for selecting among various alignments. These criteria
may be assessed manually, on a sample, or can be inferred through the properties of
their generation methods. In particular, metadata attached to such alignments may
reveal the method used for matching the ontologies (in particular, if these are auto-
matic or manually generated alignments); they can cover manual assessments about
the alignment (people publishing them can annotate the alignments to tell what they
are good for); or they may contain indications of their intended use which can be
matched with that of the current situation. Alignment metadata is discussed in detail
in Sects. 3.8 and 10.2.

In practice, selecting an alignment requires:

− finding alignment repositories;
− retrieving the alignments between the ontologies to be matched;
− assessing the capacity of these alignments to address the needs previously iden-

tified, based either on metadata, or on the content of the alignments;
− choosing one alignment based on the assessment.

If apparently suitable alignments are available, users may directly move to the
validation step (Sect. 3.6). Otherwise, it is necessary to create a new alignment from
the ontologies, as explained in Sect. 3.4.

Example 3.2 (Retrieving existing alignments) Retrieving available alignments can
be achieved by using an alignment server (Sect. 12.7). In the present case, many
alignments to bibliographic ontologies can be found due to OAEI (Sect. 9.1.3), but
none to the ontologies of interest. Querying LOV reveals that there exists one single
link between these ontologies that may be interpreted as a correspondence:

〈biblio:Person, frbr:Person, owl:sameAs〉
It will thus be necessary to match these ontologies.

3.4 Selecting and Composing a Matcher

In order to build a new alignment, a suitable matcher has to be found. Many match-
ing systems have been developed over the years. Users can choose among those pre-
sented in Chap. 8. They provide different results depending on the different types of
data sets and matching contexts. Hence, the criteria elicited in the characterisation
phase (Sect. 3.2) are also used for selecting the most appropriate matcher. There
have been a few studies about how to choose a matcher depending on the character-
istics of the ontologies and those of the expected alignments. (Euzenat et al. 2006)
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provides a simple method for weighting matcher capabilities (speed, automaticity,
precision, and recall as measured in matcher evaluations) against the application re-
quirements defined as the answers to the questions of Sect. 3.2. The work of (Mochol
2009) uses a deep classification of matchers and the matching context in order to as-
sess which matcher will be more adapted to a particular context. This assessment is
made using the Analytic Hierarchy Process (AHP), which guides the decision pro-
cess of choosing a matcher. It can work in automatic or manual mode. The OntoMas
system (Huza et al. 2006) has been developed for helping and teaching how to carry
out matching. For choosing a matcher, it processes a set of symbolic rules over a
classification of tools and a characterisation of tasks.

The problem of such methods is that they require extensive information about
available matchers, which is not always available, nor always accurate, when the
assessment comes from matcher developers. An important source of information is
the result of the various evaluation campaigns that have been run, most notably the
OAEI campaigns (Sect. 9.1.3). They have evaluated many matchers in a variety of
situations. Such results can be taken into account when choosing a matcher.

In practice, choosing a matcher can be achieved by:

− finding available matchers;
− assessing their capacity to generate alignments that fill the identified require-

ments, by reading their documentation or comparing their performances on sim-
ilar tasks within evaluations;

− choosing one matcher based on this assessment.

It is possible to select several matchers and to compose them as a single matcher
(Sect. 7.2). However, this is not the goal of this methodology to build a matcher. This
book should serve this purpose. Other works try to automate this step, or the selec-
tion of matcher parameters (Sect. 7.6); they can be exploited in run-time matching
processes.

Example 3.3 (Selecting a matcher) Users then proceed by selecting a matcher
suited for matching these ontologies. In this case, given that ontologies are about
a very close domain, and that they are written in the same natural language, users
can select simple matchers based on string comparisons, such as a simple use of
WordNet, to match terms from linguistic cues.

If this does not work sufficiently well, there are many more elaborate matchers
available (see Chap. 8); the best way is to try them and to see the results (see Ex-
ample 3.4). We will consider matchers that may be used easily, such as AROMA,
which looks for association rules between concepts before extracting an alignment
between them (Sect. 8.3.14) or LogMap, which interpret ontologies semantically
(Sect. 8.3.26), and which had good results in the OAEI 2012 campaign (Aguirre
et al. 2012).

Instead of merely composing a matcher, it is possible to learn how to match
(Sect. 7.5). The methodology is then slightly derogatory from that of Fig. 3.2; it
proceeds to:
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− select a sample of the ontologies to match and decide what is the expected align-
ment between the entities of this sample;

− train a machine learning algorithm on this sample;
− run the resulting matcher on the full ontologies.

3.5 Matching Ontologies

The next step consists of running the selected matchers against the ontologies and
collecting the resulting alignment. It may seem like the simplest step, methodologi-
cally speaking, because matchers have been designed exactly for this purpose.

However, users should not hesitate to run the matcher several times or to run sev-
eral matchers, trying different sets of parameters and different thresholds. It is also
useful to process matching incrementally, by curating the returned alignment and
feeding it again to the matcher for improving the results. In fact, all the procedures
that can be applied at the enhancing phase (Sect. 3.7) can also be directly applied
during the matching phase without any prior evaluation. Hence, this step can be
further decomposed into a more complex subworkflow (see Fig. 3.3). Section 3.7
provides some refinements of the matching workflow.

Fig. 3.3 The subworkflow of fine-tuning matchers (all tasks but Matching are optional). After
matching, it is possible to apply automatically some alignment manipulation that trims the align-
ment under a threshold, checks and restores the consistency of an alignment or composes the align-
ment with another alignment. The result of these manipulations can be fed back as input to the
Matching operation or can be the final result of the workflow. Alternatively, it is possible to modify
the parameters of the matcher and to run it again. These operations can be triggered manually or
automatically.

Example 3.4 (Matching ontologies) The simple StringDistAlignment method with
different string distances is run and results are displayed in Table 3.3.

First a string equality comparison is processed for identifying entities bearing
the same name. The correspondences between bibo:Map and schema:Map or be-
tween bibo:editor and bibtex:editor, for instance, are correct. As expected, there are
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Table 3.3 Overview on the matched entities. In parentheses are indicated the numbers of addi-
tional matches compared with the bibo ontology depending on matching method and threshold.
The horizontal line separates simple matchers and more elaborate ones. * means that the system
reported parsing errors.

Method Threshold schema biblio bibtex frbr

String equality 1. 9 30 8 6

Levenshtein .9 10 (+1) 30 (+0) 8 (+0) 6 (+0)

– .8 10 (+1) 30 (+0) 11 (+3) 7 (+1)

SMOA .9 21 (+12) 35 (+5) 16 (+8) 7 (+1)

– .95 11 (+2) 31 (+1) 11 (+3) 6 (+0)

WordNet .9 17 (+8) 39 (+9) 15 (+7) 13 (+7)

– .95 13 (+4) 37 (+7) 13 (+5) 11 (+5)

AROMA – 27 0∗ 1∗ 7

LogMap – 8 56 3 12

more correspondences with biblio than with any other ontology, including the larger
schema.org.

For finding more matches, three slightly more complex methods were used: the
Levenshtein measure (edit distance, Sect. 5.2.1), the SMOA measure, which tries
to better interpret the way people label things, e.g., by using syntactic variations
(Sect. 5.2.1), and a WordNet-based measure, which depends on the number of
synsets that terms have in common (Sect. 5.2.2). All three methods were first run
with a threshold of .9. As can be seen, Levenshtein tends to return very few addi-
tional matches, while SMOA and WordNet return too many of them, e.g., matching
bibo:Image to frbr:Person. Hence thresholds have been adapted to .8 for the former
and .95 for the latter.

3.6 Evaluating Alignments

Once an alignment has been obtained, it is necessary to perform screening and val-
idation. Evaluation can be applied on alignments that have been retrieved as well
(Sect. 3.3). This task corresponds to the evaluation task of Fig. 3.1. We consider
here what is specific to alignment evaluation during the matching activity. The evalu-
ate/enhance loop in Fig. 3.2 corresponds to the feedback after evaluation in Fig. 3.1.

Evaluation consists of assessing properties of the obtained alignment. It can be
performed either manually or automatically. Manual evaluation can be achieved by
running a dry test of the final application or by asking an independent expert to
assess the quality of the alignment and perform some manual assessment. For that
purpose, graphical tools which allow users to navigate quickly both in the alignment
and in the ontologies are invaluable (see Sect. 11.4).
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An often overlooked functionality of matching algorithms is their ability to ex-
plain the provided alignments (Sect. 11.3). Explanations may be obtained by inter-
acting with the matcher or by accessing metadata about a stored alignment.

Automated quantitative evaluation can be performed by using techniques for
evaluating alignments presented in Chap. 9. These require extracting samples from
the results and computing measures like precision and recall, which would provide
an approximation of correctness and completeness. (Tordai 2012) came up with a
methodology similar to this and insisted on sampling and evaluating partial results,
e.g., across matchers, in order to improve the process.

There is no definitive answer as to what is a good result for evaluation. The eval-
uation must be performed so as to assess evaluation criteria. The characterisation of
the problem (Sect. 3.2) aims at defining such success criteria. For some applications
high recall is required, while for some others recall is not important. Moreover, the
meaning of ‘high’ is not the same for all applications: a critical application which
can break if some correspondences are missing will require 100 % recall, while a
non-critical application may be satisfied with 80 %.

If the evaluation results are positive, i.e., the alignment satisfies these success
criteria, then the obtained alignment can go through the next step, namely of storing
and sharing (Sect. 3.8); otherwise, the alignment can be improved (Sect. 3.7) before
being input to same or another matcher with the same or different parameters.

Example 3.5 (Evaluating alignments) There is no automatic way to evaluate the
results of Example 3.4. They have to be manually looked into by users to assess
their quality (they can be displayed by alignment editors).

Concerning the bibliographic ontologies, it is easy to first evaluate the matching
of entities with the same name and then to further scrutinise those which are new
using a diff tool. Using common evaluation measures, such as precision and re-
call, with respect to the result given by string equality can help in detecting if the
alignment preserves the known correct correspondences provided by string equality.

Considering the matching with frbr, the purely string-based methods (Leven-
shtein, SMOA) are not very good. They preserve the correct correspondences
found by string equality, but return very few additional correspondences. Such
additional correspondences are 〈bibo:translation, frbr:translator,=〉 (Levenshtein) and
〈bibo:Workshop, frbr:Work,=〉 (SMOA), which are both incorrect. The WordNet-
based method is more accurate in this case: it finds relations between bibo:section

and frbr:part, which is clearly correct, and bibo:content and frbr:subject, which requires
discussion. However, further lowering the threshold for this matcher provides incor-
rect matches, such as between bibo:Person and frbr:Image.

These very few additional correspondences suggest trying more elaborate tech-
niques. Unfortunately, their performances are not better than those of the WordNet-
based matcher: AROMA finds a relation between bibo:Article and frbr:ScholarlyWork,
which is correct, as well as an incorrect one between bibo:Report and frbr:Event.
LogMap does not do better: its high number of correspondences is due to that, con-
trary to the other matchers, it matches entities from external ontologies (thus finding
that foaf:Person is equivalent to itself).
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These results are not as bad as they may seem. In fact, frbr is a very abstract
ontology and bibo is a very concrete one. Moreover, they already share many com-
mon entities specified in the Dublin core ontology. Hence, they do not share much
more than what has been identified. This is different for the very close bibo and
biblio leading to a higher number of matches. In this case, on top of the 30 literal
matches, the WordNet-based method is able to find relations between bibo:Thesis and
frbr:Dissertation or between bibo:Image and frbr:Figure.

3.7 Enhancing Alignments

Enhancement can be obtained either through manual modifications of the alignment,
e.g., with the help of an alignment editor (Sect. 11.4), or through the application of
refinement procedures, e.g., selecting correspondences by applying thresholds. This
enhancing task can lead to:

− the selection of another matcher, as in Fig. 3.2, by going back to Sect. 3.4;
− the selection of another set of parameters to use with the same matcher, as in

Fig. 3.3 (see Sect. 7.6); or
− the manipulation of the alignment through trimming under a particular threshold

or combining several alignments, as in Fig. 3.3.

Among these procedures, the most straightforward one consists of trimming the
alignment under some thresholds. There are many different ways to apply auto-
matic thresholds (Sect. 7.7.1). Double thresholding (Lambrix and Liu 2009) uses
two thresholds: above the upper threshold, correspondences are selected; under the
lower threshold, they are discarded and the remaining correspondences are brought
to the attention of users.

Consistency may also be restored when the resulting alignment has been found
inconsistent in the evaluation (Sect. 3.6). By consistency checking, we do not
necessarily mean logical consistency checking, but rather any violation of spe-
cific constraints on alignments (see Sect. 7.8). Enhancing may then consist of se-
lecting a subset of the correspondences in an alignment which satisfies the con-
straints.

Alignments obtained from various sources, such as other matchers or alignment
libraries, may be composed into a single alignment through various operators: com-
position, meet, join, union.

Example 3.6 (Enhancing alignments) Enhancement can be achieved by two means:
either by manual editing of the resulting alignment or by running a new matcher,
using new parameters or applying different thresholds to the results. The lat-
ter is what has been done by using different thresholds and by testing the more
elaborate matchers, i.e., starting from Example 3.3. Both means can be inter-
leaved: it is possible to edit an alignment and to use it as further input for a
matcher.
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Once this is achieved, picking up the few additional correct correspondences
found by various matchers would likely provide a reasonably complete align-
ment. In principle, the resulting alignment can be checked for consistency. How-
ever, the ontologies are not expressive enough for finding inconsistency. Disam-
biguation may be applied since it would force dropping unwanted correspon-
dences, e.g., bibo:Image to frbr:Person, because bibo:Image is already matched to
frbr:Image.

3.8 Storing and Sharing

The process does not end once an alignment is deemed usable. The next step is
to save and share it in a declarative format and to give it proper annotations to
record its provenance and purpose. This step is very often overlooked, but it is vital
if one wants to retrieve alignments in the corresponding step (Sect. 3.3): carefully
annotating alignments will help others to reuse them. This task corresponds to the
communication task of Fig. 3.1 and the dotted arrow in Fig. 3.2 corresponds to the
availability of stored alignments after communication.

Storing an alignment requires some type of persistent storage. This is usually
achieved through the use of a database management system, but a web site based
on a file system may be sufficient as well. However, alignments must be properly
indexed so that they can be retrieved, if necessary, on various characteristics (one
ontology, pairs of ontologies, arity, etc.). Indexing may be direct, through URIs
identifying alignments, or indirect, through queries looking for alignments based on
their metadata. In general, it is preferable that both access modes be available. Fi-
nally, these alignments may be shared by interested communities. For that purpose,
they should be accessible on the web. There are several systems supporting sharing
alignments on the web (see Sect. 12.7).

Example 3.7 (Sharing alignments) Once an alignment of sufficient quality is estab-
lished, especially if it has been curated by hand, it must be better documented, for
instance by adding metadata explaining how it has been obtained, who has curated
it and what is the confidence reached in each correspondence (see Sect. 10.2). In our
example, relevant metadata can be as follows:

dc:creator Your name here (ACME Library)
dc:date 2013-04-12
dc:rights http://creativecommons.org/licenses/by/3.0/
align:method Manually assembled (JWNL confidence)
omwg:purpose Data export and query mediation
align:properties Checked for correctness

Then, it can be uploaded to an Alignment server so that it be visible to other
people (see the previous step of Sect. 3.3).

http://creativecommons.org/licenses/by/3.0/
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3.9 Rendering and Processing Alignments

Finally, the alignment is transformed into another form or interpreted for performing
actions like mediation or merging (see Chap. 12).

This task corresponds to the exploitation activity of Fig. 3.1. It is the natural out-
come of matching. The exploitation of the alignment may be denoted by a different
activity name, e.g., ontology merging or query transformation, taking directly the
alignment as input. However, it may happen that ontology matching is considered
as an activity in itself. In this case it will deliver its output in an appropriate format
for another task. This is what is called ‘rendering’.

Rendering may deliver the alignment, as such, in RDF. It could then be later pro-
cessed by an interpreter such as a query mediator. But it also can be transformed, as
discussed in Sect. 10.1, into OWL axioms, SKOS relations or sets of owl:sameAs
statements.

The dotted arrow in Fig. 3.1 expresses the feedback after using the alignment
which may contribute enhancing it.

Example 3.8 (Rendering and processing alignments) The bibliographic descrip-
tions stored in the local library will be exploited in various ways, such as being
offered to third parties as linked data and being accessible through SPARQL query-
ing.

On the one hand, they can be exported as HTML pages that provide seman-
tic annotations. The information in descriptions will be rendered in RDF using the
schema.org ontology and the resulting RDF will be embedded in the web pages
through RDFa. This may be achieved either by generating an XSLT transformation
applying to the data expressed in XML or by generating a query mediator for the
database which poses the query with respect to bibo and constructs a resulting RDF
graph with respect to schema.org according to the alignment.

On the other hand, if the library customers, or the applications they use, query the
library database in SPARQL with respect to the bibo ontology, it is possible to give
them access to data sources expressed in the other ontologies with respect to which
bibo is matched. To that extent, mediators are generated that take a query expressed
with respect to bibo, and transform it into a query in the other ontologies that can be
submitted to remote SPARQL endpoints.

3.10 Summary

We think that methodological guidelines are more useful and better accepted if they
are supported by tools, rather than delivered as rules to be applied. So far, existing
support is available in the alignment manipulation part rather than the requirement
analysis part. Some supporting systems are presented in Chap. 10.

Establishing relations between ontology entities is part of modern ontology en-
gineering and an important task for engineering networks of ontologies (Suárez-
Figueroa et al. 2012). This task remains difficult though there are many solutions
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for carrying it out. We proposed methodological guidelines for ontology matching,
which are integrated with the alignment life cycle and can cooperate with ontology
engineering methodologies. In particular, we paid special attention to alignment
sharing and reuse. This methodology is based on research on particular subtasks:
some of these have been investigated in depth and others in less detail. Similarly,
some tools cover parts of this methodology but none is able to support it entirely.

Hence, more work is necessary to achieve a fully instrumented ontology match-
ing methodological support, and no doubt this will raise some demands for improve-
ment in the proposed methodology.



Part II
Ontology Matching Techniques



Chapter 4
Classifications of Ontology Matching Techniques

Having defined what the matching problem and the process for solving it are, and
before scrutinising further the details of matching techniques, we classify them from
different standpoints. This should help better understanding these systems.

The major contributions of the previous decades are presented in (Larson et al.
1989; Batini et al. 1986; Kashyap and Sheth 1996; Parent and Spaccapietra 1998).
Later, the topic has been surveyed in (Rahm and Bernstein 2001; Wache et al. 2001;
Kalfoglou and Schorlemmer 2003b). The topic was also treated in the context of
data integration or ontology change (Choi et al. 2006; Flouris et al. 2008; Bellah-
sene et al. 2011; Doan et al. 2012). These addressed the matching problem from
different perspectives (artificial intelligence, information systems, databases) and
analysed disjoint sets of systems. (Shvaiko and Euzenat 2005) considered the above
mentioned works together, focussing on schema-based matching methods, and aim-
ing to provide a common conceptual basis for their analysis. Here, we follow and
extend this work on classifying matching approaches.

In this chapter, we first consider various dimensions along which a classification
may be designed (Sect. 4.1). We then present our classification based on several
of these dimensions (Sect. 4.2) and the classes of matching techniques (Sect. 4.3).
Finally, we discuss some alternative classifications of matching approaches that have
been proposed so far (Sect. 4.4).

4.1 Matching Dimensions

There are many independent dimensions along which algorithms may be classified.
Following the definition of the matching process in Fig. 2.8, we may primarily clas-
sify algorithms according to (i) the input of the algorithms, (ii) the characteristics
of the matching process, and (iii) the output of the algorithms. The other charac-
teristics, such as parameters, resources, and input alignments, are considered less
important. Let us discuss these three main aspects in turn.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_4,
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4.1.1 Input Dimensions

These dimensions concern the kind of input on which algorithms operate. As a
first dimension, algorithms can be classified depending on the data or concep-
tual models in which ontologies are expressed. For example, the Artemis system
(Sect. 8.1.6) supports the relational, object-oriented, and entity–relationship mod-
els; Cupid (Sect. 8.1.11) supports XML and relational models; QOM (Sect. 8.3.3)
supports RDF and OWL models. A second possible dimension depends on the kind
of data that the algorithms exploit: different approaches exploit different information
in the input ontologies. Some of them rely only on schema-level information, e.g.,
Cupid (Sect. 8.1.11), COMA (Sect. 8.1.12); others rely only on instance data, e.g.,
GLUE (Sect. 8.2.5); and others exploit both schema- and instance-level information,
e.g., QOM (Sect. 8.3.3). Even with the same data models, matching systems do not
always use all available constructs, e.g., S-Match (Sect. 8.1.18), when dealing with
attributes, discards information about data types and uses only the attributes names.
Some algorithms focus on the labels assigned to the entities, some consider their
internal structure and the types of their attributes, and others consider their relations
with other entities (see next section for details).

More generally, we can consider the information origin as a dimension, on which
matching is based: this information can come directly from the content of the on-
tologies to be matched or from relations between the ontologies and other external
resources, called context. Hence, this origin dimension can be split into internal or
content-based matching and external or context-based matching. External resources
can be formal, such as other ontologies, or informal, such as a collection of pictures
annotated by the ontology or a thesaurus describing the terms used in the ontology.
Relations with such external resources can be explicit, e.g., there is already an align-
ment with an external ontology or links to pictures, or implicit, i.e., such relations
have to be established.

4.1.2 Process Dimensions

A classification of the matching process could be based on its general properties,
as soon as we restrict ourselves to formal algorithms. In particular, it depends on
the approximate or exact nature of its computation. Exact algorithms compute the
precise solution to a problem; approximate algorithms sacrifice exactness for per-
formance (Ehrig and Sure 2004). All of the techniques discussed in the remainder
of the book can be either approximate or exact. Another dimension for analysing
matching algorithms is based on the way they interpret the input data. We identify
two categories depending on whether the matcher considers the input intrinsically
or through some semantic theory of the considered entities. We call these categories:
syntactic vs. semantic and discuss them in detail in the next section.
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4.1.3 Output Dimensions

Apart from the information that matching systems exploit and how they manipulate
it, the other important class of dimensions concerns the form of the result that these
systems produce. The form of the alignment might be of importance: is it a one-to-
one alignment between the ontology entities? Has it to be a final correspondence?
Is any relation suitable?

Some other significant distinctions in the output results have been indicated in
(Giunchiglia and Shvaiko 2003). One dimension concerns whether systems de-
liver a graded answer, e.g., that the correspondence holds with 98 % confidence
or 4/5 probability, or an all-or-nothing answer, e.g., that the correspondence defi-
nitely holds or not. In some approaches, correspondences between ontology entities
are determined using distance measures. This is used for providing an alignment ex-
pressing equivalence between these entities. Another dimension concerns the kind
of relations between entities a system can provide. Most of the systems focus on
equivalence (=), while a few others are able to provide a more expressive result, e.g.,
equivalence, subsumption (≤), and incompatibility (⊥) (Giunchiglia et al. 2004;
Bouquet et al. 2003b; Hamdi et al. 2010b; Spiliopoulos et al. 2010).

In the next section, we present a classification of techniques that draws simulta-
neously on these criteria.

4.2 Classification of Matching Approaches

4.2.1 Methodology

To ground and ensure a comprehensive coverage for our classification we have anal-
ysed state-of-the-art approaches used for ontology matching. Chapter 8 reports a
partial list of systems which have been scrutinised pointing to (some of) the most
important contributions. We have used the following guidelines for building our
classification:

Exhaustivity: The extension of categories dividing a particular category must cover
its extension, i.e., their aggregation should give the complete extension of the cat-
egory.

Disjointness: In order to have a proper tree, the categories dividing one category
should be pairwise disjoint by construction.

Homogeneity: In addition, the criteria used for further dividing one category
should be of the same nature, i.e., should come from the same dimension intro-
duced in Sect. 4.1. This usually helps guarantee disjointness.

Saturation: Classes of concrete matching techniques should be as specific and dis-
criminative as possible in order to provide a fine-grained distinction between pos-
sible alternatives. These classes have been identified following a saturation prin-
ciple: they have been added and modified until saturation was reached, i.e., taking
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into account new techniques did not require introducing new classes or modifying
them.

Disjointness and exhaustivity of the categories ensure the stability of the clas-
sification, namely that new techniques will not occur in between two categories.
Categories of matching approaches represent the state of the art. Obviously, with
appearance of new techniques, they might be extended and further detailed.

The exact vs. approximate opposition has not been used because each of the
methods described below can be implemented as exact or approximate algorithms,
depending on the goals of the matching system.

We build on the previous work on classifying automated schema matching ap-
proaches of (Rahm and Bernstein 2001) which distinguishes between elementary
(individual) matchers and composition of matchers. Elementary matchers comprise
instance- and schema-based, element- and structure-level, linguistic and constraint-
based matching techniques. Cardinality and auxiliary information, e.g., thesauri,
global schemas, can also be taken into account.

For classifying matching techniques, we introduced two synthetic classifications
in (Shvaiko and Euzenat 2005), based on what we have found to be the most salient
properties of the matching dimensions. These two classifications are represented by
two trees sharing their leaves. The leaves represent classes of matching techniques
and their concrete examples. In this edition of this book, we revised this classifica-
tion based on the evolution of the state of the art, in particular the development of
new approaches, which have changed the balance with respect to the classification
of the first edition, e.g., context-based matching. These two revised and updated
synthetic classifications are (see Fig. 4.1):

− Granularity/Input interpretation classification based (i) on the matcher granular-
ity, i.e., element- or structure-level, and then (ii) on how the techniques generally
interpret the input information (Sect. 4.2.2),

− Origin/Kind of input classification based (i) on the origin of the information con-
sidered by the matcher, and (ii) on the kind of input taken into account by match-
ing techniques (Sect. 4.2.3).

The overall classification of Fig. 4.1 can be read both in descending (focussing
on how the techniques interpret the input information) and ascending (focussing on
the origin of matching clues before their interpretation) manner in order to reach
the layer of Concrete techniques. It is designed in a way that offers a planar graph
layout.

4.2.2 Granularity/Input Interpretation Layer

Matchers are distinguished by the Granularity/Input interpretation layer according
to the following classification criteria:

− Element-level vs. structure-level: Element-level matching techniques compute
correspondences by analysing entities or instances of those entities in isolation,
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ignoring their relations with other entities or their instances. Structure-level tech-
niques compute correspondences by analysing how entities or their instances ap-
pear together in a structure. This criterion for schema-based approaches is the
same as first introduced in (Rahm and Bernstein 2001), while the element-level
vs. structure-level separation for instance-based approaches follows the work in
(Kang and Naughton 2003).

− Syntactic vs. semantic: The key characteristic of the syntactic techniques is that
they interpret the input with regard to its sole structure following some clearly
stated algorithm. Semantic techniques use some formal semantics, e.g., model-
theoretic semantics, to interpret the input and justify their results. In case of a
semantic-based matching system, exact algorithms are complete with regard to
the semantics, i.e., they guarantee a discovery of all the possible alignments,
while approximate algorithms tend to be incomplete.

To emphasise the differences with the initial classification of (Rahm and Bern-
stein 2001), the new categories or classes are marked in bold. In particular, in the
Granularity/Input Interpretation layer we detail further the element- and structure-
level matching by introducing the syntactic vs. semantic distinction.

4.2.3 Origin/Kind of Input Layer

The Origin/Kind of input takes the origin dimension as its first level of separation,
and the type of input considered by a particular technique as the second level:

− The first level is simply the content-based vs. context-based or internal vs. exter-
nal distinction of the Origin dimension (Sect. 4.1.1).

− The second level refines these categories by distinguishing among external re-
sources, those which are interpreted semantically, and those which are not,
named syntactic. The content-based matching category is further articulated de-
pending on which kind of data the algorithms work on strings (terminological),
structures (structural), models (semantics) or data instances (extensional). The
first two are found in the ontology descriptions. The third one requires some se-
mantic interpretation of the ontology and usually uses some semantically com-
pliant reasoner to deduce correspondences. The last one works on the actual pop-
ulation of an ontology. In turn, context-based matching is only further articulated
into syntactic and semantic categories. Syntactic techniques, when considered el-
ementary, are usually either terminological or structural or extensional; hence,
the informal resource-based approaches could have been split in this three-fold
way as well. However, such techniques have not been widely applied in prac-
tice so far, so we kept the presentation simpler, thus having only the syntactic
category.

Hence, it can be considered that the Kind of input classification of the first edition
was reduced to its first layer and that the content-based vs. context-based separation
of the origin dimension was introduced on top. This follows the development of
context-based matching in recent years.
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4.3 Classes of Concrete Techniques

The distinctions between matching techniques in the Concrete techniques layer of
our classification are motivated by the way in which techniques interpret the in-
put information in each concrete case. In particular, a label can be interpreted as
a string (a sequence of letters from an alphabet) or as a word or a phrase in some
natural language, a hierarchy can be considered as a graph (a set of nodes related
by edges) or a taxonomy (a set of concepts having a set-theoretic interpretation
organised by a relation which preserves inclusion). Thus, we introduce the fol-
lowing classes of ontology matching techniques at the element-level: string-based,
language-based, constraint-based. We also identify techniques relying on external
resources related in one way or another to the ontologies to be matched. These tech-
niques can be based on informal resources, such as text or media corpora, or formal
resources, such as ontologies. At the structure-level we distinguish between graph-
based, taxonomy-based, model-based, and instance-based techniques.

We discuss below the main classes of the Concrete techniques layer according
to the above classification in more detail. Contrary to the first edition, all these
classes have instances, so none of these classes are hypothetical (the hypothetical
classes of the first edition have already been realised in practice). Finally, several
changes have been made in this layer due to the narrowness or low representa-
tivity of some classes, namely Alignment reuse and Repository of structures are
not explicitly present in Fig. 4.1 and should be considered as merged into Formal
resource-based and Graph-based classes, respectively.

4.3.1 Element-Level Techniques

Element-level techniques consider ontology entities or their instances in isolation
from their relations with other entities or their instances.

String-Based Techniques

String-based techniques are often used in order to match names and name descrip-
tions of ontology entities. These techniques consider strings as sequences of let-
ters in an alphabet. They are typically based on the following intuition: the more
similar the strings, the more likely they are to denote the same concepts. Usually,
distance functions map a pair of strings to a real number, such that a smaller value
indicates a greater similarity between the strings. Some examples of string-based
techniques that are extensively used in matching systems are prefix, suffix, edit dis-
tances, and n-gram similarity. Various such string comparison techniques are pre-
sented in Sect. 5.2.1.
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Language-Based Techniques

Language-based techniques consider names as words in some natural language, e.g.,
English. They are based on natural language processing techniques exploiting mor-
phological properties of the input words. Several of these techniques are presented
in Sect. 5.2.2 (intrinsic techniques).

Usually, they are applied to names of entities before running string-based or
lexicon-based techniques in order to improve their results. However, we consider
these language-based techniques as a separate class of matching techniques since
they can be naturally extended, for example, in a distance computation (by compar-
ing the resulting strings or sets of strings).

This class now encompasses the Linguistic resources class of the first edition,
which covered the use of linguistic resources, such as lexicons or domain-specific
thesauri, to match words (in this case names of ontology entities are considered
as words of a natural language) based on linguistic relations between them, e.g.,
synonyms, hyponyms. Several such methods are presented in Sect. 5.2.2 (extrinsic
techniques). Resources, such as thesauri and lexicons, may also be used as ‘ontolo-
gies’ instead of linguistic resources, i.e., used to interpret concepts instead of terms.
In this case, these same resources occur in Informal resource-based techniques.

Constraint-Based Techniques

Constraint-based techniques are algorithms that deal with the internal constraints
being applied to the definitions of entities, such as types, cardinality (or multiplicity)
of attributes, and keys. These techniques are presented in Sect. 5.3.

Informal Resource-Based Techniques

Ontologies may be tied to informal resources, e.g., annotating encyclopedia pages
or pictures. Informal resource-based techniques cover techniques used for deducing
relations between ontology entities based on how these are related to such resources.
Typically, two classes annotating the same set of pictures can be considered equiv-
alent. Such techniques often exploit data analysis and statistical approaches as well
as approaches which take advantage of a (hopefully large) corpus of related entities
to find regularities and discrepancies between them. This class of techniques covers
part of the Data analysis and statistics techniques class of the first edition dealing
with extensions (instance-based matching).

Formal Resource-Based Techniques

Formal resource-based techniques take advantage of external ontologies in order
to perform matching. Usually, they compose alignments between the ontologies to
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be matched originating from one or several external ontologies. Several context-
based ontology matchers using formal resources have been proposed in recent years,
by using domain-specific ontologies, upper-level ontologies, linked data and other
resources. This class of techniques covers and generalises both the Upper-level and
domain-specific formal ontologies and Alignment reuse classes of the first edition
of this book. Both classes focussed on different aspects of formal resource-based
techniques, namely on the kind of ontologies or on the type of alignments used as
external resources. A general framework for dealing with external resource-based
matching, and in particular with formal resources, is detailed in Sect. 7.3.

4.3.2 Structure-Level Techniques

Contrary to element-level techniques, structure-level techniques consider the ontol-
ogy entities or their instances to compare their relations with other entities or their
instances.

Graph-Based Techniques

Graph-based techniques are graph algorithms which consider the input ontologies
(including database schemas, and taxonomies) as labelled graphs.

Usually, the similarity comparison between a pair of nodes from the two on-
tologies is based on the analysis of their positions within the graphs. The intuition
behind this is that, if two nodes from two ontologies are similar, their neighbours
must also be somehow similar. Different graph-based techniques are described in
Sect. 6.1. Along with purely graph-based techniques, there are other more specific
structure-based techniques, for instance, involving trees. Graph-based techniques
cover the Repository of structure class of the first edition, which is now considered
as part of pattern-based matching (Sect. 6.1.4).

Taxonomy-Based Techniques

Taxonomy-based techniques are also graph algorithms which consider only the spe-
cialisation relation. The intuition behind taxonomic techniques is that specialisation
connect terms that are already similar (being interpreted as a subset or superset of
each other), therefore their neighbours may be also somehow similar. This intuition
can be exploited in several different ways presented in Sect. 6.1.

Model-Based Techniques

Model-based (or semantically grounded) algorithms handle the input based on its
semantic interpretation, e.g., model-theoretic semantics. The intuition is that if two
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entities are the same, then they share the same interpretations. Thus, they are well
grounded deductive methods. Examples are propositional satisfiability and descrip-
tion logics reasoning techniques. They are further reviewed in Sect. 6.5.

Instance-Based Techniques

Instance-based techniques are those that compare sets of instances of classes in or-
der to decide if these classes match or not. They can be based on simple set-theoretic
reasoning or on more elaborate data analysis and statistical techniques. They help in
grouping together items or computing distances between them. From data analysis
techniques, we discuss distance-based classification, formal concept analysis and
correspondence analysis; from statistical analysis methods we consider frequency
distributions. Instance-based techniques are mostly described in Sect. 5.4. We ex-
clude from this category learning techniques, which require a sample of the result,
i.e., the alignment. These techniques are considered specifically in Sect. 7.5.

4.4 Other Classifications

There are some other classifications of matching techniques. For example, (Ehrig
2007) introduced a classification based on two orthogonal dimensions. These can
be viewed as horizontal and vertical dimensions. The horizontal dimension includes
three layers that are built one on top of another:

Data layer: This is the first layer. Matching between entities is performed here by
comparing only data values of simple or complex data types.

Ontology layer: This is the second layer which, in turn, is further divided into four
levels, following the ‘layer cake’ of (Berners-Lee et al. 2001). These are semantic
nets, description logics, restrictions and rules. For example, at the level of seman-
tic nets, ontologies are viewed as graphs with concepts and relations, and, there-
fore, matching is performed by comparing only these. The description logics–level
brings a formal semantics account to ontologies. Matching at this level includes,
for example, determining taxonomic similarity based on the number of subsump-
tion relations separating two concepts. This level also takes into account instances
of entities, therefore, for example, assessing concepts to be the same, if their in-
stances are similar. Matching at the levels of restrictions and rules is typically based
on the idea that if similar rules between entities exist, these entities can be regarded
as similar.

Context layer: Finally, this layer is concerned with the practical usage of entities
in the context of an application. Matching is performed here by comparing the
usages of entities in ontology-based applications. One of the intuitions behind such
matching methods is that similar entities are often used in similar contexts.

The vertical dimension represents specific domain knowledge which can be situated
at any layer of the horizontal dimension. Here, the advantage of external resources
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of domain-specific knowledge, e.g., Dublin Core for the bibliographic domain, is
considered for assessing the similarity between entities of ontologies.

(Doan and Halevy 2005) classifies matching techniques into (i) rule-based and
(ii) learning-based. Typically, rule-based techniques work with schema-level infor-
mation, such as entity names, data types and structures. Some examples of rules are
that two entities match if their names are similar or if they have the same number of
neighbour entities. Learning-based approaches often work with instance-level infor-
mation, thereby performing matching by comparing value formats and distributions
of data instances underlying the entities under consideration, for example. However,
learning can also be performed at schema-level and from the previous matches, e.g.,
as proposed in the LSD approach (Sect. 8.2.4).

(Zanobini 2006) classifies matching methods into three categories following the
cognitive theory of meaning and communication between agents:

Syntactic: This category represents methods that use purely syntactic matching
methods. Examples of such methods include string-based techniques and graph
matching techniques.

Pragmatic: This category represents methods that rely on comparison of data in-
stances underlying the entities under consideration in order to compute alignments.
Examples of such methods include automatic classifiers, and formal concepts anal-
ysis (Sect. 5.4.1).

Conceptual: This category represents methods that work with concepts and com-
pare their meanings in order to compute alignments. Examples of such methods
include techniques exploiting external thesauri, such as WordNet (Sect. 5.2.2), in
order to compare senses among the concepts under consideration.

There were also some classifications mixing the process dimension of matching
together with either input dimension or output dimension. For example, (Do 2005)
extends the work of (Rahm and Bernstein 2001) by adding a reuse-oriented category
of techniques on top of schema-based vs. instance-based separation, meaning that
reuse-oriented techniques can be applied at schema- and instance-level. However,
these techniques can also include some input information, such as user input or
alignments obtained from previous match operations.

Finally, the more the ontology matching field progresses, the wider the variety
of techniques that come into use at different levels of granularity. For example,
machine learning methods, which where often applied only to the instance-level in-
formation, also started being applied more widely to schema-level information. We
believe that such a cross-fertilisation will gain more support in the future. Therefore,
ultimately, it could be the case that any mathematical method will find appropriate
uses for ontology matching.

4.5 Summary

Following the complexity of ontology definition, a variety of techniques may be
used. This chapter has shown the difficulty of having a clear cut classification of
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algorithms. In Sect. 4.2, we provided two such classifications based on granularity
and input interpretation on the one hand and the origin and the kind of input on the
other hand.

The classifications discussed in this chapter provide a common conceptual ba-
sis for organising matching techniques. They can be used for comparing (analyt-
ically) different existing ontology matching systems as well as for designing new
ones, taking advantage of state-of-the-art solutions. The classifications of matching
methods also provide some guidelines which help identifying families of matching
approaches.

In the following three chapters we first present basic techniques (Chap. 5), which
exploit local characteristics of entities, then advanced techniques (Chap. 6), which
aim at considering all the characteristics of entities, thus treating them globally, and
finally, strategies (Chap. 7) used to build matching systems.



Chapter 5
Basic Similarity Measures

The goal of ontology matching is to find relations between entities expressed in
different ontologies. Very often, these relations are equivalence relations that are
discovered through the measure of similarity between these entities. However, more
elaborate methods may directly find more precise relations.

We present here some of the basic methods for assessing the similarity or the
relations between ontology entities. By basic, we mean that these methods base
their judgment on one particular kind of feature of these entities. Chapter 6 considers
matching techniques that compare ontology entities in a global way and Chap. 7, in
turn, shows how the results of these methods may be combined.

In this chapter, we first introduce basic concepts related to similarity (Sect. 5.1).
Then, we consider basic methods following the ‘kind of input’ layer of the clas-
sification of Chap. 4: entity names (Sect. 5.2), internal structure (Sect. 5.3), and
extension (Sect. 5.4).

5.1 Similarity, Distances and Other Measures

There are many ways to assess the similarity between two entities. The most com-
mon way amounts to defining a measure of this similarity. We present some charac-
teristics of these measures.

Definition 5.1 (Similarity) A similarity σ : o× o→ R is a function from a pair of
entities to a real number expressing the similarity between two objects such that

∀x, y ∈ o, σ (x, y)≥ 0 (positiveness)

∀x ∈ o,∀y, z ∈ o, σ (x, x)≥ σ(y, z) (maximality)

∀x, y ∈ o, σ (x, y)= σ(y, x) (symmetry)

The dissimilarity is a dual operation. It is defined as follows.
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Definition 5.2 (Dissimilarity) Given a set o of entities, a dissimilarity δ : o×o→R

is a function from a pair of entities to a real number such that

∀x, y ∈ o, δ(x, y)≥ 0 (positiveness)

∀x ∈ o, δ(x, x)= 0 (minimality)

∀x, y ∈ o, δ(x, y)= δ(y, x) (symmetry)

Some authors consider a ‘nonsymmetric (dis)similarity’ (Tverski 1977); we then
use the term nonsymmetric measure or pre-similarity. There are more constraining
notions than dissimilarity, such as distances and ultrametrics.

Definition 5.3 (Distance) A distance (or metric) δ : o × o → R is a dissimilarity
function satisfying the definiteness and triangular inequality:

∀x, y ∈ o, δ(x, y)= 0 if and only if x = y (definiteness)

∀x, y, z ∈ o, δ(x, y)+ δ(y, z)≥ δ(x, z) (triangular inequality)

Definition 5.4 (Ultrametric) Given a set o of entities, an ultrametric is a metric such
that

∀x, y, z ∈ o, δ(x, y)≤max
(
δ(x, z), δ(y, z)

)
(ultrametric inequality)

The measures are often normalised, especially if the similarity of different kinds
of entities must be compared. Reducing each value to the same scale in proportion
to the size of the considered space is the common way to normalise.

Definition 5.5 (Normalised (dis)similarity) A (dis)similarity is said to be nor-
malised if it ranges over the unit interval of real numbers [0 1]. A normalised version
of a (dis)similarity σ (respectively, δ) is denoted by σ (respectively, δ).

Any normalised similarity σ corresponds a normalised dissimilarity δ = 1 − σ

and vice versa. In the remainder, we will consider mostly normalised measures and
assume that a dissimilarity function between two entities returns a real number be-
tween 0 and 1.

There are two possible ways to normalise: (i) using the maximum possible value,
or (ii) using the maximum actual value. Since there might not always be a maximum
possible value, all examples in the following are normalised with respect to the
maximum actual value.

From the above definitions, similarity and dissimilarity are complete functions
that map pairs of entities to real numbers. An alternative representation for such a
function on a finite set of entities is a matrix (see Example 5.14). Matrices have the
advantage of being finite data structures that can be exchanged between programs.
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5.2 Name-Based Techniques

Some terminological methods compare strings. They can be applied to the name,
the label or the comments of entities in order to find those which are similar. This
can be used for comparing class names or URIs.

Throughout this section, the set S will represent the set of strings, i.e., the se-
quences of letters of any length over an alphabet L: S = L∗. The empty string is
denoted by ε, and ∀s, t ∈ S, s + t is the concatenation of the strings s and t . |s|
denotes the length of the string s, i.e., the number of characters it contains. s[i] for
i ∈ [1 |s|] stands for the letter in position i of s.

Example 5.6 (Strings) The string ‘article’ is made of the letters a, r, t, i, c, l and e.
Its length is 7 characters. ‘peer-reviewed’ and ‘ ’ are two other strings (so ‘-’ and
‘ ’ are letters in the alphabet) and their concatenation ‘peer-reviewed’+‘ ’+‘article’
provides the string ‘peer-reviewed article’ whose length is 21.

A string s is the substring of another string t , if there exist two strings s′ and s′′,
such that s′ + s + s′′ = t (denoted by s ∈ t). Two strings are equal (s = t) if and
only if s ∈ t and t ∈ s. The number of occurrences of s in t (denoted by s#t) is the
number of distinct pairs s′, s′′, such that s′ + s + s′′ = t .

Example 5.7 (Substrings) The string ‘peer-reviewed article’ has the string ‘review’
as a substring because ‘peer-’+‘review’+‘ed article’=‘peer-reviewed article’. The
string ‘homonymous’ has three occurrences of the string ‘o’, two occurrences of the
string ‘mo’ and only one occurrence of the string ‘nym’.

The main problem in comparing ontology entities on the basis of their labels
occurs due to the existence of synonyms and homonyms:

Synonyms are different words used to name the same entity. For instance, Article

and Paper are synonyms in some contexts;
Homonyms are words used to name different entities. For instance, peer as a noun

has a sense ‘equal’ as well as another sense ‘member of the nobility’. The fact that
a word can have multiple senses is also known as polysemy.

Consequently, it is not possible to deduce with certainty that two entities are
the same if they have the same name or that they are different because they have
different names. There are more reasons than synonymy and homonymy why this
could happen. In particular:

− Words from different languages, such as English, French, Italian, Spanish, Ger-
man, Greek, are used to name the same entities. For instance, the word Book in
English is Livre in French and kniga in Russian.

− Syntactic variations of the same word often occur according to different accept-
able spellings, abbreviations, use of optional prefixes or suffixes, etc. For in-
stance, Compact disc, CD, C.D. and CD-ROM can be considered equivalent in some
contexts. However, in some other contexts, CD may mean Corps diplomatique and
in some others change directory.
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These kinds of variations may occur within one ontology but may be even more
frequent across ontologies. However, the way in which things are named remains
very important in every day communication and names remain a good index of sim-
ilarity or dissimilarity. Moreover, many different techniques have been designed for
assessing the similarity of two terms notwithstanding the similarity or dissimilarity
of the strings which denote them.

There are two main categories of methods for comparing terms depending on
their consideration of character strings only (Sect. 5.2.1) or using some linguistic
knowledge to interpret these strings (Sect. 5.2.2).

5.2.1 String-Based Methods

String-based methods take advantage of the structure of the string (as a sequence
of letters). String-based methods will typically find classes Book and Textbook to be
similar, but not classes Book and Volume.

There are many ways to compare strings depending on the way the string is
viewed: for example, as an exact sequence of letters, an erroneous sequence of let-
ters, a set of letters, a set of words. (Cohen et al. 2003b) compare various string-
matching techniques, from distance like functions to token-based distance functions.
We discuss the most frequently used methods.

We distinguish between (i) normalisation techniques which are used for reduc-
ing strings to be compared to a common format, (ii) substring or subsequence tech-
niques that base similarity on the common letters between strings, (iii) edit distances
that further evaluate how one string can be an erroneous version of another, (iv) sta-
tistical measures that establish the importance of a word in a string by weighting the
relation between two strings and (v) path comparisons.

Normalisation

Before comparing actual strings, which have a meaning in natural language, nor-
malisation procedures can help improve the results of subsequent comparisons. In
particular:

Case normalisation converts each alphabetic character in the strings into their
lower case counterpart. For example, CD becomes cd and SciFi becomes scifi.

Diacritics suppression replaces characters with diacritic signs with their most fre-
quent replacements. For example, replacing Montréal with Montreal.

Blank normalisation normalises all blank characters, such as blank, tabulation,
carriage return, or sequences of these, into a single blank character.

Link stripping normalises some links between words, such as replacing apostro-
phes and blank underline into dashes or blanks. For example, peer-reviewed be-
comes peer reviewed.

Digit suppression suppresses digits. For example, book24545-18 becomes book.
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Punctuation elimination suppresses punctuation signs. For example, C.D. becomes
CD.

These normalisation operations must be used with care for several reasons. In
particular:

− they are often language-dependent, e.g., they work for occidental languages;
− they are order dependent: they do not guarantee to bring the same results when

applied in any order;
− they can result in loosing some meaningful information; for example, carbon-14

becomes carbon or sentence separation, which is very useful for parsing, is lost;
− they may reduce variations, but increase synonyms. For example, in French livre

and livré are different words respectively meaning book and delivered.

String Equality

String equality returns 0 if the strings under consideration are not identical and 1 if
they are identical. This can be taken as a similarity measure.

Definition 5.8 (String equality) String equality is a similarity σ : S × S→ [0 1]
such that ∀x, y ∈ S, σ(x, x)= 1 and if x �= y,σ (x, y)= 0.

It can be performed after some syntactic normalisation of the string, e.g., down-
casing, encoding conversion, diacritics normalisation.

This measure does not explain how strings are different. A more immediate way
of comparing two strings is the Hamming distance which counts the number of po-
sitions in which the two strings differ (Hamming 1950). We present here the version
normalised by the length of the longest string.

Definition 5.9 (Hamming distance) The Hamming distance is a dissimilarity δ :
S× S→[0 1] such that

δ(s, t)= (
∑min(|s|,|t |)

i=1 s[i] �= t[i])+ ||s| − |t ||
max(|s|, |t |)

Substring Test

Different variations can be obtained from the string equality, such as considering
that strings are very similar when one is a substring of another:

Definition 5.10 (Substring test) Substring test is a similarity σ : S×S→[0 1] such
that ∀x, y ∈ S, if there exist p, s ∈ S where x = p + y + s or y = p + x + s, then
σ(x, y)= 1, otherwise σ(x, y)= 0.

This is obviously a similarity. This measure can be refined in a substring similar-
ity which measures the ratio of the common subpart between two strings.
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Definition 5.11 (Substring similarity) Substring similarity is a similarity σ : S ×
S→[0 1] such that ∀x, y ∈ S, and let t be the longest common substring of x and y:

σ(x, y)= 2|t |
|x| + |y|

This measure is indeed a similarity. One could also consider a subsequence simi-
larity as well. This definition can be used for building functions based on the longest
common prefix or longest common suffix.

Thus, for example, the similarity between article and aricle would be 8/13= .61,
while between article and paper would be 1/12 = .08, and, finally, between article

and particle would be 14/15= .93.
A prefix or suffix pre-similarity can be defined on this model from the prefix

and suffix tests, which test whether one string is the prefix or suffix of another.
These measures would not be symmetric. Prefix and suffix pre-similarity may be
useful as a test for strings denoting a more general concept than another (in many
languages, adding clauses to a term would restrict its range). For instance, reviewed

article is more specific than article. It can also be used for comparing strings and
similar abbreviations, e.g., ord and order.

The n-gram similarity is also often used in comparing strings. It computes the
number of common n-grams, i.e., strings of n characters, between them. For in-
stance, trigrams for the string article are art, rti, tic, icl, cle.

Definition 5.12 (n-Gram Similarity) Let ngram(s, n) be the set of substrings of s

of length n. The n-gram similarity is a similarity σ : S× S→R such that

σ(s, t)= ∣
∣ngram(s, n)∩ ngram(t, n)

∣
∣

The normalised version of this function is

σ(s, t)= |ngram(s, n)∩ ngram(t, n)|
min(|s|, |t |)− n+ 1

This function is quite efficient when only some characters are missing.
Thus, for example, the similarity between article and aricle would be 2/4 = .5,

while between article and paper it would be 0, and, finally, between article and particle

it would be 5/6= .83.
It is possible to add extra characters, at the beginning and end of strings, for

dealing with too small strings.

Edit Distance

Intuitively, an edit distance between two objects is the minimal cost of operations
to be applied to one of the objects in order to obtain the other one. Edit distances
were designed for measuring a similarity between strings that may contain spelling
mistakes.
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Definition 5.13 (Edit Distance) Given a set Op of string operations (op : S→ S),
and a cost function w : Op → R, such that for any pair of strings there exists a
sequence of operations which transforms the first one into the second one (and vice
versa), the edit distance is a dissimilarity δ : S× S→[0 1] where δ(s, t), is the cost
of the less costly sequence of operations which transforms s into t .

δ(s, t)= min
(opi )I ;opn(...op1(s))=t

(∑

i∈I

wopi

)

Usually considered operations, in string edit distance, include insertion of a char-
acter ins(c, i), replacement of a character by another sub(c, c′, i) and deletion of
a character del(c, i). It can be easily checked that these operations are such that
ins(c, i)= del(c, i)−1 and sub(c, c′, i)= sub(c′, c, i)−1. Each operation is assigned
a cost and the distance between two strings is the sum of the cost of each operation
on the less costly set of operations.

The Levenshtein distance (Levenshtein 1965) is the minimum number of inser-
tions, deletions, and substitutions of characters required to transform one string into
the other. It is the edit distance with all costs equal to 1. The Damerau–Levenshtein
distance (Damerau 1964) uses in addition the transposition operation, swapping two
adjacent letters, with the same weight as the other operations. The Needleman–
Wunch distance (Needleman and Wunsch 1970), in turn, is the edit distance with a
higher costs for ins and del.

The edit distance is indeed a distance if ∀op ∈Op, wop =wop−1 .

Example 5.14 The (rounded) Levenshtein distance table between the class labels
of ontologies in Fig. 2.7 (p. 33):
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Politics 0.75 1.00 0.88 0.88 1.00 1.00 0.75 0.75 0.67 0.75 1.00
Thing 0.71 0.75 1.00 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00

Autobiography 0.92 0.85 0.85 0.92 1.00 0.85 0.92 0.92 0.85 0.85 1.00
Novel 0.86 0.88 0.80 1.00 1.00 1.00 0.86 0.67 0.89 0.71 1.00

Biography 1.00 0.89 0.78 0.89 1.00 1.00 0.89 0.89 1.00 0.89 1.00
Writer 0.86 0.75 1.00 1.00 1.00 0.88 0.86 0.83 0.67 0.86 1.00
Essay 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.86 1.00

Volume 0.86 0.75 0.83 1.00 1.00 1.00 0.71 0.83 0.78 0.71 1.00
LiteraryCritic 0.93 0.93 1.00 0.86 1.00 0.93 0.86 0.93 0.93 0.86 0.93

Poetry 0.86 0.88 0.83 0.83 1.00 0.88 0.71 0.67 0.89 0.71 1.00
Literature 0.80 0.90 1.00 0.80 1.00 0.90 0.80 0.90 0.90 0.80 1.00

Human 0.86 0.88 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.71 1.00
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The closest names are Pocket and Novel, Pocket and Poetry, as well as Writer and
Publisher and Politics and Publisher. These names are relatively far from each oth-
ers (.67). So, in this case no correspondence can be found from such measures alone.
However, the same measure on properties will obviously find the correspondence
between author and author, for instance.

Other measures compute the cost of an edition operation as a function of the char-
acters or substrings on which the operation applies. For that purpose, they use a cost
matrix for each operation. A well known example of such a measure is the Smith–
Waterman measure (Smith and Waterman 1981) which was adapted to compute the
distance between biological sequences based on the molecules that are manipulated.
Other such measures are the Gotoh (Gotoh 1981) and Monge–Elkan (Monge and
Elkan 1997) distance functions.

The Jaro measure has been defined for matching proper names that may contain
similar spelling mistakes (Jaro 1976, 1989). It is not based on an edit distance model,
but on the number and proximity of the common characters between two strings.
This measure is not a similarity because it is not symmetric.

Definition 5.15 (Jaro measure) The Jaro measure is a nonsymmetric measure σ :
S× S→[0 1] such that

σ(s, t)= 1

3
×

( |com(s, t)|
|s| + |com(t, s)|

|t | + |com(s, t)| − |transp(s, t)|
|com(s, t)|

)
,

with s[i] ∈ com(s, t) if and only if ∃j ∈ [i −min(|s|, |t |)/2 i +min(|s|, |t |)/2] and
transp(s, t) are the elements of com(s, t) which occur in a different order in s and t .

For instance, if we again compare article with aricle, aritcle and paper, the number
of common letters will respectively be 6, 7 and 1 (because in the last case, the ‘e’ in
paper is too far away from that in article). The number of transposed common letters
will be 0, 1 and 0 respectively. As a consequence, the similarities between these
strings are: .95, .90 and .45.

This measure has been improved by favouring matches between strings with
longer common prefixes (Winkler 1999).

Definition 5.16 (Jaro–Winkler measure) The Jaro–Winkler measure σ : S × S→
[0 1] is as follows:

σ(s, t)= σJaro(s, t)+
∣∣pref (s, t)

∣∣×Q× (1− σJaro(s, t))

10
,

such that pref (s, t) is the longest prefix common to s and t , and Q is a constant.

In this case, the similarity for the three strings compared to article with Q= 4 are:
.99, .98 and .45. These measures only improve on the previous ones by explicitly
providing a model of mistakes that penalises less the comparison.
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Another similar measure is SMOA (Stoilos et al. 2005) which is adapted to the
way computer users define identifiers. It depends on common substring lengths and
different substring lengths, the second part being substracted from the first one. This
measure has a value between −1 and 1.

Token-Based Distances

The following techniques come from information retrieval and consider a string as a
multiset of words (also called bag of words), i.e., a set in which a particular word can
appear several times. These approaches usually work well on long texts (comprising
many words). For that reason, it is helpful to take advantage of other strings that are
attached to ontology entities. This can be adapted to ontology entities as follows:

− By aggregating different sources of strings: identifiers, labels, comments, doc-
umentation, etc. Some systems go further by aggregating the tokens that corre-
spond to connected entities (Qu et al. 2006).

− By splitting strings into independent tokens. For example, InProceedings becomes
In and Proceedings, peer-reviewed article becomes peer, reviewed and article.

Ontology entities are then identified with bags of words (or multisets) suitable
for manipulation by using information retrieval techniques. Many different similar-
ities or dissimilarities being applied to sets of entities can thus be applied to these
bags of words. For example, the matching coefficient is the complement of the Ham-
ming distance on sets (Sect. 5.4.1) and the Dice coefficient is the complement of the
Hamming distance on multisets, i.e., using the union, intersection and cardinality of
multisets instead of sets.

Original measures are those based on the corpus of such strings, i.e., the set of
all such strings found in one of the ontologies or in both of them. These measures
are no longer intrinsic to the strings to be compared but depend on the corpus.

They usually consider a bag of words s as a vector �s belonging to a metric space
V in which each dimension is a term (or token) and each position in the vector is
the number of occurrences of the token in the corresponding bag of words. This is
one way to represent multisets. Each document can be considered as a point in this
space identified by its coordinate vector (Salton 1971; Salton and McGill 1983).

Once the entities have been transformed into vectors, usual metric space dis-
tances can be used: Euclidean distance, Manhattan distance (also known as city
blocks) and any instance of the Minkowski distance (see also p. 162). We present
here the cosine similarity which measures the cosine of the angles made by two
vectors. It is very often used in information retrieval.

Definition 5.17 (Cosine similarity) Given �s and �t , the vectors corresponding to two
strings s and t in a vector space V , the cosine similarity is the function σV : V ×
V →[0 1] such that

σV (s, t)=
∑

i∈|V | �si × �ti
√∑

i∈|V | �s2
i ×

∑
i∈|V | �t2

i
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Some more elaborate techniques use reduced spaces, like those obtained by cor-
respondence analysis, in order to deal with a smaller dimension as well as to auto-
matically map words of similar meanings to the same dimension. A famous example
of such a technique, which uses singular value decomposition, is known as latent se-
mantic indexing (Deerwester et al. 1990).

A very common measure is TFIDF (Term frequency-Inverse document fre-
quency) (Robertson and Spärck Jones 1976) which is used for scoring the relevance
of a document, i.e., a bag of words, to a term by taking into account the frequency
of appearance of the term in the corpus. It is usually not a measure of similarity: it
assesses the relevance of a term to a document. It is used here to assess the relevance
of a substring to a string by comparing the frequency of appearance of the string in
the document with regard to its frequency in the whole corpus.

Definition 5.18 (Term frequency-Inverse document frequency) Given a corpus C

of multisets, we define the following measures:

∀t ∈ S,∀s ∈ C, tf (t, s)= t#s (term frequency)

∀t ∈ S, idf (t)= log

( |C|
|{s ∈ C; t ∈ s}|

)
(inverse document frequency)

TFIDF(s, t)= tf (t, s)× idf (t) (TFIDF)

Many systems use measures based on TFIDF. These measures compute, for each
term in the strings, its relevance with regard to the corpus based on TFIDF. Then,
they use vector space techniques for computing a distance between the two strings.
There are several options for doing so depending on the selected space: this can
be the whole corpus, the union of terms covered by the two strings or only the
intersection of the terms involved in both strings. The most often used aggregation
measure is the cosine similarity.

A related type of method can be used when it is possible to establish the relevance
of a particular document to some topic (with other methods) usually expressed as a
probability distribution. The Kullback–Leiber divergence measure is the divergence
between two probability distributions (Kullback and Leibler 1951):

Definition 5.19 (Kullback–Leiber divergence) Given a set of documents D with
a probability distribution π over a set of topics T , the Kullback–Leiber divergence
between two documents e and e′ is as follows:

δ(e, e′)=
∑

t∈T

π(t |e)× log2

(
π(t |e)
π(t |e′)

)

This measure, which is sometimes used as a distance, is in fact not symmetric.
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Path Comparison

Path difference consists of comparing not only the labels of objects but the sequence
of labels of entities to which those bearing the label are related. For instance, in the
left-hand ontology of Fig. 2.7, the Science class can be identified by the path Prod-

uct:Book:Science. In a first approximation, these can be considered as a particular way
to aggregate tokens in an ordered fashion. A simple (and only) example is the one
which concatenates all the names of the superclasses of classes before comparing
them. So, the result is dependent on the individual string comparison aggregated in
some way.

Definition 5.20 (Path distance) Given two sequences of strings, 〈si〉ni=1 and
〈s′j 〉mj=1, their path distance is defined as

δ
(〈si〉ni=1, 〈s′j 〉mj=1

)= λ× δ′(sn, s′m)+ (1− λ)× δ
(〈si〉n−1

i=1 , 〈s′j 〉m−1
i=1

)

such that

δ
(〈〉, 〈s′j 〉kj=1

)= δ
(〈si〉ki=1, 〈〉

)= k

with δ′ being one of the other string or language-based distance and λ ∈ [0 1].

For instance, we can take the string equality distance as δ′, scoring 0 when the
strings are equal, and .7 as λ. Then, if we have to compare Product:Book:Science with
Book:Essay:Science and Product:Cultural:Book:Science, the distances will respectively
be .273 and .09.

This measure is dependent on the similarity between the last element of each
path: this similarity is affected by a λ penalty but every subsequent step is affected
by a λ × (1 − λ)n penalty. So, this measure takes into account the prefix, but the
prefix can only influence the result to an extent which decreases as its distance from
the end of the sequence increases. As can be seen, this measure is dependent on
the rank of the elements to compare in the path. A more accurate, but expensive,
measure, would choose the best match between both paths and penalise the items
remote from the end of the path. Another way to take these paths into account is
simply to apply them as a distance on sequences, such as described in Valtchev
(1999).

Summary on String-Based Methods

The results given so far for string comparisons are useful if people use very sim-
ilar strings to denote the same concepts. If synonyms with different structures are
used, this will yield a low similarity. Selecting pairs of strings with low similarity,
in turn, yields many false positives since two strings can be very similar, e.g., Inpro-

ceedings and proceedings, and denote relatively different concepts. These measures
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Table 5.1 String measures available in SimMetrics, SecondString, OntoSim and SimPack Java
packages.

SimMetrics SecondString OntoSim SimPack

n-grams n-grams

Levenshtein Levenshtein Levenshtein Levenshtein

Jaro Jaro Jaro

Jaro–Winkler Jaro–Winkler Jaro–Winkler

Needleman–Wunch Needleman–Wunch Needleman–Wunch

Smoa

Smith–Waterman

Monge–Elkan Monge–Elkan

Gotoh

Matching coefficient

Jaccard Jaccard Jaccard Jaccard

Dice coefficient Dice coefficient

TFIDF TFIDF TFIDF

Cityblocks Cityblocks

Euclidean Euclidean

Cosine Cosine Cosine

Overlap Overlap

Soundex

are most often used in order to detect if two very similar strings are used. Otherwise,
matching must use more reliable sources of information.

There are several software packages for computing string distances. Table 5.1
provides a brief comparison of distances available in four Java packages: SimMet-
rics,1 SecondString,2 OntoSim3 and SimPack.4 A comparison of the metrics of the
second package has been provided in (Cohen et al. 2003b).

5.2.2 Language-Based Methods

So far, we have considered strings as sequences of characters. When considering
language phenomena, these strings become texts (theoretical peer-reviewed journal arti-

cle). Texts can be segmented into words: easily identified sequence of letters that are

1http://www.dcs.shef.ac.uk/~sam/stringmetrics.html.
2http://secondstring.sourceforge.net.
3http://ontosim.gforge.inria.fr.
4http://www.ifi.unizh.ch/ddis/simpack.html.

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://secondstring.sourceforge.net
http://ontosim.gforge.inria.fr
http://www.ifi.unizh.ch/ddis/simpack.html
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derived from an entry in a dictionary (theoretical, peer, reviewed, journal, article). These
words do not occur in a bag (as used in information retrieval) but in a sequence that
has a grammatical structure. Very often words, like peer, bear a meaning and corre-
spond to some concepts, but the more useful concepts to be properly handled in a
text are terms, such as peer-review, or peer-reviewed journal.

Terms are phrases that identify concepts; they are thus often used for labelling
concepts in ontologies. As a consequence, ontology matching could take great ad-
vantage of recognising and identifying them in strings. This amounts to recognise
the term Peer-reviewed journal in the labels scientific periodicals reviewed by peers (and
not in journal review paper).

Language-based methods rely on using Natural Language Processing (NLP)
techniques to help extract the meaningful terms from a text. Comparing these terms
and their relations should help assess the similarity of the ontology entities they
name and comment. Although these are based on some linguistic knowledge, we
distinguish methods which rely on algorithms only and those which make use of
external resources such as dictionaries.

Intrinsic Methods: Linguistic Normalisation

Linguistic normalisation aims at reducing each form of a term to some standardised
form that can be easily recognised. Table 5.2 shows that the same term (theory pa-

per) can appear under many different forms. One may distinguish three main kinds
of term variation (Maynard and Ananiadou 2001): morphological (variation on the
form and function of a word based on the same root), syntactic (variation on the
grammatical structure of a term) and semantic (variation on one aspect of the term,
usually using a hypernym or hyponym). Multilingual variation, i.e., such that the
term variant is expressed in a different language, can be naturally added to these.
Various subtypes of these broad categories are exemplified in Table 5.2. Moreover,
these types of variations may be combined in various ways.

Complete linguistic software chains have been developed for quickly obtaining a
normal form of strings denoting terms. This is available through shallow parsers or
part-of-speech taggers (Brill 1992). Lucene5 (McCandless et al. 2010) is an open
framework, which includes a lemmatiser (SnowBall). Gate6 (Cunningham et al.
2011) is a linguistic workbench that covers all of the following functions:

Tokenisation: Tokenisation is the operation described in Sect. 5.2.1. It consists of
segmenting strings into sequences of tokens through recognising punctuation,
cases, blank characters, digits, etc. For example, peer-reviewed periodic publication

becomes 〈peer, reviewed, periodic, publication〉.
Lemmatisation: The strings underlying tokens are morphologically analysed in or-

der to reduce them to normalised basic forms. Morphological analysis makes

5http://lucene.apache.org.
6http://gate.ac.uk.

http://lucene.apache.org
http://gate.ac.uk
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Table 5.2 Variants of the term theory paper (adapted from (Maynard 1999) and (Euzenat et al.
2004)).

Type Subtype Example

Morphological Inflection theory papers

Derivation theoretical paper

Inflectional-Derivational theoretical papers

Syntactic Insertion theory review paper

Permutation paper on theory

Coordination philosophy and theory paper

Morphosyntactic Derivation-Coordination philosophical and theoretical paper

Inflection-Permutation papers on theory

Semantic foundational paper

Multilingual French article théorique

it possible to find flexions and derivations of a root. This involves suppress-
ing tense, gender or number marks. Retrieving the root is called lemmatisation.
Systems can use some approximate lemmatisation techniques called stemming
(Lovins 1968; Porter 1980) which strip suffixes from terms. For example, re-

viewed becomes review.
Term extraction: More elaborate technologies enable the extraction of terms from

a text (Jacquemin and Tzoukermann 1999; Bourigault and Jacquemin 1999;
Maynard and Ananiadou 2001; Cerbah and Euzenat 2001). It is generally re-
lated to what is called corpus linguistics and requires a relatively large amount
of text. Terminology extractors identify terms from the repetition of morpholog-
ically similar phrases in the texts and the use of patterns, e.g., noun1 noun2 →
noun2 on noun1. This would recognise that the term theory paper is the same term
as paper on theory.

Stopword elimination: Those tokens that are recognised as articles, prepositions,
conjunctions, etc. (usually words, such as to or a), are marked to be discarded
because they are considered as meaningless (empty) words for matching. For
example, collection of article becomes collection article.

Once these techniques have been applied, ontology entities are represented as
sets of terms, not words, that can be compared with the same techniques as presented
before.

Extrinsic Methods

Extrinsic linguistic methods use external resources, such as dictionaries and lexi-
cons. Several kinds of linguistic resources can be exploited in order to find similar-
ities between terms.
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Lexicons. A lexicon, or dictionary, is a set of words together with a natural lan-
guage definition of these words (see for instance those of Example 5.22). For a
particular word, e.g., Article, there can be several such definitions. Dictionaries can
be used with gloss-based distances (see below).

Semantico-syntactic lexicons. Semantico-syntactic lexicons and semantic lexi-
cons are resources used in natural language analysers. They very often not only
record names but their categories, e.g., inanimate, liquid, and record the types of ar-
guments taken by verbs and adjectives, e.g., to flow takes a liquid as subject and has
no object. These are difficult to create and are not much used in ontology matching.

Thesauri. A thesaurus is a kind of lexicon to which some relational information
has been added. It usually contains relations, named hypernym, e.g., Biography is
a more general term, than Autobiography, which is hyponym, synonym, e.g., Paper

means the same as Article, antonym, e.g., practice is the opposite of theory. WordNet
(Miller 1995) is such a thesaurus that distinguishes clearly between word senses
by grouping words into sets of synonyms (synsets).

Terminologies. A terminology is a thesaurus for terms, which very often contains
phrases rather than single words. They are usually domain-specific and tend to be
less equivocal than dictionaries.

This is not an exhaustive nor an authorised description of linguistic resources but it
provides a typology of the kinds of properties on which a similarity between terms
can be assessed on a linguistic basis.

These resources may be defined for one language or be specific to some domain.
In the latter case, they tend to be more adapted when texts or ontologies concern
this domain because they retain specialised senses, or senses that do not exist in the
everyday language. They may also contain proper names and common abbreviations
that are used in the domain. For instance, a company could expand CD as Compact

Disc, or PO as Purchase Order instead of Post Office or Project Officer.
Linguistic resources are introduced in order to deal with synonyms (since match-

ing entities are named differently). By increasing the interpretation (sense) of words,
they increase the chances of finding the matching terms (true positives). However,
this also increases homonyms (the fact that more words are available for naming
the matching entities) and the chances of incorrectly matching nonmatching terms
(false positives). Dealing with this problem is known as word sense disambigua-
tion (Lesk 1986; Ide and Véronis 1998). It tries to restrict the candidate senses (and
the candidate matches) from the context, especially by selecting the senses in re-
lation to the other associated words and their senses. Word-sense disambiguation
techniques have been intensively used in ontology matching (Gracia 2009). Some
systems, such as Blooms (Sect. 8.1.34), use the disambiguation pages of Wikipedia
as a way to disambiguate terms used in ontologies.

We illustrate the use of external resources with the help of WordNet7 (Miller
1995; Fellbaum 1998). WordNet is an electronic lexical database for English (it has

7http://wordnet.princeton.edu.

http://wordnet.princeton.edu
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been adapted to other languages; see for instance EuroWordNet8), based on the no-
tion of synsets or sets of synonyms. A synset denotes a concept or a sense of a group
of terms. WordNet also provides an hypernym (superconcept/subconcept) structure
as well as other relations such as meronym (part of relations). It also provides tex-
tual descriptions of the concepts (gloss) containing definitions and examples. We
will consider WordNet as a partially ordered synonym resource.

Definition 5.21 (Partially ordered synonym resource) A partially ordered synonym
resource Σ over a set of words W , is a triple 〈E,≤, λ〉, such that E ⊆ 2W is a set
of synsets, ≤ is the hypernym relation between synsets and λ is a function from
synsets to their definition (a text that is considered here as a bag of words in W ).
For a term t , Σ(t) denotes the set of synsets associated with t .

Example 5.22 (WordNet entry) We reproduce here the WordNet (version 2.0) entry
for the word author. Each sense is numbered in superscript:

author1 noun: Someone who originates or causes or initiates something; Ex-
ample ‘he was the generator of several complaints’. Synonym generator, source.
Hypernym maker. Hyponym coiner.
author2 noun: Writes (books or stories or articles or the like) professionally
(for pay). Synonym writer2. Hypernym communicator. Hyponym abstractor, allit-

erator, authoress, biographer, coauthor, commentator, contributor, cyberpunk, drafter,
dramatist, encyclopedist, essayist, folk writer, framer, gagman, ghostwriter, Gothic

romancer, hack, journalist, libretist, lyricist, novelist, pamphleter, paragrapher, poet,
polemist, rhymer, scriptwriter, space writer, speechwriter, tragedian, wordmonger,
word-painter, wordsmith, Andersen, Assimov. . .
author3 verb.: Be the author of; Example ‘She authored this play’. Hypernym
write. Hyponym co-author, ghost.

This resembles a traditional dictionary entry apart from the Hypernym and Hy-
ponym features and the explicit mention of the considered sense. The hypernym
relations for the senses of the words creator, writer, author, illustrator, and person are
presented in Fig. 5.1.

There are at least three families of methods for using WordNet as a resource for
matching terms used in ontology entities:

− considering that two terms are similar because they belong to some common
synset;

− taking advantage of the hypernym structure for measuring the distances between
synsets corresponding to two terms;

− taking advantage of the definitions of concepts provided by WordNet in order to
evaluate the distance between the synsets associated with two terms.

8http://www.illc.uva.nl/EuroWordNet/.

http://www.illc.uva.nl/EuroWordNet/
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Fig. 5.1 The fragment of the WordNet hierarchy (limited to nouns) dealing with author, writer,
creator, illustrator and person.

A matcher based on WordNet can be designed by translating the (lexical) re-
lations provided by WordNet to logical relations according to the following rules
(Giunchiglia et al. 2004):

− t ≤ t ′, if t is a hyponym or meronym of t ′. For example, author is a hyponym of
creator, therefore we conclude that author 	 creator.

− t ≥ t ′, if t is a hypernym or holonym of t ′. For example, Europe is a holonym of
France, therefore we conclude that Europe � France.

− t = t ′, if they are connected by synonymy relation or they belong to one synset.
For example, writer and author are synonyms, therefore we conclude that writer =
author.

− t ⊥ t ′, if they are connected by antonymy relation or they are the siblings in the
part of hierarchy. For example, Italy and France are siblings in the WordNet part
of hierarchy, therefore we conclude that Italy ⊥ France.

Simple measures may be defined here (we only consider synonyms because they
are the basis of WordNet synsets but other relationships may be used as well). The
simplest use of synonyms is as follows:

Definition 5.23 (Synonymy similarity) Given two terms s and t and a synonym
resource Σ , the synonymy is a similarity σ : S× S→[0 1] such that

σ(s, t)=
{

1 if Σ(s)∩Σ(t) �= ∅
0 otherwise

This would consider that the similarity between author and writer is maximal (1.)
and that between author and creator is minimal (0.).

Example 5.24 (Synonymy) The synonymy similarity between illustrator, author, cre-

ator, Person, and writer is given by the following table:
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illustrator author creator Person writer

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. 1.
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. 1. 0. 0. 1.

This strict exploitation of synonyms does not allow analysis of how far nonsyn-
onymous objects are nor how close synonymous objects are. Since synonymy is a
relation, all the measures on the graph of relations can be used on WordNet syn-
onyms. Another measure computes the cosynonymy similarity.

Definition 5.25 (Cosynonymy similarity) Given two terms s and t and a synonym
resource Σ , the cosynonymy is a similarity σ : S× S→[0 1] such that

σ(s, t)= |Σ(s)∩Σ(t)|
|Σ(s)∪Σ(t)|

Example 5.26 (Cosynonymy similarity) The cosynonymy similarity between illus-

trator, author, creator, Person, and writer is given by the following table:

illustrator author creator Person writer

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. .25
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. .25 0. 0. 1.

Some elaborate measures take into account that the terms may be part of several
synsets and use a measure in the hyponym-hypernym hierarchy between synsets.
A simple measure, known as edge-count, counts the number of edges separating
two synsets in Σ (or the structural topological dissimilarity; see Sect. 6.1.1). More
elaborate measures weight edge count with the position of synsets in the hierarchy,
such as the one proposed by Wu and Palmer (see Sect. 6.1.1). All measures defined
in Sect. 6.1.1 can be used on the WordNet hypernym graph if they can deal with
unrooted directed acyclic graphs.

Other measures rely on an information-theoretic perspective. They are based on
the assumption that the most probable a concept, the less information it carries. So
the information content of a concept is inverse to its probability of occurrence. In
the similarity proposed in (Resnik 1995, 1999), each synset (c) is associated with a
probability of occurrence (π(c)) of an instance of the concept in a particular corpus.
Usually, π(c) is the sum of the synset word occurrences divided by the total number
of concepts. This probability is obtained from a corpus study. It is such that the
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more specific the concept, the lower its probability. The Resnik semantic similarity
between two terms is a function of the more general synset common to both terms.
It considers the maximum information content (or entropy), of the possible such
synsets, taken as the negation of the logarithm of the probability of occurrence.

Definition 5.27 (Resnik semantic similarity) Given two terms s and t and a par-
tially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability measure
π , Resnik semantic similarity is a similarity σ : S× S→[0 1] such that

σ(s, t)= max
k;∃c,c′∈E;s∈c∧t∈c′∧c≤k∧c′≤k

(− log
(
π(k)

))

We do not provide examples of corpus-based similarity because results depend
on the corpus on which it is based (here for defining π ). Examples of such measures
based on the Brown corpus9 are given in (Budanitsky and Hirst 2006).

This measure uses the maximum, but one could have chosen instead an average
or a sum of all the pairs of synsets associated with the two terms.

Other information-theoretic similarities depend on the increase of the informa-
tion content measure from the terms to their common hypernyms instead of the
shared information content. This is the case in the Jiang–Conrath method (Jiang and
Conrath 1997) or the Lin information-theoretic similarity (Lin 1998). This method
specifies the probabilistic degree of overlap between two synsets:

Definition 5.28 (Information-theoretic similarity) Given two terms s and t and a
partially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability π ,
Lin information-theoretic similarity is a similarity σ : S× S→[0 1] such that

σ(s, t)= max
k;∃c,c′∈E;s∈c∧t∈c′∧c≤k∧c′≤k

2× log(π(k))

log(π(s))+ log(π(t))

These similarities are not normalised.
A final way to compare terms found in strings through a thesaurus, like WordNet,

is to use the definition (gloss) given to these terms. In this case, any dictionary entry
s ∈ Σ is identified by the set of words corresponding to λ(s). Then any measure
defined in Sect. 5.2.1 can be used for comparing the strings (Lesk 1986).

Definition 5.29 (Gloss overlap) Given a partially ordered synonym resource Σ =
〈E,≤, λ〉, the gloss overlap between two strings s and t is defined by the Jaccard
similarity between their glosses:

σ(s, t)= |λ(s)∩ λ(t)|
|λ(s)∪ λ(t)|

9http://icame.uib.no.

http://icame.uib.no
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Example 5.30 (Gloss overlap) For computing the gloss overlap similarity between
illustrator, author, creator, Person, and writer, we used the following treatments: take
gloss for all senses and add the term name; suppress quotations (‘. . . ’); suppress
empty words (or, and, the, a, an, for, of, etc.); suppress technical vocabulary, e.g.,
‘term’; suppress empty phrases, e.g., ‘usually including’; keep categories, e.g., law;
stem words. The gloss of author is given in Example 5.22.

The results have been taken as sets (not bags, so there is no repetition) of words
and syntactically compared, yielding the following table:

illustrator author creator Person writer

illustrator 1. 0.05 0.07 0. 0.02
author 0.05 1. 0. 0. 0.19
creator 0.07 0. 1. 0.06 0.02
Person 0. 0. 0.06 1. 0.04
writer 0.02 0.19 0.02 0.04 1.

This result is consistent with the previous measures since the only previously match-
ing pair (author-writer) is still the highest scorer. This measure introduces new rela-
tions such as creator-illustrator, but still does not find the (possible) relation between
creator and author. This is entirely related to the quality of glosses in WordNet.

Another example of building a matcher by using (WordNet) glosses includes
counting the number of occurrences of the label of the source input sense in the
gloss of the target input sense. If this number is equal to a threshold, e.g., 1, the less
general relation can be returned. The reason for returning the less general relation
is due to a common pattern of defining terms in glosses through a more general
term. For example, in WordNet creator is defined as ‘a person who grows or makes
or invents things’. Thus, following this strategy we could find that creator 	 person.
Some other variations of gloss-based matchers include considering glosses of the
parent (children) nodes of the input senses in the WordNet is a (part of ) hierar-
chy (Giunchiglia and Yatskevich 2004). The relations produced by these matchers
depend heavily on the context of the matching task, and therefore, these matchers
cannot be applied in all the cases (Giunchiglia et al. 2006c).

Multilingual Methods

Ontologies may be monolingual if all their labels are available in only one natural
language, or multilingual if they use several different languages. Moreover, due to
the possibility of ontology languages, such as OWL or SKOS, to declare several
labels with explicitly identified languages, it is possible to assess the language in
which ontology entities are identified, e.g., Article@fr is the word ‘article’ in French.

Similarly, two terms used as labels can be matched monolingually if they belong
to the same natural language, or crosslingually if they belong to two different natural
languages. The first option corresponds to the techniques which were considered in
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the previous sections. However, crosslingual matching is taking on more importance
due to the variety of languages in which ontologies can be described. It may be
performed in several ways: by comparing to a pivot language or through cross-
translation (Trojahn et al. 2010b).

Comparison to a pivot language translates the terms of two ontologies into one
particular language (Jung et al. 2009). This reduces the number of required trans-
lations, allowing for dealing with several languages of a multilingual ontology in
one pass. Having the same entity identified by labels in different languages in one
ontology may help in disambiguating the target term in the pivot language. For in-
stance, Paper in English may be translated into Papel or Articulo in Spanish, but if
the French label is Article, then the appropriate sense is Articulo. Usually, pivot lan-
guage methods are chosen because linguistic resources for comparing the terms in
different languages are available.

Cross-translation translates all the terms of one ontology into the language of
the other ontology (Fu et al. 2012). Translation may use a variety of techniques
from the use of interlingual resources, such as interlingual lexicons, i.e., lexicons
in which the definition is replaced by the equivalent terms in another language,
e.g., Paper in English corresponds to Article in French. Such dictionaries can be very
useful if ontology labels are expressed in different languages. They can be used for
matching as well as for disambiguating terms, i.e., identifying their intended sense,
before matching. Translation may also use other resources, such as on-line statistical
translators (Trojahn et al. 2010b).

Once all the terms are in only one language, either the pivot language or the
target language in cross-translation, usual (monolingual) techniques can be used to
compare them. This has consequences for linguistic matching techniques and brings
the distinction between:

monolingual matching, which matches two ontologies based on their labels in a
single language, such as English;

multilingual matching, which matches two ontologies based on labels in a variety
of languages, e.g., English, French and Spanish. This may be achieved by paral-
lel monolingual matching of terms or crosslingual matching of terms in different
languages;

crosslingual matching, which matches two ontologies based on labels in two iden-
tified different languages, e.g., English vs. French.

These definitions are slightly different from those of Spohr et al. (2011), where the
second option of multilingual matching was called crosslingual. It also makes mul-
tilingual matching more general than the two other options (which are multilingual
matching with only one pair of languages).

An interesting technique offered by multilingual ontologies is crosslingual val-
idation. It consists of matching two ontologies in parallel (Sect. 7.2) in different
languages, e.g., French matched with French, English with English, and aggregat-
ing these parallel matches in order to retain a consensus (Sect. 7.4). Usually, if a
particular correspondence is found by a sufficient number of matchers, then it is
retained. This approach was found beneficial for matching accuracy (Spohr et al.
2011).
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Table 5.3 List of language
measures based on WordNet
and available in the
wn-similarity Perl package
and the SimPack Java
package (some measures have
not been presented yet).

WordNet::similarity SimPack

Resnik Resnik

Jiang–Conrath (Jiang and Conrath 1997)

Lin Lin

Leacock–Chodorow Leacock–Chodorow

Hirst–St. Onge (Saint-Onge 1995)

Edge count Edge count

Wu–Palmer Wu–Palmer

Extended gloss overlap

Vector on gloss

Summary on Linguistic Methods

Many methods presented in this section have been implemented in the Perl pack-
age10 WordNet::similarity (Pedersen et al. 2004) and the Java package SimPack4

(see Table 5.3). They have been thoroughly compared in (Budanitsky and Hirst
2006).

Linguistic resources, such as stemmers, part-of-speech taggers, lexicons, and the-
sauri are invaluable resources since they allow the interpretation of the terms used in
the expressions of ontologies. They provide a more accurate apprehension of these
labels.

However, whenever the adequate resources are available for some language, they
mainly open new possible matches between entities because they recognise that two
terms can denote the same concept. Unfortunately, since they also recognise that
the same term may denote several concepts at once, these techniques provide many
possible matches from which to choose.

One way to choose among these representations is to take into account the struc-
ture of ontology entities in order to select the most coherent matches.

5.3 Internal Structure-Based Techniques

The structure of entities in ontologies can be compared, instead of or in addition to
comparing their names or identifiers.

This comparison may be subdivided into a comparison of the internal structure of
an entity, i.e., besides its name and annotations, its properties or, in the case of OWL
ontologies, the properties which take their values in a data type, or the comparison
of the entity with other entities to which it is related. The former is called internal
structure and the latter is called relational structure. The internal structure is the

10http://wn-similarity.sourceforge.net.

http://wn-similarity.sourceforge.net
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definition of entities without reference to other entities; the relational structure is
the set of relations that an entity has with other entities. As expected, the internal
structure is primarily exploited in database schema matching, while the relational
structure is more important in matching formal ontologies and semantic networks.
This section is only concerned with internal structure-based techniques; external or
relational techniques are considered in Sect. 6.1.

Internal structure-based methods are sometimes referred to as constraint-based
approaches in the literature (Rahm and Bernstein 2001). These methods are based
on the internal structure of entities and use such criteria as the set of their properties,
the range of their properties (attributes and relations), their cardinality or multiplic-
ity, and the transitivity or symmetry of their properties to calculate the similarity
between them.

Entities with comparable internal structures or properties with similar domains
and ranges in two ontologies may be numerous. For that reason, these kinds of
methods are commonly used to create correspondence clusters rather than to dis-
cover accurate correspondences between entities. They are usually combined with
other element-level techniques, such as terminological methods, and are responsi-
ble for reducing the number of candidate correspondences. They can be used with
other approaches as a preprocessing step to eliminate most of the properties that are
clearly incompatible.

For illustrating these methods we consider the properties associated with the
Product and Volume entities in the example of Fig. 5.2 (the expected correspondences
are given in Fig. 2.9, p. 45).

Fig. 5.2 Two sets of properties to be compared.

If we start from the elements of Fig. 5.2, there is no chance that pure terminolog-
ical similarity methods find them very similar, though year and creator may appear
the same to some edit distance methods. A linguistic method may be better able to
find a relationship between creator and author.

Comparing the internal structure of ontology entities may be reduced to com-
paring their properties and composing the obtained result: the system can evaluate
the similarity between all components considered next (names, keys, data types,
domains, cardinalities) or multiplicities and combine the results. The combination
operation is considered in Sect. 7.4, we focus here on the elementary comparison.
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5.3.1 Property Comparison and Keys

In database schemas, unlike in formal ontologies, tables are provided with keys: a
combination of properties whose values uniquely identify an object. For a Book, it
would typically be the international standard book number (isbn), for a Person it can
be his or her name, birth place and date.

This information is primarily very useful for recognising that two individuals are
the same. Thus, keys are mostly used in extensional methods as a means to identify
individuals and then apply methods on common set of instances (Sect. 5.4).

However keys can also be used for identifying classes: two classes identified in
the same way are likely to represent the same set of objects. Moreover, even if two
schemas use different keys for the same class, e.g., identifying Person with a social
security number, there can be secondary keys that perform the same functions, e.g.,
that the social security number is also considered a key in the other class. So, when
provided with keys, if they are highly compatible (similar names and types), it is
plausible that the classes are equivalent.

For instance, if Product has id as a key and Volume has isbn as a key, it can be
considered that these properties should correspond in case where the classes are the
same. This can be considered possible because both properties have the same type
(uri).

5.3.2 Data Type Comparison

Property comparison involves comparing the property data type (in OWL, this can
be the range of the relation or a Restriction applied to the property in the class). Con-
trary to objects that require interpretations, data types can be considered objectively
and it is possible to determine how close a data type is to another (ideally this can
be based on the interpretation of data types as sets of values and the set-theoretic
comparison of these data types (Valtchev 1999; Valtchev and Euzenat 1997)).

We distinguish here between a data type, which corresponds to the way the val-
ues are stored in a computer (like integer, float, string or uri), and a domain, which
characterises a subset of a particular data type (like [10 12] or ‘*book’). Data types
are considered here and domains are addressed in the next section.

Data types are not fully disjoint, though there are rules by which an object of one
type can be thought of as an object of another type and rules by which a value of
some type can be converted in the memory representation of another type (known
as casting in programming languages).

Ideally, the proximity between data types should be maximal when these are the
same types, lower when the types are compatible (for instance, integer and float are
compatible since they can be cast one into the other) and the lowest when they are
non compatible. In addition, domain comparison should ideally be based on data
type comparison and the comparison of the sets of values covered by these do-
mains. The compatibility between property data types may be assessed by using an
underlying look-up table. An example of a part of such a table is given in Table 5.4.



5.3 Internal Structure-Based Techniques 109

Table 5.4 Part of a data type
compatibility table. char fixed enumeration int number string

string 0.7 0.4 0.7 0.4 0.5 1.0

number 0.6 0.9 0.0 0.9 1.0 0.5

Such a table can be extracted, for languages like OWL, from the type hierarchy
of XML Schema data types (see Fig. 5.3). In the example of Fig. 5.2, it can be
considered that since a uri is a subclass of string, the isbn may be related to name.

Fig. 5.3 Fragment of the XML Schema data type hierarchy (Biron and Malhotra 2004).

Example 5.31 (Data type comparison) In the example of Fig. 5.2, data type com-
parison would match price with year, both name and topics with title, and id with isbn.
creator and author are left aside because they are object-valued properties. This com-
parison yields interesting results since it finds the expected matches. However, it
also finds incorrect ones (price-year and topics-title), so these methods cannot be used
in isolation.

5.3.3 Domain Comparison

Depending on the entities to be considered, what can be reached from a property
may be different: in classes these are domains while in individuals these are val-
ues. Moreover, they may be structured in sets or sequences. It is thus important to
consider this fact in the comparison.

Types or domains of properties may be compared on the basis of their interpreta-
tions: sets of values (Valtchev 1999). Type comparison is based on their respective
size, in which the size of a type is the cardinality or multiplicity of the set of val-
ues it defines. The distance between two domains is then given by the difference
between their size and that of their common generalisation. This measure is usually
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normalised by the size of the largest possible distance attached to a particular data
type. We give here an instance of this type of measure.

Definition 5.32 (Relative size distance) and e′ over a data type τ , the relative size
distance δ : 2τ × 2τ →[0 1], is as follows:

δ(e, e′)= |genτ (e ∨ e′)| − |genτ (e ∧ e′)|
|τ | ,

such that genτ (.) provides the generalisation of a type expression and ∨ and ∧
correspond to the union and intersection of the types.

Example 5.33 (Relative size distance) Consider a property age in one class to be
compared with the property age of three other classes (schoolchild, teenager and
grown-up). The first property has a domain of [6 12], while the others have respec-
tive domains expressed by: [7 14], [14 22] and ≥10. All these properties have data
type integer. The generalisation of these four domains are the domains themselves,
the union with [6 12] is respectively [6 14], [6 22], [6 +∞[, and the intersection
is respectively [7 12], ∅, and [10 12]. As a consequence, the distance will be re-
spectively 3/|τ |, 17/|τ | and |τ | − 3/|τ |. This corresponds to some intuition that the
distance between domains depends on the difference between the values they cover
in isolation and in common.

There are three advantages of this measure. The most obvious one is that it is
normalised. The second one is that it is general (it is not expressed in terms of
integers). The third one is that it can easily be mapped to the usual measures that are
often used.

Usually, a common generalisation depends on the type: it is a set for enumerated
types and an interval for ordered types (it can also be a set of intervals). In the
case of dense types, the size of a domain is the usual measure of its size (Euclidean
distance can be used for real or floating point numbers). The case of infinite types
has to be taken adequately (by evaluating the largest possible domain in a computer
or by normalising with regard to the actual corpus) (Valtchev 1999). Normalising
over the largest distance in the corpus, if possible, is often a good idea. Indeed, it
is not reasonable, for example, to normalise the age of people with that of planets
or their size even if they use the same unit. Another advantage of this framework is
that it encompasses value comparisons which can be considered as singletons and
compared with domains if necessary.

5.3.4 Comparing Multiplicities and Properties

Properties may be constrained by multiplicities (as they are called in UML). Mul-
tiplicities are the acceptable cardinalities of the set of values of a property (for a
given object). Similar to compatibilities between data types, compatibility between
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cardinalities can be established based on a table look-up. An example of such a table
for DTDs is given in Table 5.5, following (Lee et al. 2002).

Table 5.5 A cardinality
compatibility table. * + ? none

* 1.0 0.9 0.7 0.7

+ 0.9 1.0 0.7 0.7

? 0.7 0.7 1.0 0.8

none 0.7 0.7 0.8 1.0

In OWL, cardinalities or multiplicities are expressed through the minCardinality,
maxCardinality and cardinality restrictions. Multiplicities can be expressed as an inter-
val of the set of positive integers [0 +∞[. As such, they are domains of the integer
type. Two multiplicities are compatible if the intersection of the corresponding in-
tervals is nonempty. Any measure on the integer data type can be used for assessing
the similarity between multiplicities (see Sect. 5.3.3), in this case a simpler distance
inspired from the Jaccard similarity.

Values may be collected by a particular construction (set, list, multiset) on which
cardinality constraints are applied. Again, it is possible to compare these constructed
data types by comparing (i) the data types on which they are constructed and (ii) the
cardinalities that are applied to them. For instance, sets of 2 and 3 children are
closer to a set of 3 people than to a set of 10–12 flowers (if children are people).
This technique is used in (Euzenat and Valtchev 2004).

Definition 5.34 (Multiplicity similarity) Given two multiplicity expressions [b e]
and [b′ e′], the multiplicity similarity is a similarity between nonnegative integer
intervals σ : 2τ × 2τ →[0 1], such that

σ
([b e], [b′ e′])=

{
0 if b′ > e or b > e′
min(e,e′)−max(b,b′)
max(e,e′)−min(b,b′) otherwise

For instance, if we have to compare multiplicity [0 6] with [2 8], [8 12] and
[0 +∞], the comparison will respectively yield .5, 0. and 6/MAXINT (the latter is
very low but remains nonnull because it is compatible with the initial multiplicity).

Example 5.35 (Multiplicity comparison) In the example of Fig. 5.2, multiplicity
comparison can be used to further match id with isbn because they will both have a
cardinality of [1 1] and, unfortunately, will match price with year as well. However,
is can also be used to prefer matching name rather than topic to title because they have
the same multiplicities ([1 +∞] instead of [0 +∞]).



112 5 Basic Similarity Measures

5.3.5 Other Features

Other internal structural factors have been considered in database schema match-
ing. Among these additional property characteristics are uniqueness, static semantic
integrity constraints, dynamic semantic integrity constraints, security constraints, al-
lowable operations and scale (Navathe and Buneman 1986). Since these are internal
features, they may be very dependent on the knowledge model.

It is also possible in some languages to consider collection constructors, e.g.,
Set, List, Bag or multiset, Array, and their compatibility. It is then necessary to com-
pare sets or lists of objects, e.g., the sequence of topics or the set of authors of a
Book. In this case, general techniques may be used for assessing the similarity or
distance between these sets depending on the similarity applying to the type of their
elements. Concerning sets, these methods will be presented in Sect. 5.4.1 in the
context of extension comparison. Concerning sequences, they can be adapted from
those measures of Sect. 5.2.1 that consider strings as sequences of characters and
paths as sequences of strings. In addition, Sect. 6.2.2 explains how to compare sets
of objects with similarities.

In (Ehrig and Sure 2004), a set of rules is used for determining similarity between
ontology entities. The authors point out that some features from OWL related to
internal structure, such as symmetry and restrictions of values, could be used, but
are discarded at the moment, as they do not have any wide distribution.

Summary on Internal Structure-Based Techniques

Internal structure, including the names of entities, is very important for matching
because it provides a basis on which algorithms can rely. The techniques for com-
paring them are efficient and easy to implement.

However, the internal structure does not provide much information on the enti-
ties to compare: many very different types of objects can have properties with the
same data types. On the one hand, they can be used for eliminating incompatible
correspondences and promoting compatible ones. On the other hand, it is always
possible that different models of a concept use different, and incompatible, types.
For these reasons, internal structure comparisons must always be used jointly with
other techniques.

5.4 Extensional Techniques

When individual representations (or instances) are available, there is a very good
opportunity for matching systems. When two ontologies share the same set of indi-
viduals, matching is highly facilitated. For example, if two classes share exactly the
same set of individuals, then there can be a strong presumption that these classes are
equivalent.



5.4 Extensional Techniques 113

Even when classes do not share the same set of individuals, these allow the
grounding of the matching process on tangible indices which do not change eas-
ily. For instance, titles of Books do not have any reason to change. So if titles of Books
are different, then these are most certainly not the same books. Then, matching can
be again based on individual comparisons.

We thus divide extensional methods into three categories: those which apply to
ontologies with common instance sets (Sect. 5.4.1), those which propose individ-
ual identification techniques, before using the previous ones (Sect. 5.4.2), and those
which do not require identification, i.e., which work on heterogeneous sets of in-
stances (Sect. 5.4.3).

5.4.1 Common Extension Comparison

The easiest way to compare classes when they share instances is to test the inter-
section of their instance set A and B and to consider that these classes are very
similar when A ∩ B = A= B , more general when A ∩ B = B or A ∩ B = A. Re-
lationships and entity sets can be integrated primarily based on the set relations:
equal (A∩B =A= B), contains (A ∩B =A), contained-in (A∩B = B), disjoint
(A∩B = ∅) and overlap (Larson et al. 1989; Sheth et al. 1988). The problem is the
ability to handle faults: small amounts of incorrect data may lead the system to draw
a wrong conclusion on domain relationships. Moreover, the dissimilarity has to be
1 when none of these cases apply: for instance, if the classes have some instances in
common but not all.

A way to refine this is to use the Hamming distance between two extensions: it
corresponds to the size of the symmetric difference normalised by the size of the
union.

Definition 5.36 (Hamming distance) The Hamming distance between two sets is a
dissimilarity function δ : 2E × 2E →R such that ∀x, y ⊆E:

δ(x, y)= |x ∪ y − x ∩ y|
|x ∪ y|

This version of the symmetric difference is normalised. Using such a distance
in comparing sets is more robust than using equality: it tolerates some individuals
being misclassified and can still produce a short distance.

It is also possible to compute a similarity based on the probabilistic interpretation
of the set of instances. This is the case of the Jaccard similarity (Jaccard 1901).

Definition 5.37 (Jaccard similarity) Given two sets A and B , let P(X) be the prob-
ability of a random instance to be in the set X. The Jaccard similarity is defined
as

σ(A,B)= P(A∩B)

P (A∪B)
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This measure is normalised and reaches 0 when A∩B = ∅ and 1 when A= B . It can
be used with two classes of different ontologies sharing the same set of instances.

Formal Concept Analysis

One of the tools of formal concept analysis (FCA) (Ganter and Wille 1999) is the
computation of the concept lattice. The idea behind formal concept analysis is the
duality between a set of objects (here the individuals) and their properties: the more
properties are constrained, the fewer objects satisfy the constraints. So, a set of ob-
jects with properties can be organised in a lattice of concepts covering these objects.
Each concept can be identified by its properties (the intent) and covers the individual
satisfying these properties (the extent).

In ontology matching, the properties can simply be the classes to which the indi-
viduals are known to belong and the technique is independent from the origin of the
entities, i.e., whether they come from the same ontology or not. From this data set,
formal concept analysis computes the concept lattice (or Galois lattice). This is per-
formed by computing the closure of the instances×properties Galois connection.
This operation starts with the complete lattice of the power set of extent (respec-
tively, intent) and keeps only the nodes which are closed under the connection, i.e.,
starting with a set of properties, it determines the corresponding set of individuals,
which itself provides a corresponding set of properties; if this set is the initial one,
then it is closed and is preserved, otherwise, the node is discarded. The result is a
concept lattice.

Fig. 5.4 A ‘formal context’ and the corresponding concept lattice.

The table of Fig. 5.4 displays a small set of instances and the classes they belong
to (from both ontologies). The right-hand side of Fig. 5.4 displays the corresponding
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concept lattice. From this lattice the following correspondences may be extracted:

Science= Essay Science≥ Biography Essay≥ Popular

Science≥ Autobiography Popular= Biography Popular= Autobiography

Literature≥ Pocket Novel= Pocket

The result is not accurate. However, it is possible to weight these results by first
eliminating the redundant correspondences and by providing a confidence according
to the size of the extent covered by the correspondence.

5.4.2 Instance Identification Techniques

If a common set of instances does not exist, it is possible to try identifying which
instance from one set corresponds to which other instance from the other set. This
method is usable when one knows that the instances are the same. This works, for
example, when integrating two human resource databases of the same company, but
does not apply for those of different companies or for databases of events which
have no relations.

These approaches have gained a lot of attention recently with the advent of
linked data (Sect. 1.3). Indeed, data interlinking is an important task for linked data
(Köpcke and Rahm 2010; Ferrara et al. 2011b), so many algorithms have been re-
cently developed. It can benefit from ontology matching by using correspondences
to focus the search for potential instance-level links (Nikolov et al. 2009; Scharffe
and Euzenat 2011). In return, links produced by data interlinking provide an oppor-
tunity to identify the instances of ontologies to match. Thus matchers using links
from the web of data were developed (Sect. 8.1.34). This is an illustration of the
feedback loop presented in Fig. 1.5 (p. 12): better alignments provide better linked
data, which in turn provide better alignments. Below, we briefly consider some such
techniques.

Linkkey Extraction

A first natural technique for identifying instances is to take advantage of keys in data
sets. Keys can be either internal to the data set, i.e., generated unique surrogates: in
which case they are not very useful for identification, or external identification: in
which case it is possible that these identification keys are present in both data sets
(even if they are not present as keys). In such a case, if they are used as keys, we can
be sure that they uniquely identify an individual (like isbn).

In general, what is really sought for are what we call linkkeys: sets of properties
from both ontologies which, for a pair of classes, identify pairs of instances describ-
ing the same individual. Linkkeys should unambiguously identify entities from both
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data sets. So, they should provide the correspondences between properties of both
data sets to identify instances with the same values. They must be nonambiguous
only on the instances selected by the correspondences, so there must be keys only
for these sets.

Example 5.38 (Linkkey extraction) Consider two (small) book data sets described
in the following tables:

bookstore data set library data set
isbn firstname title lastname lang year author orig translator

1845 Poe Raven Baudelaire
1845 Poe Raven Mallarmé

3 E. Gold bug Poe en 1843 Poe Gold Bug Baudelaire
4 T. On murder Quincey en 1827 Quincey On murder Schwob
5 T. Kant Quincey en 1827 Quincey Kant Schwob
6 T. Confessions Quincey en 1822 Quincey Confessions Musset
7 J.-J. Confessions Rousseau fr
8 T. Confessions Aquinus fr

The keys for the bookstore data source are {isbn}, {title, lastname}, or {title, firstname,

lang} and, for the library data source, {orig, translator}.
A linkkey is 〈{title, lastname}, {author, orig}, {title = orig, lastname = author}〉. So,

the linkkey uses a non-minimal key of the bookstore data set, because there is
no counterpart to the minimal key {isbn} in the library data set (and thus there
is no correspondence involving isbn). More surprising, the linkkey does not use
a key of the library data set, because (i) there is no counterpart to the translator

property in the bookstore data set, and (ii) the set of properties used is sufficient
for generating links nonambiguously (this would have been different if a tuple
〈year = 1822, author = Quincey, orig = Confessions, translator = Baudelaire〉 were
present in the library data set).

It is possible to establish more elaborate linkkeys, such as 〈{title, lastname, lang},
{ttitle, author}, {lastname = author, title = translate(ttitle, lang)}〉, which may be useful
in case the orig column is not available. Such linkkeys may be useful when unit
conversions are necessary.

As can be noted from the example, the third element of a linkkey is literally an
alignment between properties. In principle, key extraction is performed by algebraic
techniques isolating the smallest subsets of properties for which no two instances
have the same values. Linkkeys can be treated in the same way, taking into account
correspondences (equivalences) between the properties and replacing instances by
pairs of instances. However, given the open and often nonperfect quality of linked
data sets, it is useful to develop techniques for finding keys that maximise the sup-
port that they have in the data sets (Atencia et al. 2012b). Another difficulty when
dealing with ontology extensions is the definition of keys when properties and rela-
tions may have several values.



5.4 Extensional Techniques 117

Similarity-Based Instance Matching

When keys are not available, or they are different, other approaches to deter-
mine property correspondences use instance data to compare property values. In
databases, this technique has been known as record linkage (Fellegi and Sunter
1969; Elfeky et al. 2002) or object identification (Lim et al. 1993). They aim at
identifying multiple representations of the same object within a set of objects. They
are usually based on string-based and internal structure-based techniques (Sects. 5.2
and 5.3).

Most of the data interlinkers dealing with instances nonidentifiable by keys work
under the same schema (Ngomo and Auer 2011; Araújo et al. 2012): they first apply
a phase of blocking (similar to the one described in Sect. 7.1.1) for identifying sets of
instances that must be compared; then they use a similarity measure for comparing
these instances and deciding if they represent the same entity or not. A framework
like Silk (Sect. 12.4.2) allows for precisely describing these two steps. It offers a lan-
guage for plugging and aggregating similarity measures. The considered similarity
measures are typically those considered in this chapter. In addition, measures spe-
cific to the data types to consider have been developed, e.g., measures for matching
geographic areas or addresses.

Since the data is usually described through ontologies, classes are a relevant first
level of blocking. Hence, some data interlinkers, like KnoFuss (Sect. 12.4.1), can
take as input an ontology alignment, which constrains classes whose instances will
be compared.

Finally, given that the size of linked data is usually greater than that of ontologies,
this makes learning the similarity more relevant for two reasons:

− The size of the data makes it difficult to study it for choosing the best approach,
and after extracting a training sample, much work remains to be done;

− The regularity of the data facilitates machine learning efficiency.

So, it is not surprising that learning methods, such as genetic programming
(Sect. 7.6.2), have been used in data interlinking (Ngomo 2011; Isele and Bizer
2013). If values are not precisely the same but their distributions can be compared,
it is possible to apply global techniques. This case is covered in the next section.

5.4.3 Disjoint Extension Comparison

When it is not possible to directly infer a data set common to both ontologies, it is
easier to use approximate techniques for comparing class extensions. These methods
may be based on statistical measures about the features of class members, on the
similarities computed between instances of classes or based on a matching between
entity sets.
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Statistical Approach

Instance data can be used to compute statistics about the property values found in
instances, such as maximum, minimum, mean, variance, existence of null values,
existence of decimals, scale, precision, grouping, and number of segments. This
allows characterising the domains of class properties (Sect. 5.3.3) from the data. In
practice, if dealing with statistically representative samples, these measures should
be the same for two equivalent classes of different ontologies.

Example 5.39 (Statistical matching) Consider two ontologies with instances. The
analysis of numerical properties size and weight in one ontology and hauteur and
poids in the other reveals that they have different average values but the same coef-
ficient of variation, i.e., standard deviation divided by mean, which, in turn, reveals
comparable variability of size and hauteur on the one hand and weight and poids on
the other hand. This is typically what happens when values are expressed in differ-
ent units. The ratio of average values of size/hauteur is 2.54 and that of weight/poids

is 28.35.
These values have been established based on the whole population. They can be

used for comparing the statistical characteristics of these properties in the classes
of the ontologies. For instance, the average value of the size property for the Pocket

class significantly differs from that of the global population and, once divided by
28.35, is very close to that of the Livredepoche class (also differing from the whole
population in the same manner). Hence, these two classes could be considered as
similar.

Other approaches (Li and Clifton 1994) use data patterns and distributions in-
stead of data values and domains. The result is a better fault tolerance and a lower
time consumption since only a small portion of data values are needed due to the
employment of data sampling techniques. In general, applying internal structure
methods to instances allows for a more precise characterisation of the actual con-
tents of schema elements, thus, more accurately determining corresponding data
types based, for example, on the discovered value ranges and character patterns.

These methods have, however, one prerequisite: they work better if the corre-
spondences between properties are known (otherwise they could match different
properties on the basis of their domain). This is already a matching problem to be
solved.

Similarity-Based Extension Comparison

Similarity-based techniques do not require classes to share the same set of instances,
though they can still be applied in that case. In particular, the methods based on
common extensions always return 0 when the two classes do not share any in-
stance, disregarding the distance between the elements of the sets. In some cases, it
is preferable to compare the sets of instances. This requires a (dis)similarity measure
between the instances that can be obtained with the other basic methods.
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In data analysis, linkage aggregation methods assess the distance between two
sets whose objects are only similar. They thus allow for comparing two classes on
the basis of their instances.

Definition 5.40 (Single linkage) Given a dissimilarity function δ : E × E → R,
the single linkage measure between two sets is a dissimilarity function Δ : 2E ×
2E →R such that ∀x, y ⊆E, Δ(x,y)=min(e,e′)∈x×y δ(e, e′).

Definition 5.41 (Complete linkage) Given a dissimilarity function δ :E ×E →R,
the complete linkage measure between two sets is a dissimilarity function Δ : 2E ×
2E →R such that ∀x, y ⊆E, Δ(x,y)=max(e,e′)∈x×y δ(e, e′).

Definition 5.42 (Average linkage) Given a dissimilarity function δ : E ×E → R,
the average linkage measure between two sets is a dissimilarity function Δ : 2E ×
2E →R such that ∀x, y ⊆E, Δ(x,y)=

∑
(e,e′)∈x×y δ(e,e′)

|x|×|y| .

Other linkage measures have been defined. Each of these methods has its own
benefits, e.g., maximising shortest distance, minimising longest distance, minimis-
ing average distance. Another method from the same family is the Hausdorff dis-
tance measuring the maximal distance of a set to the nearest point in the other set
(Hausdorff 1914):

Definition 5.43 (Hausdorff distance) Given a dissimilarity function δ :E×E →R,
the Hausdorff distance between two sets is a dissimilarity function Δ : 2E×2E →R

such that ∀x, y ⊆E,

Δ(x,y)=max
(

max
e∈x

min
e′∈y

δ(e, e′),max
e′∈y

min
e∈x

δ(e, e′)
)

Matching-Based Comparison

The problem with the former distances, but average, is that their value is a func-
tion of the distance between one pair of members of the sets. The average linkage,
on the other hand, has its value function of the distance between all the possible
comparisons.

Matching-based comparisons (Valtchev 1999) consider that the elements to be
compared are those which correspond to each other, i.e., the most similar one.

To that extent, the distance between two sets is considered as a value to be min-
imised and its computation is an optimisation problem: that of finding the elements
of both sets which correspond to each others. In particular, it corresponds to solving
a bipartite graph matching problem (Sect. 7.7.3).

Definition 5.44 (Match-based similarity) Given a similarity function σ : E ×
E → R, the match-based similarity between two subsets of E is a similarity func-
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tion MSim : 2E × 2E →R such that ∀x, y ⊆E,

MSim(x, y)= maxp∈Pairings(x,y)(
∑

〈n,n′〉∈p σ(n,n′))
max(|x|, |y|) ,

with Pairings(x, y) being the set of mapping of elements of x to elements of y.

This match-based similarity already requires an alignment to be computed. It also
depends on the kind of alignment that is required. Indeed, the result will be different
depending on whether the alignment is required to be injective or not. The match-
based comparison can also be used when comparing sequences (Valtchev 1999).

Summary on Extensional Techniques

Knowing extension information is invaluable for ontology matching because this
provides information that is independent from the conceptual part of the ontology.
Indeed, ontologies are views of the world and this is the reason why there can be
numerous different ontologies on the same topic (and the reason why they have to
be matched). Extension information is supposed to be less prone to variability and
can be used to accurately match classes.

A very favourable case occurs when two ontologies to be matched share the
same instances or when it is straightforward to connect the instances. This provides
an easy way to compare the overlap between two classes. In most situations, how-
ever, the instance spaces are different. In such cases, it is either possible to match
these instances in order to return to the previous case, or to use purely statistical
techniques to compare classes on global measures over their extensions.

5.5 Summary

We have discussed basic techniques that can be used for building correspondences
based on terminological (Sect. 5.2), internal structure (Sect. 5.3), and extensional
(Sect. 5.4) arguments. This classification of techniques is a natural one since each
of these deals with a partial view of ontologies.

There are many such techniques and our goal was not to present them all. It was
rather to propose a panorama of the most used ones so far and to show the direction
they take. There is still much work going on in finding better methods in each of
these directions.

In general, these techniques are not used in isolation. They serve as the basis of
more global methods or they are combined together for reenforcing their strengths.
This is the topic of the two next chapters.



Chapter 6
Global Matching Methods

The basic similarities presented in Chap. 5 can be considered local because, in order
to assess the similarity or dissimilarity between two entities, they only consider
their proper characteristics (name, internal structure and extension). We consider
here global methods, which consider the characteristics holding between the various
entities in order to compare them.

We thus first consider the relational structure holding between the different enti-
ties (Sect. 6.1); this corresponds to methods using the external structure of entities
as opposed to their internal structure (Sect. 5.3). When cycles occur in ontologies,
as they often do, simple similarity computation is not possible. So, we present iter-
ative similarity computation techniques (Sect. 6.2), which can deal with cycles and
nonlinearity in the constraints governing relational similarities. These techniques
tend to approximate an optimal solution for these constraints. Hence, we consider
the use of classical optimisation techniques as a way to solve the matching prob-
lem (Sect. 6.3). Among global methods are probabilistic methods, which compute
a probability of entities to be related based on the structure of ontologies and align-
ments (Sect. 6.4). Finally, we consider semantic techniques, because they depend
on the global interpretation of each of the ontologies and alignments (Sect. 6.5).

These approaches often rely on basic matchers to provide seed alignments or
anchors to be improved. For that reason, contrary to Chap. 1, in which a matcher
was always a rectangle, each figure of this chapter and the next one details the
inside of such a box, which is now represented as a dashed rectangle. Parameters
and resources are omitted from the diagrams for the sake of readability. However,
these exist and can be dispatched to all the subcomponents of the resulting matchers.

6.1 Relational Techniques

An ontology can be considered as a graph whose edges are labelled by relation
names (mathematically speaking, this is the graph of the multiple relations of the
ontology: 	, ∈, ⊥, :, =). Finding correspondences between elements of two such
graphs corresponds to finding a common homomorphic subgraph of both graphs.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_6,
© Springer-Verlag Berlin Heidelberg 2013
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Definition 6.1 (Common homomorphic directed subgraph) Given two directed
graphs G= 〈V,E〉 and G′ = 〈V ′,E′〉, a common homomorphic directed subgraph
of G and G′ is a graph 〈V ′′,E′′〉, such that there exists a pair of homomorphisms
f :W → V ′′ and g :W ′ → V ′′ with W ⊆ V and W ′ ⊆ V ′, such that

− ∀w ∈ V ′′, ∃u ∈ V ; f (u)=w and ∃v ∈ V ′; g(v)=w;
− ∀〈u,v〉 ∈E|W×W , 〈f (u), f (v)〉 ∈E′′;
− ∀〈u′, v′〉 ∈E′|W ′×W ′ , 〈g(u′), g(v′)〉 ∈E′′.

Graph matching is another type of problem, which is presented in Sect. 7.7.3.
The problem can be expressed as an optimisation problem. In graph theory, one

would like to find a graph such that there is no other common homomorphic di-
rected subgraph 〈V ′′′,E′′′〉 with |V ′′′|> |V ′′| or with V ′′ ⊂ V ′′′. In ontology match-
ing, these subgraphs do not have to be maximal: they will minimise some distance
like the dissimilarity between matched objects or maximise similarity. Moreover,
the problem is very often adapted for multipartite graphs, separating classes from
properties.

The similarity comparison between two entities from two ontologies can be based
on the relations of these entities with the other entities in the ontologies: the more
two entities are similar, the more their related entities should be alike. This remark
may be exploited in several ways depending on the kind of relations considered.
Moreover, given the transitive nature of some relations, it is natural to extend this
remark through transitivity. Roughly, for each pair of relations, we can come up with
5 different ways of comparing the relations (Euzenat et al. 2004):

r comparing the entities in direct relation through r ;
r− comparing the entities in the transitive reduction of relation r ;
r+ comparing the entities in the transitive closure of relation r ;
r−1 comparing the entities coming through a relation r ;
r↑ comparing entities which are ultimately in r+ (the maximal elements of the

closure).

These relations are illustrated as follows:

Example 6.2 (Exploiting relations in an ontology) Given the leftmost ontology of
Fig. 2.7, the relations based on subClass from Book are as follows:

subclass(Book)= subclass−(Book)= {Science,Pocket,Children}
subclass+(Book)= {Science,Pocket,Textbook,Popular,Children}

subclass−1(Book)= {Product}
subclass ↑ (Book)= {Textbook,Popular,Pocket,Children}

Table 6.1 displays the different ways of comparing two ontology entities based
on their relations with other entities. Of course, approaches may combine several of
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Table 6.1 Features on which ontology entities can be compared. The table reads: Two Entities are
similar if their Features are similar. This table is an adapted version of tables reported in (Ehrig
2007; Euzenat et al. 2004; Euzenat and Valtchev 2004).

Entity Feature OWL Type

Class name rdf:label String

id rdf:ID String

comments rdf:comment String

same classes owl:sameClassAs Set(Class)

properties property Set(Property)

ultimate properties property↑ Set(Property)

direct superclasses owl:subClassOf− Set(Class)

direct subclasses owl:subClassOf−1− Set(Class)

superclasses owl:subClassOf∗ Set(Class)

subclasses owl:subClassOf−1∗ Set(Class)

ultimate subclasses owl:subClassOf−1↑ Set(Class)

direct instances rdf:type−1∗ Set(Individual)

instances rdf:type−1− Set(Individual)

Property name rdf:label String

id rdf:ID String

comments rdf:comment String

same properties owl:samePropertyAs Set(Property)

domain/range rdfs:domain/rdfs:range Class

direct superproperties rdfs:subProperty− Set(Property)

direct subproperties rdfs:subProperty−1− Set(Property)

superproperties rdfs:subProperty∗ Set(Property)

subproperties rdfs:subProperty−1∗ Set(Property)

Individual name rdf:label String

id rdf:ID String

comments rdf:comment String

same individuals owl:sameAs Set(Instance)

direct classes rdf:type− Set(Class)

classes rdf:type∗ Set(Class)

properties property Set(Property)

the above criteria (Mädche and Staab 2002; Euzenat and Valtchev 2004; Bach et al.
2004).

As can be observed from Table 6.1, some features have type String and can be
compared with the techniques proposed in Sect. 5.2.1. However, those with type
Class or Property really induce a graph structure. Moreover, the values which are
labelled by Set(·) are more difficult to deal with because this means that many edges
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labelled by the feature will appear in the graph. The last part of the table is, in fact,
relevant to the extensional methods presented in Sect. 5.4.

There are three types of relations that have been considered so far in relational
structure techniques: taxonomic relations, mereologic relations and all the involved
relations. These are considered below.

6.1.1 Taxonomic Structure

The taxonomic structure, i.e., the graph made with the subClassOf relation, is the
backbone of ontologies. For this reason, it has been studied in detail by researchers
and is very often used as a comparison source for matching classes.

There have been several measures proposed for comparing classes based on the
taxonomic structure. The most common ones are based on counting the number of
edges in the taxonomy between two classes. The structural topological dissimilar-
ity on a hierarchy (Valtchev and Euzenat 1997) follows the graph distance, i.e., the
shortest path distance in a graph taken here as the transitive reduction of the hierar-
chy.

Definition 6.3 (Structural topological dissimilarity on hierarchies) The struc-
tural topological dissimilarity δ : o × o → R is a dissimilarity over a hierarchy
H = 〈o,≤〉, such that

∀e, e′ ∈ o, δ(e, e′)=min
c∈o

[
δ(e, c)+ δ(e′, c)

]

where δ(e, c) is the number of intermediate edges between an element e and another
element c.

This corresponds to the unit tree distance, i.e., with weight 1 on each edge
(Barthélemy and Guénoche 1992). This function can be normalised by the maxi-
mal length of a path between two classes in the taxonomy:

δ(e, e′)= δ(e, e′)
maxc,c′∈o δ(c, c′)

Example 6.4 (Structural topological dissimilarity) We provide the examples of this
section based on the taxonomy in Fig. 5.1. We consider that each term corresponds
to a class (all senses are considered together) and there exists a top of the hierarchy
(on top of Person, litterate, legal document and God).
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illustrator author creator Person writer

illustrator 0. .8 .4 .6 1.
author .8 0. .4 .6 0.
creator .4 .4 0. .2 .6
Person .6 .6 .2 0. .4
writer 1. 0. .6 .4 0.

Again, this corroborates the WordNet data that the closest classes are writer and
author.

The results given by such a measure are not always semantically relevant since a
long path in a class hierarchy can often be summarised as an alternative short one.

A similar measure is the one of Leacock–Chodorow (Leacock et al. 1998), which
is function of the length of the shortest path. It was introduced for lexicographic
taxonomies (Sect. 5.2.2). A more elaborate measure of this kind is known as the
Wu–Palmer similarity (Wu and Palmer 1994). This similarity measure takes into
account the fact that two classes near the root of a hierarchy are close to each other
in terms of edges but can be very different conceptually, while two classes under
one of them, which are separated by a larger number of edges, should be closer
conceptually. The initial Wu–Palmer similarity was designed by counting nodes as
the length of a path, instead of using the usual graph-theoretic edge counting. We
prefer the formulation in terms of edges (Resnik 1999). When used in ontology
matching, the difference is not relevant.

Definition 6.5 (Wu–Palmer similarity) The Wu–Palmer similarity σ : o× o → R

is a similarity over a hierarchy H = 〈o,≤〉, such that

σ(c, c′)= 2× δ(c ∧ c′, ρ)

δ(c, c ∧ c′)+ δ(c′, c ∧ c′)+ 2× δ(c ∧ c′, ρ)

where ρ is the root of the hierarchy, δ(c, c′) is the number of edges between a class
c and another class c′ included and c ∧ c′ = {c′′ ∈ o; c ≤ c′′ ∧ c′ ≤ c′′}.

Example 6.6 (Wu–Palmer similarity) The Wu–Palmer similarity also provides a fig-
ure in coherence with the WordNet structure.

illustrator author creator Person writer

illustrator 1. .5 .67 .4 .29
author .5 1. .67 .4 1.
creator .67 .67 1. .67 .4
Person .4 .4 .67 1. .5
writer .29 1. .4 .5 1.

The upward cotopic similarity applies the Jaccard similarity to cotopies. It has
been described in (Mädche and Zacharias 2002) and is defined as follows:



126 6 Global Matching Methods

Definition 6.7 (Upward cotopic similarity) The upward cotopic similarity σ : o×
o→R is a similarity over a hierarchy H = 〈o,≤〉, such that

σ(c, c′)= |UC(c,H)∩UC(c′,H)|
|UC(c,H)∪UC(c′,H)|

where UC(c,H)= {c′ ∈H ; c ≤ c′} is the set of superclasses of c (superclass+(c)).

Example 6.8 (Upward cotopic similarity) In this case, because all senses count in
the cotopy (and not the closest one in terms of path), the result is different from other
measures: creator benefits from its position as a superclass of author and illustrator for
scoring better than the usual writer-creator pair because they have too many unrelated
senses.

illustrator author creator Person writer

illustrator 1. .37 .43 .4 .18
author .37 1. .43 .29 .36
creator .43 .43 1. .4 .18
Person .4 .29 .4 1. .25
writer .18 .36 .18 .25 1.

These measures cannot be applied as they are in the context of ontology matching
since the ontologies are not supposed to share the same taxonomy H , but this can
be used in conjunction with a resource of common knowledge, such as WordNet.
For that purpose, it is necessary to develop these kinds of measures over a pair
of ontologies. In (Valtchev 1999; Euzenat and Valtchev 2004), this uses a (local)
matching between the elements to be compared (for instance, the hierarchies).

Besides these global measures that take into account the whole taxonomy for
assessing the similarity between classes, nonglobal measures have been used in
ontology matching. These measures usually take advantage of the ‘direct’ part of
Table 6.1. Below are some of these measures:

Super or subclass rules: Some matchers are based on rules capturing the intuition
that classes are similar if their super or subclasses are similar. For example, if su-
perclasses are the same, the actual classes are similar to each other. If subclasses
are the same, the compared classes are also similar (Dieng and Hug 1998; Ehrig
and Sure 2004). This technique has at least two drawbacks: (i) when there are
several sub or superclasses, then, without care, they would all be mapped into
the same one, so it is necessary to have some other discriminating features, and
(ii) the similarity between the sub or superclasses will rely in turn on that of
their super or subclasses. This turns this problem into yet another global simi-
larity problem.

Bounded path matching: Bounded path matchers take two paths with links be-
tween classes defined by the hierarchical relations, compare terms and their po-
sitions along these paths, and identify similar terms. This technique has been
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introduced in Anchor-Prompt (Sect. 8.1.9). For example, in Fig. 2.9, if Book cor-
responds to Volume and Popular corresponds to Autobiography, then the elements
along the paths (Science on the one hand and Biography and Essay on the other
hand) must be carefully considered for correspondence. For instance, for decid-
ing that Essay is more general than Science. This technique is primarily guided
by two anchors of paths and uses alternative techniques for choosing the best
match.

In addition, edit distances (Sect. 5.2.1) can also be applied to other structures
than strings, and in particular to tree (Tai 1979).

6.1.2 Mereologic Structure

The second well-known structure after the taxonomic structure is the mereologic
structure, i.e., the structure corresponding to a part-of relationship. If two classes
Book and Volume have been found equivalent, and both have mereologic relations
with classes InBook and BookChapter, respectively, then this is a suggestion that these
two classes may be related as well. This inference also applies in the reverse direc-
tion: from the part to the whole. This may be generalised when there are individ-
ualised parts, i.e., when the parts of a journal Issue are differentiated into editorials,
articles, recensions and letters.

The difficulty for dealing with this kind of structure is that it is not easy to find the
properties which carry a mereologic structure. For example, a class Proceedings can
have some whole-part relations with a class InProceedings, but it will be expressed
through a property communications. These InProceedings objects will in turn have a
mereologic structure which is expressed through sections property.

However, if it is possible to detect the relations that support the mereologic struc-
ture, this can be then used for computing similarity between classes: they will be
more similar if they share similar parts. This is even more useful when comparing
extensions of classes because it can be inferred that objects sharing the same set of
parts will be the same.

6.1.3 Relations

Besides these two kinds of relations, one may consider the general problem of
matching entities based on all their relations. Classes are also related through the
definitions of their properties (like author and creator in Fig. 5.2). These properties
are edges of a graph and if they are found similar, they can be used for finding
that classes are similar. However, contrary to taxonomic and mereologic structures,
the relation graph may contain circuits. How to handle these will be considered in
Sect. 6.2. We consider here similarities.
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The similarity between nodes can also be based on their relations. For example,
in one of the possible ontology representations of schemas of Fig. 2.7, if the Book

class is related to the Human class by the author relation in one ontology, and if the
Volume class is related to the Writer class by the author relation in the other ontology,
then knowing that classes Book and Volumes are similar, and that relations author

and author are similar, we can infer that Human and Writer may be similar too. The
similarity among relations in (Mädche and Staab 2002) is computed according to
this principle.

This can be applied to a set of classes and a set of relations. If we have a set of
relations r1 . . . rn in the first ontology which are similar to another set of relations
r ′1 . . . r ′n in the second ontology, it is possible that two classes, that are the domains
of relations in those two sets, are similar too. Discrimination between possible such
correspondences may be obtained by retaining those supported by the largest num-
ber of properties.

This principle can also be extended to the composition of relations, i.e., in-
stead of considering only the relations asserted at a class, one may consider their
composition with relations starting at the domain of this relation. For instance, in-
stead of considering the author relation, one will consider the author·firstname, the
author·lastname, or the author·nationality relations.

One of the problems of this approach is that it is based on the use of similarity
of relations to infer the similarity of their domain classes or their range classes.
This introduces circularity in the computation of similarity. There are several ways
to overcome this circularity. As a first alternative, the similarity on relations can
be based on their labels using techniques developed in Sect. 5.2.1. As a second
alternative, if relations are organised in a taxonomy, then methods considered in the
previous subsection may be used as well.

Finally, two extreme solutions, that use the relations for reaching nodes but not
for actually matching, are considered by the following approaches:

Children. The similarity between nodes of the graph is computed based on simi-
larity of their children nodes, that is, two nonleaf entities are structurally similar
if their immediate child sets are highly similar. A more complex version of this
matcher is described in (Do and Rahm 2002).

Leaves. The similarity between nodes of the graphs is computed based on similarity
of leaf nodes, that is, two nonleaf entities are structurally similar if their leaf sets
are highly similar, even if their immediate children are not (Madhavan et al.
2001; Do and Rahm 2002). This is very well adapted to comparing document
schemas.

6.1.4 Pattern-Based Matching

Pattern-based matching consists of finding correspondences by identifying corre-
sponding patterns in two ontologies. This starts from a set of predefined correspon-
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dence patterns (see Fig. 6.1). A correspondence pattern is an abstraction of a cor-
respondence, i.e., it does not relate individual entities, but instead types of entities.
Such patterns typically identify alternative concept modelling patterns.

Fig. 6.1 Three correspondences patterns: (a) property ?w is equivalent to property has?W, (b) a
subclass ?Y may correspond to the elements whose value of property ?p is ?Y, (c) an antipattern
such that if ?X is disjoint form ?Y and ?W is a subclass of Z, it is forbidden that both ?X is
equivalent to ?Z and ?Y is equivalent to W.

Fig. 6.2 Pattern instantiation: an instance of a correspondence pattern is a correspondence (here
in EDOAL).

(Scharffe and Fensel 2008) introduced correspondence patterns and their use in
ontology matching as instantiating them in ontologies. For instance, in Fig. 6.2,
the assignment {?X→ Paper, ?Y → Accepted, ?Z → Article, ?p → status} allows for
identifying the patterns within ontologies and for considering the result as a can-
didate correspondence. (Scharffe 2008) proposed a library of 44 correspondence
patterns based on a study of ontology mismatches. In order to be meaningful, corre-
spondence patterns have to use an expressive language, either on the side of ontolo-
gies or on the side of alignment language. The EDOAL language (Sect. 10.1.6) was
defined partly with this goal in mind.



130 6 Global Matching Methods

Alignment patterns, called block matching patterns (Šváb-Zamazal 2010), in-
volve, on the same principle, several correspondences together. It also introduced
more tolerance in patterns through the use of similarity measures, usually based on
string similarities for deciding the instances of patterns. Patterns may also involve
constraints on values, such as v = u± 3 %. In turn, (Ritze et al. 2009) experimented
with specific algorithms for recognising four specific such patterns.

Antipatterns (Roussey et al. 2009) also identify correspondences that should not
be included in alignments (see Fig. 6.1). The rules used by systems for detecting in-
consistency or incoherence in alignments may be (semantic) alignment antipatterns
(Sect. 7.8.2).

Refinement pattern, expressed in a first-order language, are made of an antipat-
tern and a pattern (Hamdi et al. 2010a). The method detects, in the same alignment,
the presence of the antipattern and the possibility of instantiating the pattern. This
is then used to propose users to replace the former by the latter. Other work defines
patterns not simply with respect to the ontology language, i.e., identifying classes
or properties, but with respect to a common foundational ontology, i.e., identify-
ing events or participants (Padilha et al. 2012). Pattern-based matching is classified
as a structural technique because it matches the structure. However, this particular
structure can also be detected through reasoning.

Summary on Relational Techniques

Matching ontologies from their relational (or external) structure is very powerful
because it allows all the relations between entities to be taken into account. This
must be grounded on other tangible properties, which is why it is often used in
combination with internal structural methods and terminological methods.

It is worth considering what are the important relations before using such tech-
niques. The most commonly used structure is the specialisation taxonomy because
it is the backbone of ontologies and has usually received a lot of attention from de-
signers. In some fields, mereologic relations are as important as taxonomic ones.
However, they are difficult to identify because contrary to the subClass relation, they
can bear any other name.

The relational structure raises the problem of which part influences what: there
is usually a mutual influence between each of the related parts. This is the reason
why, besides the similarity equations used for comparing the entities, it is necessary
to have an iterative algorithm. This is considered in the next section.

6.2 Iterative Similarity Computation

The computation of compound similarity is still local because it only provides sim-
ilarities by considering the neighbourhood of a node. However, similarity may in-
volve the ontologies as a whole and the final similarity values may ultimately de-
pend on all the ontology entities. Moreover, the distance defined by local methods
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can be defined in a circular way when the ontology is not reduced to a directed
acyclic graph. This is the most common case. For instance, this occurs if the dis-
tance between two classes depends on the distances between their instances which
themselves depend on the distance between their classes or if there are circuits in
the ontology. This is illustrated in Fig. 6.3, in which the similarity between Product

and Book depends on the similarity between hasProvider and hasCreator and author,
publisher, and translator. In turn, the similarity between these elements ultimately
depends on the similarity between Product and Book. These two graphs are homo-
morphic in many different ways.

Fig. 6.3 Two typical ontologies containing referential cycles: how do we match them?

In case of circular dependencies, similarity computation in a local fashion is no
longer possible. The classical way of dealing with such a problem involves the itera-
tive computation of the distance or similarity refining at each step the last computed
values. This is depicted in Fig. 6.4.

Fig. 6.4 Iterative computation of the fixed point of a similarity or distance function.

For that purpose, strategies must be defined in order to compute this global sim-
ilarity. We present two such methods here. The first one is defined as a process of
propagating the similarity within a graph (Sect. 6.2.1) while the second one trans-
lates the similarity definitions in a set of equations which is solved by numerical
analysis techniques (Sect. 6.2.2).
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6.2.1 Similarity Flooding

Similarity flooding (Melnik et al. 2002) is a generic graph matching algorithm which
uses fixed point computation to determine corresponding nodes in the graphs. It is
implemented in the Rondo environment (Sect. 10.3.1).

The principle of the algorithm is that the similarity between two nodes must de-
pend on the similarity between their adjacent nodes (whatever are the relations that
must be taken into account). To implement this, the algorithm proceeds as follows:

1. Transform the ontologies in a directed labelled (multi)graph G in which nodes
are pairs of concepts of the ontologies and edges exist between two nodes if there
is a relation in both ontologies between the nodes of the two pairs. For instance,
in the ontology of Fig. 6.3, 〈Provider,Writer〉 is related to 〈Product,Book〉 through
an edge labelled 〈hasProvider, hasWritten〉. In fact, the original Similarity flooding
algorithm only connects nodes whose edges have the same label. The graph is
closed by symmetry, i.e., there will also be an edge in the reverse direction.

2. Assign weights w to the edges, which are usually 1/n in which n is the out degree
(the number of outgoing edges) of the source node. The algorithm description
does not tell what to do when several edges with different labels link the same
pair of concepts or when there is already a reverse edge. One can imagine that
the weights are aggregated with a triangular norm (Sect. 7.4).

3. Assign initial similarity σ 0 to each node (with some basic method on labels of
Sect. 5.2 or with a uniform assignment of 1.0).

4. Compute σ i+1 for each node with the chosen formula.
5. Normalise all σ i+1 obtained by dividing by the largest value.
6. If no similarity changes more than a particular threshold ε, i.e., ∀e ∈ o, e′ ∈

o′, |σ i+1(e, e′)− σ i(e, e′)|< ε, or after a predetermined number of steps, stop;
otherwise, go to step 4.

The chosen aggregation function is a weighted linear aggregation in which the
weight of an edge is the inverse of the number of other edges with the same label
reaching the same pair of entities.

σ i+1(x, x′)= σ 0(x, x′)+
∑

〈〈y,y′〉,p,〈x,x′〉〉∈G

σ i(y, y′)×w
(〈〈y, y′〉,p, 〈x, x′〉〉)

Several variations of this formula have been studied, including suppressing the
σ 0 term and replacing σ 0 by σ i , or using σ 0(x, x′) + σ i(x, x′) as the recurrence
term. The former accelerates computation, while the latter gives more importance
to the initial values.

The convergence of the algorithm is not obvious. (Melnik et al. 2005) provides
conditions under which the algorithm converges. This algorithm does provide a sim-
ilarity measure from which an alignment remains to be extracted (Sect. 7.7).

Example 6.9 (Similarity flooding) We start with the ontologies of Fig. 6.3. Since
the Similarity flooding algorithm works with the same property names and there is
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no similar property, we choose to consider that all properties have the same name.
From these ontologies is generated the following labelled directed graph (with its
weights):

The initial dissimilarity is the one provided in Example 7.9 for the weighted sum
with weights of 1/4 and 3/4 respectively.

σ 0 Book Translator Publisher Writer

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .04 .25 .04 .69

The first iteration of the Similarity flooding algorithm computing σ 1 is below (on
the left are the σ i values and on the right is the normalised result):

σ 1 Book Translator Publisher Writer

Product 2.11 0.08 0.06 0.07
Provider 0.10 0.08 0.78 0.17
Creator 0.10 0.28 0.07 0.72

σ 1

σ̄ 1 Book Translator Publisher Writer

Product 1.00 0.04 0.03 0.03
Provider 0.05 0.04 0.37 0.08
Creator 0.05 0.13 0.03 0.34

Normalised σ 1

The iterative procedure carries on and, with a value of ε = .1, stops at the 17th
iteration with the following result:

σ 17 Book Translator Publisher Writer

Product 1.95 .09 .07 .08
Provider .11 .22 .92 .31
Creator .11 .42 .21 .86

σ 17

σ̄ 17 Book Translator Publisher Writer

Product 1.00 .05 .04 .04
Provider .06 .11 .47 .16
Creator .06 .21 .11 .44

Normalised σ 17
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From these similarity values, it is possible to extract the expected correspon-
dences: Product = Book, Publisher = Provider and Writer = Creator.

6.2.2 Similarity Equation Fixed Point

OLA (Sect. 8.3.8) (Euzenat and Valtchev 2004) provides a method for dealing with
circularities and dependencies between similarity definitions.

In this case, the similarity values are expressed as a set of equations in which
each variable corresponds to the similarity between a pair of nodes. There are as
many equations as variables. The structure of each equation follows the definition
of the respective similarity function for the underlying node category.

Given two classes c and c′, the resulting class similarity function is

σC(c, c′)= πC
L σL

(
λ(c), λ(c′)

)

+ πC
OMSimO

(
I(c),I ′(c′)

)

+ πC
S MSimC

(
S(c),S ′(c′)

)

+ πC
P MSimP

(
A(c),A′(c′)

)

such that λ(·) I(·), S(·), A(·) are the functions returning respectively the label,
instances, super and subclasses, and properties of a class (corresponding to name,
properties, direct subclasses, direct superclasses and direct instances in Sect. 6.1).
MSim-measures are similarities between sets of ontology entities, which we explain
below. The πC

F are weights denoting the relative importance of the feature F .
The function is normalised since the sum of weights is equal to one, i.e., πC

L +
πC

S + πC
O + πC

P = 1, whereas each factor that ranges over collections of nodes or
feature values is averaged by the size of the largest collection.

If each of the similarity expressions were a linear aggregation of other similar-
ity variables, this system would be solvable directly, since all variables are of de-
gree one. However, in the case of OWL, and of many other languages, the system
is not linear since there could be many candidate pairs for the best match. These
correspond to the Set(·) type in Table 6.1 (p. 123). The similarity may depend on
matching the multiple edges with the similar labels outgoing from the nodes under
consideration. In this approach, the similarity is computed by a MSim function that
first finds an alignment between the set of considered entities and then computes the
aggregated similarity with respect to this matching.

In this respect, the OLA algorithm solves a very specific problem, namely a max-
imal weight graph matching problem (Sect. 7.7.3) with weights depending on the
matching.

Nevertheless, the resolution of the resulting system can still be carried out as an
iterative process that simulates the computation of the greatest fixed point of a vector
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function, as shown by (Bisson 1992). The point consists of defining an approxima-
tion of the MSim-measures, solving the system, replacing the approximations by the
newly computed solutions and iterating. The first values for these MSim-measures
are the maximum similarity found for a pair, without considering the dependent part
of the equations. The subsequent values are those of the complete similarity formula
filled by the solutions of the system. The local matching may change from one step
to another depending of the similarity values.

However, the system converges because similarities can only increase (the inde-
pendent part of the equation remains and all dependencies are positive) and, if sim-
ilarity values are bounded, e.g., by 1, the similarity is bounded. The iterations will
stop when no gain above a particular ε value is provided by the last iteration. If the
algorithm converges, it may stop at a local optimum (that is, finding another match-
ing in the MSim-measures would not increase the similarity values). This could be
improved by randomly changing these matchings when the algorithm stops.

Some facts are worth mentioning. First, there is no need for a different expression
of the similarity functions in the case where there are no effective circular depen-
dencies between similarity values. The computation mechanism presented above
establishes the correct similarity values even if there is an appropriate ordering of
the variables (the ordering is implicitly followed by the stepwise mechanism). More-
over, in case some similarity values (or some similarity or (dis)similarity assertions)
are available beforehand, the corresponding equation can be replaced by the asser-
tion or value.

Example 6.10 (OLA algorithm) The problem to be solved is the same as the one
defined in Example 6.9, so the label similarity between classes is the same. The
label similarity between properties is set to 1. (all similar) for each pair of properties.
Thus, the initial similarities are as follows:

σL Book Translator Publisher Writer

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .04 .25 .04 .69

σL hasPublished hasTranslated hasWritten author translator publisher

creates 1.00 1.00 1.00 1.00 1.00 1.00
provides 1.00 1.00 1.00 1.00 1.00 1.00
hasProvided 1.00 1.00 1.00 1.00 1.00 1.00
hasCreated 1.00 1.00 1.00 1.00 1.00 1.00

The equations are made with equal weights on labels and properties for classes
(πC

L = πC
P = 1/2) and equal weights on label, range and domain for properties

(πP
L = πP

R = πP
D = 1/3). The initial similarities (based only on the labels) provide

the following values:
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σ 0 Book Translator Publisher Writer

Product .10 .03 .02 .02
Provider .02 .03 .38 .07
Creator .02 .13 .02 .35

σ 0 hasPublished hasTranslated hasWritten author translator publisher

creates .33 .33 .33 .33 .33 .33
provides .33 .33 .33 .33 .33 .33
hasProvided .33 .33 .33 .33 .33 .33
hasCreated .33 .33 .33 .33 .33 .33

The first iteration really takes into account the relations between entities and
yields the following result:

σ 1 Book Translator Publisher Writer

Product .26 .19 .18 .19
Provider .19 .19 .54 .24
Creator .19 .29 .19 .51

σ 1 hasPublished hasTranslated hasWritten author translator publisher

creates .37 .41 .48 .35 .35 .35
provides .49 .37 .39 .35 .35 .35
hasProvided .35 .35 .35 .39 .37 .49
hasCreated .35 .35 .35 .48 .41 .37

After 3 iterations the values do not change more than ε = .1 and after 10 it-
erations they do not change more than ε = .01 yielding the result as follows:

σ 10 Book Translator Publisher Writer

Product .46 .29 .27 .28
Provider .28 .32 .74 .37
Creator .28 .44 .31 .70

σ 10 hasPublished hasTranslated hasWritten author translator publisher

creates .59 .63 .72 .52 .52 .52
provides .73 .59 .61 .52 .52 .52
hasProvided .52 .52 .52 .61 .59 .73
hasCreated .52 .52 .52 .72 .63 .59

For both values of ε the best match is always the same. It is the same as in
Example 6.9 for classes and, in addition, for properties it is as follows: creates =
hasWritten, provides = hasPublished, hasProvided = publisher and hasCreated = author.
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The two presented methods share some similarity: both methods work iteratively
on a set of equations extracted from a graphical form of the ontologies. Both meth-
ods ultimately depend on the computed proximities between nondescribed language
elements, i.e., data type names, values, URIs, property type names, etc. These prox-
imities are propagated throughout the graph structure by the similarity dependen-
cies.

Moreover, Similarity flooding is highly dependent on the identity of edge labels,
while the OLA algorithm takes similarity between properties into account. Nonethe-
less, it also considers local mappings between alternative matching edges instead of
averaging over all the potential matches. That is, the OLA algorithm attempts to
identify the subclasses which match and propagate their similarity—which should
be high—while Similarity flooding propagates an average similarity between all
pairs of subclasses which should be lower than the average similarity between all
pairs of matching subclasses. Finally, the convergence of Similarity flooding is not
proved in general.

Summary on Global Similarity Computation

The intricacy of ontologies mandates propagating similarity values across them in
an iterative fashion. There may be different propagation modalities depending on
what the compound similarity definition is and along which connections links are
propagated. As can be observed from the last technique, global similarity computa-
tion can be seen as an optimisation problem. It is thus natural to consider classical
optimisation algorithms for achieving them.

6.3 Matching as Optimisation

In the previous section we presented iterative similarity computation by using sets
of equations expressing similarities. This process can be considered as a simple it-
erative process (Sect. 6.2.1) or as an optimisation problem (Sect. 6.2.2). In the last
case, classical optimisation techniques can be used for ontology matching. We con-
sider here two such techniques: expectation maximisation (Sect. 6.3.1) and particle
swarm optimisation (Sect. 6.3.2).

6.3.1 Expectation Maximisation

Expectation maximisation (EM) is an iterative approach to the maximum likelihood
estimation problem (Dempster et al. 1977). It is typically used for parameter esti-
mation (of a parametric probability distribution) when observable data is missing
or partial, such as in hidden Markov models, to perform maximum a posteriori in-
ference (Sect. 6.4.2). The missing data is estimated given the observed data through
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the conditional expectation probability. In other words, the missing data is enhanced
with guesses of potentially useful information over it. Then, the likelihood function
is maximised assuming that the missing data is known. Thus essentially, each EM
iteration consists of two steps: expectation, called the E-step, and maximisation,
called the M-step, which maximises consecutive local improvements of a likeli-
hood function approximated within the E-step. This is a fixed point method and
convergence is guaranteed by increasing the likelihood at each iteration.

Example 6.11 (Expectation maximisation) The ontology matching problem was
treated as maximum likelihood estimation in (Doshi et al. 2009; Thayasivam and
Doshi 2011). The method searches for the maximum likelihood estimate of the
alignment from observed data in the presence of missing correspondences, which
are treated as hidden variables. Let M be a binary match matrix, where rows and
columns stand for the entities of the ontologies to be matched and the corresponding
cells are populated with ’1’ standing for the match and ’0’, otherwise. The method
iteratively searches for the match matrix M that provides the maximum conditional
probability P(o|o′,M) of the source ontology o, given the target one o′ and the
match assignment made through the match matrix M , e.g., with initial correspon-
dences. In EM terms, each match assignment variable is viewed as a model, and
thus, the match matrix is viewed as a mixture model. Assuming that X is a set of
observed data instances, Y is a set of missing values and M is the match matrix or
the mixture model. The two EM steps can be formalised as follows:

E-step During the E-step, a weighted sum of the log-likelihood is computed:

Q
(
Mi+1|Mi

)=
∑

y∈Y

P
(
y|X,Mi

)
L

(
Mi+1|X,y

)
,

such that i is the iteration number, the weights are the conditional probabilities of the
hidden variables (correspondences) and L(Mi+1|X,y) is the log-likelihood of the
model in the iteration i+1. The logarithm is used to simplify the computation, since
the maximum of both L and log(L) is the same. Initial match seeds and probabilities
of hidden variables can be estimated through terminological similarities or simple
structural heuristics, such as ‘if two entities match, their parent nodes are likely to
match as well’.

M-step During this step, the parameters that maximise the expected log-likelihood
(of the E-step) are computed and the match matrix (mixture model) that maximises
the expectation is selected. In practice, the maximisation condition is often relaxed
by selecting a mixture model that just improves over the previous one, what is
known as the generalised expectation maximisation method:

Mi+1∗ ∈ {
M :Q(

M|Mi
)≥Q

(
Mi |Mi

)}

The match matrix is then taken as input to determine the distribution of the hidden
variables in the next E-step. Thus, the EM method revises iteratively the match
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matrices (mixture models) by maximising a weighted sum of the log-likelihood of
these models.

6.3.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a non-deterministic optimisation method be-
longing to the swarm intelligence family of methods (Engelbrecht 2005). This is a
metaheuristic with anytime behaviour, i.e., when interrupted at any time, it provides
the best result found so far. It was inspired by the collective intelligence of groups
of simple agents, called particles, such as bird flocks or fish schools, adapting to the
environments they live in (Kennedy and Eberhart 1995).

By analogy, given an initial swarm of randomly generated solutions, particles
memorise and share the best solution they have seen. A particle swarm moves (it-
erates) over the solution space based on this shared information on the space; parti-
cles are evaluated based on a fitness criterion. Thus, the swarm explores the solution
space by looking for promising areas. In particular, movements of particles are for-
malised through velocity vectors. These vectors (in a simplified view) are based on
the individual best position (pBest) of particles, also known as the personal influ-
ence component, and/or on the result of the whole group of particles (gBest), also
known as the social influence component. At each iteration, particles change ve-
locities towards a better position based on pBest and/or gBest. Thus, the evolution
searches only for the best solution. Unlike genetic algorithms (Sect. 7.6.2), PSO
does not have genetic operations, such as crossover and mutation. Instead, particles
are updated through velocity vectors.

Example 6.12 (Particle swarm optimisation) Ontology matching may be viewed as
an optimisation problem that is attacked through a discrete particle swarm opti-
misation (DPSO) solution (Bock and Hettenhausen 2012). DPSO was introduced
in (Kennedy and Eberhart 1997) and further adapted in (Correa et al. 2006) by
using a variable dimensionality for each particle. The objective function to be
optimised is that of alignment quality. Particles represent candidate alignments
and their dimensionality stands for the number of correspondences in an align-
ment. The population is predefined, e.g., 50 particles, and it evolves through a
predefined number of iterations, e.g., 200, by using velocity vectors, which es-
tablish new positions of particles in the solution space based on their memory
(pBest) and communication between them (gBest). Correspondence evaluation is
performed through a fitness function. For this purpose, results of various match-
ers (applied to entities of two ontologies) are aggregated into a single fitness value.
DPSO returns the global best alignment (gBest) with respect to the fitness func-
tion.

The method operates essentially in three steps: (i) initialisation, where each par-
ticle is assigned a random number of correspondences (since the correct number
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of correspondences is not know in advance) and is evaluated through the fitness
function, thus computing the pBest alignments for each particle; (ii) swarm iter-
ation, where the globally best alignment gBest is updated if a new best perform-
ing particle has emerged; (iii) velocity vector update procedure, which results in
a new dimensionality (updated set of correspondences) for each particle. In ve-
locity update, in order to ensure convergence, random re-initialisations of parti-
cles are bounded. Specifically, the respective components of the velocity vectors
are increased for those correspondences which are present in the global or the
personal best alignments. These are controlled through the dedicated parameters:
β , if a correspondence is in pBest, and γ , if a correspondence is in gBest, respec-
tively. These correspondences are marked to be preserved (thus, not replaced by
random re-initialisations in an iteration). They can be further promoted as corre-
spondences to be never replaced in a particle with the help of customisable thresh-
olds. For each particle its fitness and velocity vector updates can be computed in
parallel.

Summary on Optimisation Techniques

We presented two different techniques for computing alignments as an optimisation
problem by optimising either the quality of a similarity measure or directly that of
alignments. Besides these examples, any optimisation technique may be used. The
use of such methods for ontology matching is only beginning, but as soon as the
problem can be reformulated as optimisation, they are usable.

We will now consider global techniques that assign a particular interpretation to
the similarity or alignment that are computed. The first one assigns a probabilistic
interpretation to alignments (Sect. 6.4). The second one resorts to exploiting the
semantics of alignments and ontologies (Sect. 6.5).

6.4 Probabilistic Matching

Probabilistic methods may be used universally in ontology matching, e.g., to en-
hance some available matching candidates. In this section, we discuss several such
methods, which are based on Bayesian networks (Sect. 6.4.1), Markov networks and
Markov logic networks (Sect. 6.4.2). A general framework for probabilistic ontol-
ogy matching is shown in Fig. 6.5.

6.4.1 Bayesian Networks

A Bayesian belief network or simply a Bayesian network is a probabilistic approach
for modelling causes and effects. Bayesian networks are made up of (i) a directed
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Fig. 6.5 General setting for probabilistic ontology matching. The matching problem should be
first modelled within a specific probabilistic framework, e.g., as a Bayesian or Markov network.
An initialisation of the model (network) is performed through a seed match computed with basic
measures or by using an initial partial alignment among pairs of entities. Probabilistic reasoning is
performed in the constructed model to compute an enhanced model, which can be finally extracted
as an alignment.

acyclic graph, containing nodes (also called variables) and arcs, and (ii) a set of con-
ditional probability tables. Arcs between nodes stand for conditional dependencies
and indicate the direction of influence. For example, an arc from node X1 (called
parent) to node X2 (called child) means that X1 has a direct influence on X2. How
a node influences another node (based on past experience) is defined by conditional
probability tables for the nodes. P(X|parents(X)) is the conditional probability of
variable X, where parents(X) is the set of all and only nodes directly influencing X.
Graph and conditional probability tables allow for constructing the joint probability
distribution of all variables, namely

P(X1, . . . ,Xn)=
∏

i

P
(
Xi |parents(Xi)

)
, i = 1, . . . , n

Given values for some nodes, it is possible to infer probability distributions for
values of other nodes. In the simplest case, a Bayesian network can be specified
by an expert and after some values of nodes are made observable it can be used
to perform inference, thus making predictions or diagnosing causes. When not all
variables are observable, it is necessary to identify dependencies between variables,
which, in turn, can be solved by learning a Bayesian network that fits to the data
(Russell and Norvig 1995).

Bayesian networks have been modelled and used in various ways for ontology
matching. For example, two ontologies may be translated into two Bayesian net-
works and matching is performed as evidential inference between these Bayesian
networks (Pan et al. 2005). Another work (Mitra et al. 2005) uses Bayesian networks
to enhance existing matches, e.g., by deriving missed matches. Let us consider the
latter in more detail.
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Example 6.13 (Bayesian network, adapted from (Mitra et al. 2005)) The Bayesian
network is built with correspondences and uses metarules based on the semantics of
the ontology language that expresses how each correspondence affects other related
correspondences. External matchers are adapted to produce initial probability distri-
butions for correspondences, which are in turn used to infer probability distributions
for other correspondences.

Fig. 6.6 Bayesian network graph. Each node corresponds to a correspondence between ontology
entities. Dotted arrows represent relations between these entities in the ontologies which induce
influence relations between correspondences represented as plain arrows.

Nodes in the Bayesian network graph represent matches between pairs of classes
or properties from two distinct ontologies (see Fig. 6.6). Solid arrows in the
Bayesian network graph represent the influences between its nodes, while dot-
ted arrows stand for the relations in the ontologies under consideration. For ex-
ample, the correspondence between properties hasWritten ∈ o and creates ∈ o′ af-
fects the correspondence between the concepts they have as range Writer ∈ o and
Creator ∈ o′, which in turn affects the correspondence between author ∈ o and
hasCreated ∈ o′. Conditional probability tables are generated by exploiting generic
metarules, such as a rules stating that the probability distribution of a child node
is affected depending upon the probability distribution of the parent node. For
example, if two concepts Writer and Creator match and there is a relationship
hasWritten between Writer and Text in o and a related relationship author between
Creator and Work in o′, then we can increase the probability of match between
Text in o and Work in o′. The probability distribution of the child node is de-
rived from the probability distribution of the parent node using a set of constants.
By running a Bayesian network, posterior probabilities for each node are gener-
ated.
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6.4.2 Markov Networks and Markov Logic Networks

We discuss the use of both Markov networks (Pearl 1988) and Markov logic net-
works (Richardson and Domingos 2006), which were exploited for ontology match-
ing in (Albagli et al. 2012) and (Niepert et al. 2010), respectively.

Markov networks are structured probabilistic networks. Similarly to Bayesian net-
works (Sect. 6.4.1), Markov networks, denoted as N = 〈V,E〉, are made of nodes
(V ) that represent variables and edges (E) between nodes that stand for statistical
dependencies between the variables. Specifically, Markov networks represent joint
probability distributions over events, which are represented by variables. Unlike
Bayesian networks, Markov networks are undirected. The probability distribution
in a Markov network is defined by potential functions (p) over the cliques (C),
namely sets of nodes, such that every pair is connected by at least one edge. Poten-
tials or tables (pC ) can be associated with each complete subgraph in the network.
These correspond to conditional probabilities in Bayesian networks. The joint dis-
tribution of the event probabilities defined by Markov networks is the product of all
the potentials, namely

P(N)= 1

Z

∏

C∈cliques(N)

pc(C),

such that Z is a normalisation constant, also known as the partition function.

Example 6.14 (Markov network) Given a pair of ontologies, the corresponding
Markov network should be built. Similarly to the example of Fig. 6.6, such a net-
work can be built with correspondences, though the solid arrows should be substi-
tuted by undirected edges. Rules that govern the network topology could be such that
‘if two classes match, then the corresponding parent classes often match as well’.
Evidence potentials can be initialised through similarity measures between all pairs
of entities computed, for example, through edit distance or through user interaction.
Probabilistic reasoning is performed in the constructed network, thereby computing
an enhanced alignment. Inference can be performed by using Monte Carlo methods,
e.g., Gibbs sampling, or through computation of posterior marginals, also known as
belief propagation. Inference may be iterated or an alignment can be extracted from
the network using a threshold on a posteriori probabilities.

Markov logic networks (MLN) unify Markov networks and first-order logic. In
such networks, nodes represent atomic formulas and cliques represent groundings
of formulas. Consider a special case of Markov networks, such as a log-linear model.
In this setting, potentials are replaced by a set of features (formulas) with weights.
The log-linear model probability distribution is

P(x)= 1

Z
exp

(∑

i

wifi(x)

)
,
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such that Z is a normalisation constant, wi is a real-valued weight of feature i and
fi(x) is the ith feature or first-order logic formula. Thus, Markov logic networks
are sets of first-order logic formulas (that determine graph structure) with weights.
A grounding of a formula is obtained by replacing every variable in a formula with
constants. The higher the evidence that a formula is true, the higher its weight. Thus,
weights indicate how hard or soft the interpretation of a formula is intended to be.
This helps in dealing with uncertainty, namely with situations that sometimes violate
formulas, so such formulas become less probable, but still to a certain extent may
represent a potential correspondence.

Example 6.15 (Markov logic network) Using a Markov logic network in ontology
matching may consist of, given the evidence, computing the most probable align-
ment. The input ontologies are assumed to be true knowledge, and thus, is encoded
as hard constraints that should hold in every alignment. Initial evidences or weights
can be obtained by using a seed alignment between the entities to be matched.
Then, a posteriori probabilities are computed for possible alignments. For exam-
ple, a maximum a posteriori inference can be performed through applying integer
linear programming. In this formulation of the problem, an objective function to
be maximised can be as follows: 0.88f1 + 0.1f2 + 0.75f3, such that f1 stands for
the correspondence between entities such as document and documents, f2 stands for
the correspondence between provider and translator, etc. Weights represent the nor-
malised similarity between these entities. These a priori similarities might need to
exceed particular thresholds, e.g., being higher than 0.5. Integer logic program con-
straints, such as f1 + f3 ≤ 1, are used to encode the cardinality (one-to-one), coher-
ence (avoiding logical contradictions) or structural propagation (in the Similarity
flooding spirit; see Sect. 6.2.1) constraints over alignments. The values of variables
(fi ) returned through the optimal solution correspond to the final similarity.

Summary on Probabilistic Matching

As in many other domains, probabilistic modelling has found its way in ontology
matching and has been fruitfully exploited. However, there remains work to be done,
in particular concerning the way a priori probabilities are acquired and how the
probabilistic model is built. With respect to a priori probabilities, it would certainly
be more accurate to ground them on the task in which alignments are applied instead
of syntactic similarities.

However, more work is needed to understand better the probabilistic foundations
of ontology matching. In particular, probabilistic reasoning must be combined with
the structure and semantics of alignments and ontologies. This resort to the more
general topic of joining logics and probabilities and may certainly be linked to se-
mantic techniques presented in the next section.
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6.5 Semantic Techniques

The key characteristic of semantic methods is that model-theoretic semantics
(Sect. 2.5.3) is used to justify their results. Hence they are deductive methods. Like
other global methods, pure deductive methods do not perform very well alone for
an essentially inductive task like ontology matching. They hence need to be pro-
vided with anchors (Sect. 7.3), i.e., entities which are declared, for example, to be
equivalent (based on the identity of their names, external resources, or user input, for
instance). These anchors constitute an initial alignment on which deductive methods
can apply. Semantic methods act as amplifiers of these seed alignments.

The basis of semantic techniques is inferring new correspondences or testing
the satisfiability of alignments (Sect. 2.5.3). This can be achieved by using a rea-
soner implementing the alignment semantics. Although there are a few such sys-
tems (Sect. 12.6), the most common technique used by far is to use the reduced
semantics (Sect. 2.5.3) (Meilicke et al. 2009; Meilicke and Stuckenschmidt 2009;
Meilicke 2011).

We present below semantic methods based on propositional and modal satisfia-
bility techniques (Sect. 6.5.1), and description logic-based techniques (Sect. 6.5.2)
for inferring new correspondences. Methods detecting inconsistency of alignments
and repairing them are presented in the next chapter (Sect. 7.8.2).

6.5.1 Propositional Techniques

An approach for applying propositional satisfiability (SAT) techniques to ontology
matching is based on the following steps (Giunchiglia and Shvaiko 2003; Shvaiko
2006):

1. Build a theory or domain knowledge (Axioms) for the given input ontologies as
a conjunction of the available axioms. The theory is constructed by using basic
techniques discussed in the previous chapter, e.g., those based on WordNet, or
those using external ontologies (Sect. 7.3).

2. Build a matching formula for each pair of classes c and c′ from both ontologies.
The criterion for determining whether a relation holds between two classes is the
fact that it is entailed by the premises (theory). Therefore, a matching query is
created as a formula of the following form:

Axioms ⇒ r(c, c′)

for each pair of classes c and c′ for which we want to test the relation r (within
=, ≤, ≥, ⊥). c and c′ are also sometimes called contexts.

3. Check the validity of the formula, namely that it is true for all the truth assign-
ments of all the propositional variables occurring in it. A propositional formula
is valid if and only if its negation is unsatisfiable, which is checked by using a
satisfiability solver.
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SAT solvers are correct and complete decision procedures for propositional sat-
isfiability and, therefore, they can be used for an exhaustive check of all the possible
correspondences. In some sense, these techniques compute the deductive closure of
an initial alignment (Sect. 2.5.3).

Example 6.16 (Propositional logic relation inference)
Step 1. Assume that classes images and Europe belong to one ontology, while another
ontology has classes pictures and Europe (as well). A matcher which uses WordNet
can determine that images = pictures. Many other matchers can find that classes of
Europe in both ontologies are identical, i.e., Europe = Europe. Then translating the
relations between classes under consideration into propositional connectives in the
obvious way results in the following Axioms:

(images ≡ pictures)∧ (Europe≡ Europe)

Step 2. Assume that c is defined as Europe  images which intuitively stands for the
concept of European images, while c′ is defined as pictures  Europe which intu-
itively stands for the concept of pictures of Europe. Let us also assume that we want
to know if c is equivalent (≡) to c′. Thus, this matching task requires constructing
the following formula:

(
(images ≡ pictures)∧ (Europe≡ Europe)

) ⇒
(
(Europe∧ images)≡ (Europe∧ pictures)

)

Step 3. Negation of this formula turns out to be unsatisfiable, and therefore, the
equivalence relation holds. See Sect. 11.3 for a detailed discussion of this example.

This technique, besides pruning incorrect correspondences, also infers new ones
between complex concepts. In the example above, c is defined by combining (taking
the intersection of) such atomic concepts as Europe and images. And, similarly for c′.
These are simple examples of complex concepts within the expressive power of a
propositional language. The relation between such complex concepts as (Europe ∧
images) and (Europe ∧ pictures) was not available after the first step, and has been
deduced by the reasoner.

This technique can only be used for matching tree-like structures, such as clas-
sifications, taxonomies, without taking properties or roles into account. Modal SAT
can be used, as proposed in (Shvaiko 2006), for extending the methods related to
propositional SAT to binary predicates.

6.5.2 Description Logic Techniques

In description logics, the alignment relations, e.g., =, ≤, ≥, ⊥, can be expressed
with respect to subsumption. The subsumption test, can be used to establish the
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relations between classes in a purely semantic manner. In fact, first merging two
ontologies (after renaming) and then testing each pair of concepts and roles for
subsumption is enough for matching terms with the same interpretation (or with a
subset of the interpretations of the others) (Bouquet et al. 2006).

Example 6.17 (Description logic relation inference) Consider two minimal descrip-
tion logic ontologies:

Micro-company ≡ Company  ≤5 employee

meaning that a Micro-company is a Company with at most 5 employees and

SME≡ Firm  ≤10 associate

meaning that a SME is a Firm with at most 10 associates. The following initial align-
ment (expressed in description logic syntax) includes:

Company ≡ Firm

associate	 employee

It expresses that Company is equivalent to Firm and associate is a subproperty of
employee. This obviously entails:

Micro-company 	 SME

i.e., Micro-company is a subclass of SME.

ContentMap (Sect. 8.4.7) is an interactive tool for diagnosing and repairing align-
ments. From an alignment, it generates consequences of the merged OWL ontolo-
gies using a reasoner (Pellet). It then presents them to users who can then choose
the undesirable consequences. Finally, ContentMap provides a repair plan, i.e., a set
of correspondences that will be suppressed from the alignment.

There are other uses of description logic techniques which are relevant to on-
tology matching. For example, in a spatio-temporal database integration scenario,
as first motivated in (Parent and Spaccapietra 2000) and later developed in (Sot-
nykova et al. 2005), the inter-schema correspondences are initially proposed by
the integrated schema designer and are encoded together with input schemas in the
ALCRP(S2⊕T ) language. Then, description logic reasoning services are used to
check the satisfiability of the two source schemas and the set of inter-schema cor-
respondences. If some objects are found unsatisfiable, the inter-schema correspon-
dences should be reconsidered.

Summary on Semantic Techniques

Semantic techniques are invaluable when correspondences are generated in order to
ensure the completeness, i.e., find all the correspondences that must hold (Sect. 6.5.1
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and Sect. 6.5.2), and the consistency, i.e., find correspondences that lead to incon-
sistency (Sect. 7.8.2), of the alignment. The two types of operations can naturally be
used together. Only a few of these techniques have been developed so far. However,
with the improvement of deductive tools for dealing with semantic web languages,
we expect more systems using semantic-based techniques. Semantic techniques are
a good starting base to the development of a more general approach to revision and
update in alignments (Qi et al. 2009) and networks of ontologies.

6.6 Summary

Contrasting with basic matchers presented in Chap. 5, we have discussed approaches
that compare ontologies and ontology entities globally. Such techniques take advan-
tage of basic matchers to provide them anchor or seed alignments, but require spe-
cific principles to propagate comparisons globally. These may be based on structural
relations, semantic interpretations or probabilities.

As a result, the presented techniques can provide similarities or alignments.
These may be combined with other similarities and alignments or manipulated like
the result of any other matcher. Chapter 7 explores the various techniques for doing
this and discusses how to compose matchers into a coherent system.



Chapter 7
Matching Strategies

The basic techniques presented in Chap. 5 and the global techniques provided in
Chap. 6 are the building blocks on which a matching system is built. Once the sim-
ilarity or dissimilarity between ontology entities is available, the alignment remains
to be computed. This involves more comprehensive treatments. In particular, the
following aspects of building a working matching system are considered in this
chapter:

− preparing, if necessary, to handle large scale ontologies (Sect. 7.1),
− organising the combination of various similarities or matching algorithms

(Sect. 7.2),
− exploiting background knowledge sources (Sect. 7.3),
− aggregating the results of the basic methods in order to compute the compound

similarity between entities (Sect. 7.4),
− learning matchers from data (Sect. 7.5) and tuning them (Sect. 7.6),
− extracting alignments from the resulting (dis)similarity: indeed, different align-

ments with different characteristics may be extracted from the same (dis)simi-
larity (Sect. 7.7),

− improving alignments through disambiguation, debugging and repair (Sect. 7.8).

7.1 Ontology Partitioning and Search-Space Pruning

Matchers may have to deal with large ontologies containing tens to hundreds of
thousands of entities each. In order to do this efficiently, it is possible either to split
the ontologies into smaller ontologies, this is called partitioning, and to match these
smaller ontologies (Sect. 7.1.1), or to dynamically ignore parts of the ontologies
when matching, this is called pruning (Sect. 7.1.2).
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7.1.1 Partitioning

It is often useful to circumscribe parts of the ontologies that have to be matched,
to perform matching by parts and to aggregate the results of independent matching
(usually by simply accepting all the generated correspondences). This is presented
in Fig. 7.1.

Fig. 7.1 General principle of partitioning: the ontologies to match are split into smaller ontology
fragments which can be matched independently and their results merged.

We refer to this process as ontology partitioning, though this may not be a strict
mathematical partition, i.e., dividing the set of entities into jointly exhaustive and
non-overlapping classes. Indeed, some parts of an ontology may be simply ignored
because these do not have any counterparts in the other ontology and some parts can
be tentatively matched with several other counterparts.

Figure 7.1 is simplistic because some systems may perform an iterated parti-
tioning, for instance, by starting with the top-level entities and then by partitioning
iteratively subclasses based on the obtained result. This may also work from leaf
entities to the root.

In other contexts, this process is called blocking, i.e., partitioning the ontologies
into blocks, avoiding the Cartesian product of comparisons among the ontologies in
favour of matching entities only from corresponding blocks. Technically, blocking
is performed through matching the entities to a multidimensional index, in which
similar entities are positioned near each other in the index. Blocking is typically
used in data interlinking due to the large number of entities to consider.

Partitioning and pruning techniques often use anchors. A relatively fast technique
for obtaining anchors consists of finding entities with exactly matching nodes for
some hashing function. For that purpose, instead of comparing all nodes (complexity
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O(n2)) it is possible to build an index of all the entities of one ontology, typically
through a hash-table, and to check for each entity of the other ontology, there is a
corresponding indexed term (complexity: O(2n)).

Partitioning may use techniques developed for ontology modularisation (Stuck-
enschmidt et al. 2009) (and vice versa (Ghazvinian et al. 2011)), but ontologies are
partitioned with respect to each other, instead of being partitioned independently.
For example, Falcon-AO (Sect. 8.3.9) clusters ontologies in blocks using the ROCK
agglomerative clustering algorithm (Guha et al. 1999). The algorithm takes into ac-
count two criteria for designing blocks: the internal cohesion of a block and the
pairing of a block with another block in the other ontology. These are summarised
into a single measure of goodness, such that given two sets of classes (blocks) B

and B ′:

cohesion(B)= goodness(B,B)

pairability(B,B ′)= goodness(B,B ′)

goodness(B,B ′)=
∑

c∈B,c′∈B ′ link(c, c′)
|B| × |B ′|

such that link is a normalised similarity measure between two classes that can be
obtained quickly. Then Falcon-AO pairs the blocks to be compared using a weighted
sum of a lexical similarity and the Wu–Palmer similarity. The choice of a pair of
blocks to be matched is based on the availability of anchors between them. These
anchors are compared to anchors with other blocks. If this measure is superior to a
predefined threshold, then the blocks will be matched.

TaxoMap (Sect. 8.1.46) offers two partitioning methods refining the Falcon-AO
method by attempting to introduce more dependency between the two partitions
(Hamdi et al. 2010b). The first algorithm, Partition-Anchor-Partition, first partitions
one of the ontologies based on its own structure; then it computes anchors between
the ontologies and partitions the second ontology starting at the anchors. The second
method, Anchor-Partition-Partition, is more adapted to unstructured ontologies. It
partitions the two ontologies by starting from the anchors that are found in these
ontologies, and for the second ontology, groups of anchors that are in the same
blocks. In both cases, blocks are then paired together based on anchors. (Doran
et al. 2009) has studied the benefits of different partitioning strategies for reducing
the matching search space.

Partitioning can be used for parallelising a matcher in a simple paradigm such
as MapReduce (Dean and Ghemawat 2004; Lin and Dyer 2010). Indeed, each node
could operate the map operation by (i) partitioning the problem, (ii) submitting each
subproblem to nodes as soon as they are available, and (iii) aggregating the resulting
subalignments together, and perform the reduce operation by simply matching two
ontologies and returning an alignment. The difficulty consists of finding a partition
that does not alter the quality of the alignment by not providing enough information
to matchers. Conversely, redundant information can also be removed in order to
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use less memory. The subproblems identified can also be persistently cached. In
turn, this cache may be replicated over nodes in a cloud, thus facilitating loading of
matching tasks in parallel.

7.1.2 Search-Space Pruning

Pruning techniques dynamically avoid comparing parts of the ontologies without
partitioning them beforehand.

AROMA (Sect. 8.3.14) learns association rules from the more generic to the
more specific. At each stage, it can measure the maximum implication intensity
that can be obtained by learning more specific rules. If this value is under a thresh-
old, more specific rules will not be considered, avoiding many comparisons (David
et al. 2007). Then, it only investigates further correspondences between two pairs
of anchors given either by the previous techniques or by the previous fast equality
index.

Lily (Sect. 8.1.41) defines reduction anchors, which dynamically decide which
comparisons will be avoided (Wang et al. 2011). When two classes are put in a
correspondence, positive anchors prohibit the comparison of the subclasses of one
with the superclasses of the other; negative anchors prohibit the comparison of the
neighbourhood of a class with the neighbourhood of a class it does not match (or
for which the similarity is low).

Anchor-Flood (Sect. 8.1.40) also starts with anchors in the same way as above.
It then compares the neighbourhoods (or segments) of both anchors, i.e., the set of
entities connected to the anchors two levels away (parents, grandparents, children,
grandchildren, siblings, etc.). The algorithm only compares entities from two such
anchored segments, starting from the anchors and spreading to the neighbourhood
until all entities are reached (Hanif and Aono 2009). The pairs of entities to match
are those reachable from the same type of operation (ascending, descending, sib-
ling).

LogMap (Sect. 8.3.26) adopts a dual strategy. It first indexes all the entities on
the basis of their labels and URIs. It uses terminological techniques, such as stem-
ming or lexicons (Sect. 5.2.2), in order to increase recall. It extracts candidate cor-
respondences from each pair of entities indexed together. Only these candidate cor-
respondences will be considered for matching, hence the pruning should be strong
enough for limiting comparisons, but weak enough for not restricting too much
the scope of the resulting alignments. In addition, because LogMap uses semantic
methods (Sect. 6.5), it also partitions the ontologies so as to only use ontology mod-
ules relevant to each candidate correspondence to consider. Similarly, PORSCHE
(Sect. 8.1.38) and XClust (Sect. 8.1.15) first cluster entities together in order to re-
duce the target search space for a source ontology entity.
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7.2 Matcher Composition

All the steps mentioned above are considered under the name of global methods.
The goal of a global method is to combine local methods (or basic matchers) in order
to define a new matching algorithm. We present here, at the strategic level, some
natural ways to combine matchers. For that purpose, we progressively introduce
new graphical elements. These are summarised in Fig. A.3 (Appendix A).

So far, we have only presented the outside of the matching process by producing
an alignment from two ontologies such as in Fig. 2.8. A natural way of composing
basic matchers consists of improving the alignment through the use of sequential
composition (see Fig. 7.2). For instance, one would like to first use a matcher based
on labels (Sect. 5.2) before running another one based on the structure of entities
(Sect. 5.3) or a semantic matcher (Sect. 6.5).

Fig. 7.2 Sequential composition of matchers.

This sequential process can be used, for instance, in on-line data integra-
tion. Ontology matching and integration consists of merging data (and some-
times data streams, d and d ′) expressed in different ontologies (o and o′). For
that purpose, the ontologies have to be matched beforehand and the data integra-
tion can use this alignment. This is an example of combined off-line and on-line
matching.

It can be thought of as (see Fig. 7.3):

Fig. 7.3 Instance matching as another matching process taking advantage of a prior matching of
ontologies (o and o′) for integrating data flows (d and d ′). This is typically what is exploited in
Fig. 1.5 (data interlinking).
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1. a first matching phase (f ), possibly with an instance training set,
2. a data matching phase (f ′) using the first alignment (A′).

In this setting, the second phase benefits from the precompiling of the first align-
ment. Indeed, the second matcher f ′ can be thought of as a compilation of the first
alignment.

However, the sequential combination of matchers is more classically used to
improve an alignment. For that purpose, when using similarities or distances, the
matchers can be sequentially composed through their similarity matrix. We intro-
duce, in Fig. 7.4, new symbols for matrices as well as a new component for extract-
ing an initial matrix from either an initial alignment or a pair of ontologies (first
triangle) and another one for extracting an alignment from a similarity or dissimi-
larity matrix (sparrow tailed triangle, detailed in Sect. 7.7).

The sequential composition through a distance or similarity matrix is illustrated
in Fig. 7.5.

Fig. 7.4 Introduction of a (virtual) matrix which represents a similarity or distance measure be-
tween entities to be matched. The first operator builds an initial matrix M from the two ontologies
o and o′. The core of the matching algorithm produces a similarity or distance matrix M ′ from
this initial matrix and the description of the ontologies. Finally, alignment A′ is extracted from
matrix M ′.

Fig. 7.5 Sequential composition of matchers through similarity.

Another way to combine algorithms consists of running several different algo-
rithms independently and aggregating their results (see Fig. 7.6): this is called par-
allel composition. Such aggregation techniques may be very different: it may cor-
respond to choosing one of the results on some criterion or merging their results
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through some operator. For instance, it can consist of running several matching al-
gorithms in parallel and selecting the correspondences which are in all of them
(intersection is then used as an aggregation operator) or selecting all the correspon-
dences with highest confidence.

Fig. 7.6 Parallel composition
of matchers.

In the latter case, it is often more convenient to define the aggregation operators
on the similarity or distance matrix (see Fig. 7.7) because there are many math-
ematical techniques available for that purpose. These techniques are presented in
Sect. 7.4.

Fig. 7.7 Parallel composition of matchers through similarity.

There are two main kinds of parallel composition:

Heterogeneous parallel composition in which the input is fragmented into differ-
ent kinds of data (graphs, strings, sets of documents, etc.) and the aggregation
takes advantage of all of them (by aggregating their results) or the most promis-
ing only. This is the topic of Sect. 7.4.

Homogeneous parallel composition in which the input goes into several compet-
ing systems and the aggregation selects the best of these or some consensus
between them.

Of course, it is possible to combine these two classes even further.
All these composition techniques are usually implemented within particular

matching algorithms (which are presented in Chap. 8). However, there are some
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systems that offer the opportunity to combine other systems, such as FOAM
(Sect. 10.3.7), Rondo (Sect. 10.3.1) or the Alignment API (Sect. 10.3.6).

7.3 Context-Based Matching

When two ontologies have to be matched, they often lack a common ground on
which comparisons can be based. The goal of ontology matching is to find this
ground. This may be achieved by comparing the content of the ontology or by deal-
ing with its context, i.e., the relations that the ontology has with the environment in
which it is used.

This common ground can often be found by relating the ontologies to external
resources. These resources may differ on three specific dimensions:

Breadth: whether they are general-purpose resources or domain-specific resources.
By using specialised resources, e.g., the Foundational Model of Anatomy in
medicine, one can be sure that the concepts in the contextualised resources can
be matched accurately to their corresponding concepts in the ontology. However,
by using more general resources there is more probability that an alignment
already exists and can be exploited right away.

Formality: whether they are pure ontologies defined in a formal language (the ex-
ternal resource is then called background knowledge (Giunchiglia et al. 2006c)),
less formal resources such as WordNet or fully informal resources such as
Wikipedia. By using formal resources, e.g., DOLCE or FMA, it is possible to
reason within or across these formal models in order to deduce the relation be-
tween two terms. By using terminological resources, e.g., WordNet (Sect. 5.2.2),
it is possible to extend the set of senses that are covered by a term and to increase
the number of terms that can express these concepts. There is thus more oppor-
tunities to match terms.

Status: whether these resources are considered as references such as ontologies,
thesauri or they are sets of instances or annotated documents that are shared (see
Sect. 5.4.1).

Contextualising ontologies can typically be achieved by matching these ontolo-
gies with a common upper-level ontology (Sect. 2.1.6) that is used as an external
source of common knowledge.

Example 7.1 (Using upper-level ontologies as background knowledge) An experi-
ment was carried out by expressing fishery resources (such as databases and the-
sauri) within the DOLCE upper-level ontology (Gangemi 2004). The goal was to
merge these resources into a common Core Ontology of Fisheries. It involved trans-
forming manually the resources into lightweight ontologies expressed with respect
to DOLCE and then using reasoning facilities for detecting relations and disjoint-
ness between entities of this ontology.
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Example 7.2 (Using domain-specific formal ontologies as background knowledge)
Assume that the anatomy part of the CRISP directory1 has to be matched to the
anatomy part of the MeSH2 metathesaurus. In this case, the FMA ontology can be
used as background knowledge, which gives the context to the matching task. The
result of anchoring is a set of matches with three different kinds of relations: =, ≤,
≥ between concepts from FMA, and CRISP or MeSH.

For example, the concept of brain from CRISP, denoted by BrainCRISP, could be
easily anchored to the concept of brain in FMA, denoted by BrainFMA. Similarly,
the concept of head from MeSH, denoted by HeadMeSH, could be anchored to a
background knowledge concept HeadFMA. In the reference ontology FMA there is
a part of relation between BrainFMA and HeadFMA. Therefore, we can derive that
BrainCRISP is a part of HeadMeSH.

Since the domain-specific ontology provides the context for the matching task,
the concept of Head was correctly interpreted as meaning the upper part of the hu-
man body, instead of, for example, meaning a chief person. This is not so straightfor-
ward, as can be shown by replacing FMA with WordNet: in WordNet the concept
of Head has 33 senses (as a noun). Finally, once the context of the matching task
has been established, as the example shows, various heuristics, such as string-based
techniques, can improve the anchoring step.

Because context-based matching is very versatile, we synthesise its behaviour in
a generalised view that aims at covering and extending existing matchers, such as
Scarlet (Sect. 8.1.32) or OMviaUO (Sect. 8.1.33). This framework describes the use
of formal ontologies as background knowledge and can be adapted to deal with
informal resources or linked data for instance. For that purpose, we decompose
context-based matching into seven steps described in Fig. 7.8:

Ontology arrangement preselects and ranks the ontologies to be explored as in-
termediate ontologies. The preselection may retain all the ontologies from the
web or ontologies belonging to a particular type, such as upper-level ontolo-
gies, domain-specific ontologies, e.g., medical or biological ontologies, compe-
tencies, popular ontologies, recommended ontologies, or any customised set of
ontologies.
The ordering may be based on the likeliness of the ontology being useful, usu-
ally measured as a distance. Such a distance may be based on the proximity of
the ontology with the ontology to be matched (David and Euzenat 2008), the
existence of alignments between them (David et al. 2010), or the availability of
quickly computable anchors (Sect. 7.1.1).

Contextualisation (or anchoring) finds anchors between the ontologies to be
matched and the candidate intermediate ontologies. These anchors can be cor-
respondences of any type, including various relations and confidence measures.
In principle, any ontology matching method presented in this book can be used

1Now replaced by the RePorter system: http://projectreporter.nih.gov/.
2http://www.nlm.nih.gov/mesh/.

http://projectreporter.nih.gov/
http://www.nlm.nih.gov/mesh/
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Fig. 7.8 The different steps of context-based matching (from (Locoro et al. 2013)).



7.3 Context-Based Matching 159

for anchoring; in practice, this is usually a fast method, like string matching
(see Sect. 7.1.1), because anchoring is only a preliminary step. In Fig. 7.8, a is
contextualised as a′, a′′ and a′′′; b is contextualised as b′ and b′′.

Ontology selection restricts the candidate ontologies that will actually be used.
This selection relies usually on the computed anchors by selecting those on-
tologies in which anchors are present. In Fig. 7.8, ontologies with no anchors
and blue ontologies with only one anchor are eliminated.

Local inference obtains relations between entities of a single ontology. It may be
reduced to logical entailment. It may also use weaker procedures, especially
when intermediate resources have no formal semantics, e.g., thesauri. It could
then be replaced by the use of asserted relations of the ontologies or relations
obtained through composing existing ones. In Fig. 7.8, b′ subsumes a′. Other
relations, such as a′′ � c and c′ � b′′, were inferred as well.

Global inference finds relations between two concepts of the ontologies to be
matched by concatenating relations obtained from local inference and corre-
spondences across intermediate ontologies. In Fig. 7.8, from the former asser-
tions and a new correspondence c ≥ c′, it is possible to infer a′′ ≥ b′′.

Composition determines the relations holding between the source and target en-
tities by composing the relations in the path (sequence of relations) connect-
ing them. The composition method can be functional (= · = is =), order-based
(< · ≤ is <) or relational (⊥· ≥ is ⊥). In Fig. 7.8, there exist two paths support-
ing composition: a = a′ 	 b′ = b and a = a′′ � c ≥ c′ � b′′ = b. They yield the
following assertions: a ≤ b and a ≥ b.

Aggregation combines relations obtained between the same pair of entities. It can
either simply return all the correspondences or return only one correspondence
with an aggregated relation. Aggregation itself can be based on various methods,
such as relation aggregation operators, e.g., conjunction, popularity (selecting
the relation which is obtained from the most paths) or confidence (selecting the
relation with the highest confidence). In Fig. 7.8, the two former relations are
aggregated by conjunction as a = b.

These steps extend those provided by Scarlet (Sect. 8.1.32): contextualisation
was called anchoring, selection was considered, local and global inference as well as
composition were gathered in a set of ‘derivation rules’ and aggregation was called
combining. GeRoMeSuite (Sect. 8.1.30) also identified the arrangement (called se-
lection), anchoring, local inference (including composition), and aggregation steps
to which a consistency check is added. This presentation provides a finer-grained de-
composition of context-based matching that can be used for instantiating differently
each step.

Context-based matching may be seen from a fully logical point of view: local
and global inference are replaced by entailment tests and composition and aggrega-
tion are replaced by logical deduction. In such a case, beyond anchoring, match-
ing is reduced to reasoning in a network of ontologies. Hence, when the tech-
nology for reasoning in networks of ontologies will be fully developed, it will be
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possible, in principle, to reduce the seven steps above to anchoring and reasoning
(see Sect. 6.5).

The difficulty of context-based matching is a matter of balance: adding context
provides new information, and hence, helps increase recall, but this new information
may also generate incorrect correspondences that decrease precision. Many options
can be exercised concerning the type of resource to be used or the way it is connected
to the ontologies to be matched.

7.4 Similarity and Alignment Aggregation

As Sect. 7.2 showed, the composition of matchers can be achieved by aggregat-
ing similarities. This aggregation takes similarities provided by different matchers
and combines them into a single similarity. Matchers can be competing, i.e., they
match the same types of entities with different assessments of the respective similar-
ities, or complementary, i.e., they identify similarities in different types of entities.
These will have to be aggregated differently. Here we identify three different types
of aggregations: weighting (Sect. 7.4.1), which arithmetically combines similarities
by giving different weights to matchers, voting (Sect. 7.4.2), which makes match-
ers vote on entity similarity or correspondences, and arguing (Sect. 7.4.3), which
considers matcher results as arguments for or against correspondences and uses ar-
gumentation techniques for selecting correspondences.

7.4.1 Weighting

Compound similarity is concerned with the aggregation of heterogeneous similar-
ities. As explained in Sect. 5.3, structured objects (classes, individuals) are very
often involved in many different relations, so it is possible to compute a similarity
between each of the ontology entities two objects are related with. For instance,
the similarity between two classes may rely on the similarity obtained from their
names, the similarity of their superclasses, the similarity of their instances and that
of their properties. These similarities have to be aggregated, in a single similarity
measure.

Triangular Norms

Triangular norms are used as conjunction operators in uncertain calculi.

Definition 7.3 (Triangular norm) A triangular norm T is a function from D ×
D →D (such that D is a set ordered by ≤ and provided with an upper bound �)
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satisfying the following conditions:

T (x,�)= x (boundary condition)

x ≤ y ⇒ T (x, z)≤ T (y, z) (monotony)

T (x, y)= T (y, x) (commutativity)

T
(
x,T (y, z)

)= T
(
T (x, y), z

)
(associativity)

Typical examples of triangular norms are min(x, y), x × y and
max(x + y − 1,0). All are normalised if the measures provided to them are nor-
malised; min is the only idempotent norm (∀x,min(x, x) = x). Triangular norms
are the obvious candidates for a combination that requires the highest score from
all aggregated values. Due to associativity, triangular norms can be extended to
n-ary measures. Any triangular norm over the unit interval can be expressed as a
combination of these three functions (Hájek 1998).

Another triangular norm for aggregating several dimensions is the weighted
product.

Definition 7.4 (Weighted product) Let o be a set of objects that can be analysed in
n dimensions, the weighted product between two such objects is ∀x, x′ ∈ o,

δ(x, x′)=
n∏

i=1

δ(xi, x
′
i )

wi

such that δ(xi, x
′
i ) is the dissimilarity of the pair of objects along the ith dimension

and wi is the weight of dimension i.

These operators have the drawback that if one of the dimensions has a measure
of 0, then the result is also 0.

Example 7.5 (Triangular norms) We consider in this section two ontologies com-
prising the concepts Product, Provider, Creator for the first one and Book, Translator,
Publisher and Writer for the second one.

The two tables below display the result of applying an edit distance and a
WordNet-based distance on these labels.

Book Translator Publisher Writer

Product .86 .8 .89 .86
Provider .88 .8 .56 .5
Creator .86 .5 .89 .57

Normalised Levenshtein distance

Book Translator Publisher Writer

Product .82 .88 .88 .85
Provider .83 .89 .76 .71
Creator .82 .53 .88 .85

Alignment API WordNet-based distance

The following tables display the aggregations of these distances with triangular
norms, namely, the min operation and a weighted product.
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Book Translator Publisher Writer

Product .82 .8 .88 .85
Provider .83 .8 .56 .5
Creator .82 .5 .88 .57

Minimum of the distances

Book Translator Publisher Writer

Product .84 .84 .88 .85
Provider .85 .84 .65 .60
Creator .84 .51 .88 .70

Weighted product with w1 =w2 = 1
2

Since the two first similarities were not very dissimilar from each other, the re-
sults of the two operators are very similar as well.

Contrary to the multidimensional aggregators, triangular norms tend to imply
dependencies between the values of the different dimensions, so that the value given
on one dimension can override a value on another dimension.

Multidimensional Distances and Weighted Sums

In case the difference between some properties must be aggregated, one of the most
common family of distances are the Minkowski distances. Contrary to the previous
ones, these measures are well suited to independent dimensions and tend to balance
the values between dimensions.

Definition 7.6 (Minkowski distance) Let o be a set of objects that can be analysed
in n dimensions, the Minkowski distance between two such objects is ∀x, x′ ∈ o,

δ(x, x′)= p

√√√√
n∑

i=1

δ(xi, x
′
i )

p

such that δ(xi, x
′
i ) is the dissimilarity of the pair of objects along the ith dimension.

Instances of the Minkowski distances are the Euclidean distance (when p = 2),
the Manhattan, a.k.a. City-blocks, distance (when p = 1) and the Chebichev dis-
tance (when p = +∞). These should be used when aggregating measures from
independent dimensions.

Example 7.7 (Minkowski distances) We start with the distance computed on labels
with the min aggregation operator in Example 7.5 and a distance obtained from the
Hamming distance on the set of instances of concepts. These distances typically
take into account independent dimensions.
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Book Translator Publisher Writer

Product .82 .8 .88 .85
Provider .83 .8 .56 .5
Creator .82 .5 .88 .57

Minimum of the distances

Book Translator Publisher Writer

Product .8 1. 1. 1.
Provider 1. 1. .15 .98
Creator 1. .83 .99 .22

Distances obtained by using the
Hamming distance on sets of the
concept instances. The relatively high
distance between Product and Book is
due to the large number of Products
which are not Books.

The aggregation of these two distances using (normalised) Euclidean and Man-
hattan distances are as follows:

Book Translator Publisher Writer

Product .86 .96 1. .99
Provider .98 .96 .44 .83
Creator .97 .73 1. .46

Normalised Euclidean distance based
on the two above dimensions

Book Translator Publisher Writer

Product .86 .96 1. .98
Provider .97 .96 .38 .79
Creator .97 .71 .99 .42

Normalised Manhattan distance based
on the two above dimensions

The values given by the Euclidean distance are lower than those of the Manhattan
distance, though they are very close.

These distances can be weighted in order to give more importance to some di-
mensions. They can be normalised by dividing their results by the maximum pos-
sible distance (which is not always possible) but they have the main drawback of
not being linear if p �= 1. This is a source of problems when trying to find these
distances if they are defined as functions of each others (see Sect. 6.2 and (Valtchev
1999)).

A simple linear aggregation can be further refined by adding weights to this sum.
Weighted linear aggregation considers that the values to be aggregated do not have
the same importance. For instance, similarity in properties is more important than
similarity in comments. The aggregation function will thus use a set of weights
w1, . . . ,wn corresponding to a category of entities, e.g., classes, properties. The
aggregation function can be defined as follows:

Definition 7.8 (Weighted sum) Let o be a set of objects that can be analysed in n

dimensions, the weighted sum between two such objects is ∀x, x′ ∈ o,

δ(x, x′)=
n∑

i=1

wi × δ(xi, x
′
i )

such that δ(xi, x
′
i ) is the dissimilarity of the pair of objects along the ith dimension

and wi is the weight of dimension i.
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The weighted sum can be thought of as a generalisation of the Manhattan distance
in which each dimension is weighted. It also corresponds to weighted average with
normalised weights. In fact, the weights can be different depending on the categories
of the objects aggregated (Sect. 6.2.2). Then, the function can use a set of weights
wP

C depending on the category of object C and the kind of value computed P .
This kind of measures can be normalised, if all values are normalised, by having∑n
i=1 wi = 1.

Example 7.9 Weighted sum From Example 7.7, it appears that the measure on the
instances is more accurate than those on the labels. This can be inferred from the
fact that there are no common names in both sets of labels or that there are lower
distances in the latter case. Thus, weighting these dimensions could be promising.
Let us consider the same input set as in Example 7.7. The computed weighted sums
are as follows:

Book Translator Publisher Writer

Product .81 .93 .96 .95
Provider .94 .93 .29 .82
Creator .94 .72 .95 .34

Normalised weighted sum with
wlabel = 1/3 and winst = 2/3

Book Translator Publisher Writer

Product .81 .95 .97 .96
Provider .96 .95 .25 .86
Creator .96 .75 .96 .31

Normalised weighted sum with
wlabel = 1/4 and winst = 3/4

The results clearly identify 〈Provider,Publisher〉 and 〈Creator,Writer〉 as candidate
matches. The low similarity between Product and Book prevents from choosing them
as a match candidate.

Fuzzy Aggregation and Weighted Average

Fuzzy aggregation operators are used for assimilating homogeneous quantities in a
way that preserves the structure of the aggregated domains.

Definition 7.10 (Fuzzy aggregation operator) A fuzzy aggregation operator f is a
function from Dn → D (with D being a set ordered by ≤ and provided with an
upper bound �) satisfying ∀x, x1, . . . , xn, y1, . . . , yn ∈D the following conditions:

f (x, . . . , x)= x (idempotency)

∀xi, yi, xi ≤ yi ⇒ f (x1, . . . , xn)≤ f (y1, . . . , yn) (increasing monotony)

f is a continuous function (continuity)

min is also a fuzzy aggregation function. A general result about these measures is
that for any fuzzy aggregation function f , the aggregation is ordered by f (x, y)≥
min(x, y)≥ x × y ≥ max(x + y − 1,0). A typical example of a fuzzy aggregation
operator is the weighted average (Gal 2011).
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Definition 7.11 (Weighted average) Let o be a set of objects that can be analysed
in n dimensions, the weighted average between two such objects is ∀x, x′ ∈ o,

δ(x, x′)=
∑n

i=1 wi × δ(xi, x
′
i )∑n

i=1 wi

such that δ(xi, x
′
i ) is the dissimilarity of the pair of objects along the ith dimension

and wi is the weight of dimension i.

A simple average function is a function such that all weights are equal. If the
values are normalised, the weighted average is normalised. In fact, the normalised
weighted sum is also a weighted average (see Example 7.9).

Fuzzy aggregation functions have to be used when aggregating the results of
competing algorithms (which are efficient with respect to some aspects and not with
respect to others) and trying to take advantage of all of them. They are very useful
if one wants to use a learning algorithm for learning the weights of the measure (see
Sect. 7.5). (Gal et al. 2005a) argues that these measures are always preferable to
triangular norms for aggregating confidence measures.

Some systems, such as LCS (Sect. 8.4.2) and MoTo (Sect. 8.3.24), took inspira-
tion from linguistic quantifiers (Yager 1988, 1993), e.g., ‘most of’, to define fuzzy
aggregation functions.

Harmonic Adaptive Weighted Sum

(Mao et al. 2010) introduced the notion of harmonic adaptive weighted sum for
weighting different matchers. This operation gives a higher weight to measures that
are more discriminant. For each measure, the operator computes the ratio of cells
in the matrix whose similarity is inferior (for a dissimilarity) to all the other cells
in the same row and column over the maximum possible such value (the size of the
smallest ontology).

Definition 7.12 (Harmonic adaptive weighted sum) Let o and o′ be two sets of
objects that can be compared by n measures, the harmonic adaptive weighted sum
of such measures between two such objects is ∀x ∈ o, x′ ∈ o′,

δ(x, x′)=
n∑

i=1

h(δi)× δi(x, x′)

such that δi(x, x′) is the measure of dissimilarity of the pair of objects along the ith
measure and h is such that

h(δi)=
∣∣{〈e, e′〉 ∈ o× o′;∧∀y ∈ o′ \ {e′}, σ (e, y) > σ(e, e′)

∀x ∈ o \ {e}, σ (x, e′) > σ(e, e′)
}∣∣

min(|o|, |o′|)
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This measure can be normalised by dividing the results by the sum of the weights.
It favours those similarities or distances that are more discriminant.

Ordered Weighted Average

Another aggregation operator in this context is the ordered weighted average (Yager
1988). It associates weights to the respective positions of the dimension values in-
stead of the dimensions themselves. This gives, in particular, more importance to the
highest (or the lowest) values. This is important when aggregating matcher results,
because this allows retaining only the results of the highest matches disregarding
the dimension they come from.

Definition 7.13 (Ordered weighted average) Let o be a set of objects that can be
analysed in n dimensions, an ordered weighted average operator f is a function
from Dn → D (with D a set ordered by ≤ and provided with an upper bound �)
satisfying ∀x, x1, . . . , xn ∈D, defined as

f (x1, . . . , xn)=
n∑

i=1

wi × x′i

such that

− w1, . . . ,wn is a set of weights in [0 1] such that
∑n

i=1 wi = 1;
− x′i is the ith largest element of (x1, . . . , xn).

The ordered weighted average has the properties of an average operator (commu-
tative, monotone and idempotent). The max, min and average functions are special
cases of ordered weighted average.

7.4.2 Voting

Aggregating alignments can be done by considering that each matcher is an inde-
pendent source of information and that the decision to include a correspondence in
an alignment is a vote in favour of this correspondence. This can be decided by a
simple majority vote.

Definition 7.14 (Majority vote) Let {Ai}i∈I be a set of alignments over the same
ontologies o and o′, the alignment A elected with majority from {Ai}i∈I is as fol-
lows:

A=
{
c ∈

⋃

i∈I

Ai |
∣∣{Ai |c ∈Ai}i∈I

∣∣ >
|I |
2

}
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This may be refined by taking into account the confidence associated to corre-
spondences as weights.

Definition 7.15 (Majority weighted vote) Let {Ai}i∈I be a set of alignments over
the same ontologies o and o′, the alignment A elected by majority weighted vote
from {Ai}i∈I is as follows:

A=
{
c ∈

⋃

i∈I

Ai

∣∣
∣∣
∑

i∈I

κi(c) >
|I |
2

}

It is also possible to set a threshold with respect to the distributed weights, instead
of majority.

In fact, any voting technique (Taylor 2005) may be applied to alignment ag-
gregation and all previous summative measures considered before (weighted sum,
weighted average, ordered weighted average) can be turned into a voting technique
by adding a threshold.

Dempster-Shafer Theory

The Dempster-Shafer theory of evidence provides a numeric mechanism for mod-
elling and reasoning with uncertain information. Its main strength is the proposition
of a simple rule, known as the Dempster combination rule, which allows for a com-
bination of evidences from independent sources (Dempster 1967; Shafer 1976).

In the Dempster-Shafer theory, a sample space is called a frame of discernment
or just a frame. It is denoted by Ω and it consists of a set of hypotheses, which are
to be unique and mutually exclusive. Evidence is used to choose the best hypothesis
in Ω , or in other words, a piece of evidence that implies a hypothesis. Data sources,
such as experts or sensors, provide such evidential assertions.

The evidence over a frame Ω is expressed through a mass function m, also known
as a basic assignment function, namely, m : 2Ω →[0 1], such that the following two
conditions hold:

m(∅)= 0,

∑

A⊆Ω

m(A)= 1.

The mass is distributed in the [0 1] interval to the elements of the power set (2Ω )
of the propositions Ω . In turn, A is a subset of Ω and m(A) represents the strength
of an evidence supporting exactly the claim A. The first condition above means
that the set Ω has to be complete; this corresponds to the closed-world assumption.
The second condition means that expert statements have to be normalised, such that
each source of evidence is equally important. Based on the mass function, several
measures are defined.
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In particular, beliefs in more specific propositions, such as subsets of A, are han-
dled through a belief measure, Bel : 2Ω →[0 1], such that

Bel(A)=
∑

B⊆A

m(B),

Bel(A) is a measure of the total (thus, including its particular subsets) belief or
justified support that is assigned to A. It captures all evidence B that supports the
proposition A, i.e., that it is true.

In addition, there might exist another belief B , consistent (overlaps) with A. This
is handled through a plausibility measure, Pl : 2Ω →[0 1], such that

Pl(A)=
∑

A∩B �=∅
m(B),

Pl(A) is a measure of the maximum support that could be assigned to A, if justified
with additional information.

Fig. 7.9 Connections between belief, plausibility and uncertainty in the Dempster-Shafer theory.

The masses assigned by mass functions can be viewed as segments of the unit
interval. The complete information about the measure of belief in the set A is
expressed through the belief interval [Bel(A),P l(A)]. In turn, P l(A) − Bel(A)

represents ignorance (missing data) concerning A or the uncertainty interval (see
Fig. 7.9).

The Dempster combination rule aggregates two mass functions by balancing
combined evidences with conflicts:

Definition 7.16 (Dempster combination rule) Given two mass functions m and m′,
the joint mass function m⊕m′ of a non-null hypothesis A is defined as

m⊕m′(A)=
∑

B∩B ′=A m(B)×m′(B ′)
1−∑

B∩B ′=∅m(B)×m′(B ′)

Normalisation may lead to counter-intuitive conclusions when combining contra-
dictory evidences (Zadeh 1984), since the rule emphasises the agreement between
experts and neglects the conflicting evidence. A possible solution to this problem is
to relax the closed world assumption (Smets 1990).
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Example 7.17 (Usage of the Dempster-Shafer theory) The Dempster-Shafer the-
ory has been used for combining various matching results in (Besana 2006; Wang
et al. 2007; Nagy and Vargas-Vera 2010). In such a setting, similarity measures
delivered by different matchers, such as edit distance and WordNet, are viewed
as subjective expert assessments that provide the supporting evidences. Specif-
ically, normalised similarity values correspond to mass values assigned to the
pairs of entities to be matched and constitute elements of the frame. For exam-
ple, mwordnet (paper, article) = 0.86 means that according to a WordNet matcher,
the mass function supporting the claim that paper corresponds to article results in
the value of 0.86. The frame contains all possible correspondences assessed by the
involved matchers. The masses provided by matchers are combined through the
Dempster rule. Based on the combined evidences, the most likely correspondences
from the mass distribution have to be selected. This can be done through thresholds
with which, for instance, pairs of entities with very high plausibility and very low
belief measures are rejected.

7.4.3 Arguing

Argumentation is a technique for finding an agreement between parties by exchang-
ing arguments in favour of or against a particular position. In ontology matching,
it may have two roles:

− negotiating an alignment between two agents, if they accept each other’s argu-
ments,

− achieving an alignment through matching. In particular, multiagent negotiation
of alignments can be seen as another aggregation technique between two align-
ments. (Silva et al. 2005) presents such a system based on quantitative negotia-
tion rather than arguments.

Argumentation allows agents to provide counter-arguments and to choose the argu-
ments depending on their preferences. It has been used in ontology matching for
finding an agreement between alignments (Trojahn et al. 2011). In this case, corre-
spondences are seen as arguments and they tend to attack one another depending on
whether they are contradicting each other and/or they are based on techniques pre-
ferred by the different agents. Hence, metadata on correspondences are important
because they carry the basis for preferring or attacking a particular correspondence
based on the provenance of the correspondence, the method with which it has been
obtained, or the confidence which is attached to it.

Example 7.18 (Alignment argumentation) Consider two agents C and P using re-
spectively ontology o and o′, expressed in description logic as follows:

o= {Micro-company ≡ Company  ≤5 employee}
o′ = {SME≡ Firm  ≤10 associate}
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Assume that they have discovered alignment A:

A= {〈Company,Firm,=〉, (γ1)

〈employee, associate,≤〉, (γ2)

〈Micro-company,SME,≤〉} (γ3)

The three correspondences are denoted, respectively, by γ1, γ2 and γ3. The argu-
ments in favour of γ1 include

a1: all the known Company on one side are Firm on the other side, and vice versa;
a2: the two names Company and Firm are synonyms in WordNet.

The arguments in favour of γ3 include

a3: the alignment (without γ3) plus the two ontologies entail the correspondence;
a4: all the known micro-companies on one side are SME on the other side (and not

vice versa);

and the counter-arguments include

a5: the two names Micro-company and SME are not alike by any string distance, and
they are not synonyms in WordNet;

a6: the only features they share are associate and employee and they have different
domains and cardinalities.

In (Laera et al. 2006), arguments are expressed following the value-based argumen-
tation framework (Bench-Capon 2003). They are made of a flag denoting if they are
in favour (+) or against (−) the correspondence and the type of method that supports
this correspondence (basic methods). A simple way to express these arguments is as
follows:

a1:
〈
Company,Firm,=, 〈+, extensional〉〉

a2:
〈
Company,Firm,=, 〈+, terminological〉〉

a3:
〈
Micro-company,SME,≤, 〈+, semantic〉〉

a4:
〈
Micro-company,SME,≤, 〈+, extensional〉〉

a5:
〈
Micro-company,SME,≤, 〈−, terminological〉〉

a6:
〈
Micro-company,SME,≤, 〈−, structural〉〉

Such arguments could be delivered by existing basic matchers. Another, more elabo-
rate way to define arguments is to allow correspondences themselves to be justifica-
tions. This is expressive enough to express, for instance, that the structural similarity
of Micro-company and SME depends on the terminological similarity of employee and
associate.

The rationale behind this type of argument is that some agents may prefer, or
trust, better some techniques than others.
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Example 7.18 (Alignment argumentation, continued) For instance, one can imag-
ine that agent C prefers terminological arguments over extensional arguments, ex-
tensional arguments over semantic arguments and semantic arguments over struc-
tural arguments. This order induces a partial order on the arguments themselves:
a5 "C a2, a1 "C a2, a5 "C a4, a1 "C a4, a2 "C a3, a4 "C a3, a3 "C a6. Similarly,
P could have a different preference ordering favouring structural, semantic, termi-
nological and then extensional arguments.

There are logical theories (Dung 1995; Amgoud et al. 2000) that, given a set of
arguments and the preferences of agents, define what is the consensus alignment be-
tween both parties. An argumentation framework is made of a set of arguments and
an attack relation (Dung 1995). An argument a is called acceptable for a set of argu-
ments S if any argument which attacks a is itself attacked by an element of S. A set
of arguments is called admissible if none of its elements attacks another element
and all its elements are acceptable. Finally, a preferred extension is an inclusion
maximal admissible set.

The goal for agents is (i) to exchange arguments so that they can work on a com-
mon set of arguments, and (ii) to determine which arguments, and then positions,
they can accept together. For that purpose, they may adopt a cautious approach,
selecting only the arguments which are part of all their preferred extensions, or a
credulous approach, selecting all arguments which are in at least one preferred ex-
tension of each agent.

Example 7.18 (Alignment argumentation, continued) For instance, C will have for
preferred extension {a5, a1, a2, a6} and P , in turn, will have {a6, a5, a2, a1}. How-
ever, together, the maximal common subset of arguments between C and P is
{a1, a2, a5, a6}, which selects the preferred alignment made up of γ1 and γ2.

Different results have been obtained using various refinements of argumentation:
value-based argumentation, which allows for different preferences among argu-
ments (Laera et al. 2006), strength value-based argumentation, vote value-based ar-
gumentation, which respectively builds preferences on confidences and votes across
agents (Trojahn et al. 2008).

Summary on Similarity and Alignment Aggregation

The use of several matchers or similarity measures together is a common practice.
In order to deliver an alignment, such measures have to be integrated. Integration
may be based on aggregating similarity values or ranks. It can also be based on
the opinion of stakeholders (matchers or agents), through simple voting or through
more elaborate argumentation strategies.

Once integration has been performed, the resulting similarities can be used for
extracting alignments (Sect. 7.7) or further composition and aggregation. They can
also provide the basis for matcher learning (Sect. 7.5) and tuning (Sect. 7.6).
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7.5 Matching Learning

This section is concerned with algorithms that learn how to sort alignments through
the presentation of many correct alignments (positive examples) and incorrect align-
ments (negative examples). The main difference between these approaches is that
the techniques of this section require some sample data to learn from. This can be
provided by the algorithm itself and judged by users, for instance, by having only a
subset of the correspondences under judgment, or this can be brought from external
resources.

Fig. 7.10 General machine learning setting for ontology matching. In supervised machine learn-
ing, from a limited reference (R) of the alignment to obtain, the machine learning process generates
an internal classification model, which is used for matching the remaining fragments of o and o′
or the new ontologies o1 and o2 with similar characteristics to o and o′. In nonsupervised machine
learning, the resulting alignment (A′) is usually injected as input to the training, which iterates
until specific conditions are satisfied.

Matchers using machine learning usually operate in two phases (see Fig. 7.10):
(i) the learning or training phase and (ii) the classification or matching phase. During
the first phase, training data for the learning process is created, for example, by man-
ually matching two ontologies, so that the system learns a matcher from this data.
During the second phase, the learnt matcher is used for matching new ontologies.
Feedback on the obtained alignment may be provided which can be fed into step
(i) again. Learning can be processed on-line, such that the system can continuously
learn, or off-line, if its speed is less relevant than its accuracy.

Usually this process is carried out by dividing a data set, i.e., set of positive and
sometime negative examples of alignments into a training set (typically 80 % of
data) and a control set (typically 20 % of data) which is used for evaluating the
performances of the learning algorithm.

There are many types of information that a learner can exploit. These include
word frequencies, formats, positions, or properties of value distributions. A multi-
strategy learning approach is useful when several learners are used, each one han-
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dling a particular kind of pattern that it learns best. Finally, results produced by
various learners can be combined with the help of a metalearner (Doan et al. 2003).

In this section we consider some of the well-known machine learning methods
which have been used for text categorisation, such as Bayes learning (Sect. 7.5.1),
WHIRL learning (Sect. 7.5.2), neural networks (Sect. 7.5.3), support vector ma-
chines (Sect. 7.5.4), and decision trees (Sect. 7.5.5).

7.5.1 Bayes Learning

The naive Bayes learner (Good 1965) is a probabilistic induction algorithm. It has
been used in various matching approaches as a classifier (Doan et al. 2004; Straccia
and Troncy 2006; Lambrix and Tan 2006; Nandi and Bernstein 2009; Spiliopoulos
et al. 2010; Esposito et al. 2010; Tournaire et al. 2011).

Assume that we want to match attribute x from one ontology to one (yi ) of the at-
tributes (y1, . . . , ym, i = 1, . . . ,m) from another ontology. The approach views val-
ues of attributes as sets of tokens. V denotes a set of underlying values of attribute
x: V = {t1, . . . , tn}, where tj is the j th token, j = 1, . . . , n. Tokens, in turn, are ob-
tained by applying a normalisation technique, such as lemmatisation (Sect. 5.2.2),
to the words in the data instance. Assume that P(yi) is the a priori probability that
x matches yi , i.e., without having seen any tokens of x. Then, P(V ) stands for the
probability of observing values V in x. Finally, P(V |yi) stands for the conditional
probability of observing values V , given that x matches yi . The Bayes theorem de-
scribes how to optimally predict the attribute for a previously unseen data instance,
given a training example. The chosen attribute is the one that maximises a posterior
probability, i.e., after having seen the values V , that x matches yi . It is denoted by
P(yi |V ) and is computed as

P(yi |V )= P(V |yi)× P(yi)

P (V )

This is called the Bayes rule. The naive Bayes classifier has a naive assump-
tion that the tokens tj appear in V independently of each other given yi . Based on
this assumption the parameters (tokens) of each attribute can be learnt separately;
this in turn greatly simplifies learning. Thus, if the attributes are independent given
the class, P(V |yi) can be decomposed into the product of P(t1|yi)× · · ·P(tn|yi)

and P(V ) can be omitted from the Bayes rule for obvious reasons. Henceforth, the
Bayes rule can be rewritten as follows:

P(yi |V )= P(yi)×
∏

1≤j≤n

P (tj |yi)

The independence assumption often does not hold in practice. However, in many
applications, the violation of this assumption does not lead to degradation in effec-
tiveness of the approach (Domingos and Pazzani 1996).
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The probabilities of the latter formula can be computed using the training data:
P(yi) can be estimated by the proportion of examples that have been matched to yi ;
P(tj |yi) can be estimated as k(tj , yi)/k(yi), where k(yi) is the total number of
tokens of all training instances with attribute yi , and k(tj , yi) is the number of oc-
currences of token tj in all training instances with attribute yi . Based on the above
formula the corresponding confidence scores can be designed in an obvious way.

Example 7.19 (Naive Bayes learning) Assume that we have established manually
that attributes creator and name of one ontology match respectively attributes author

and title of another one. The process works in two steps.
Training phase. Assume that Bertrand Russell is an instance of the creator attribute

and My life is an instance of the name attribute. Thus, based on this information the
following training examples can be fed into the classifier: 〈{‘Bertrand’, ‘Russell’},
author〉 and 〈{‘My’, ‘life’}, title〉. The second one declares that {‘My’, ‘life’} is a ti-

tle and it has two tokens. By inspecting the training instances the learner builds its
internal classification model. For example, by noticing that if a word such as ‘life’
occurs frequently in data instances positively related to title and infrequently in those
related to other fields, their underlying attribute is therefore likely to match the title

attribute on how to classify data instances. If the training set is statistically repre-
sentative, these frequencies can be transformed into probabilities and the Bayes rule
can be used. This can also be applied to classify instances in classes, for instance,
using 〈{title:My title:life}, class:biography〉.

Matching phase. Let Life of Pi be an instance of the attribute h1 from the structure
of a web site which we want to match against attributes of the second ontology
above. The learner uses its internal classification model to predict an attribute for the
given instance as well as its confidence score, e.g., 〈author,0.2〉, 〈title,0.8〉. Based on
the confidence scores, it can be concluded that h1 is a match for title.

7.5.2 WHIRL Learner

WHIRL is an extension of conventional relational databases to perform soft joins
based on the similarity of textual identifiers (not only based on equivalence of atomic
values) (Cohen 1998). It has been also used for inductive classification of text and
turns out to be competitive with other inductive classification systems, such as de-
cision trees (Cohen and Hirsh 1998). The WHIRL approach to text classification
can be viewed as a kind of nearest neighbour classification algorithm, such that all
the training data is stored in memory and k instances are selected through the Eu-
clidean distance and used for (kNN) classification (Nottelmann and Straccia 2006;
Spiliopoulos et al. 2010).

WHIRL has been used in matching for learning both schema-level and instance-
level information (Doan et al. 2003; Bilke and Naumann 2005). In the case of
schema information, training examples could be of the following type 〈expanded
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label′, label〉, where label′ belongs to ontology o′ and label belongs to ontology o.
For instance, 〈location′, address〉 states that if an ontology entity has the label loca-

tion, then it matches address. Expansion of label′ can be obtained, for instance, by
including its synonyms, which, in turn, can be obtained from manually created cor-
respondence tables for the domain of interest. WHIRL stores all training examples
it has seen. Assume that we would like to match another ontology o′′ to ontology o.
Given a label′′ from o′′, WHIRL computes the corresponding label in o based on
the labels of all examples in its collection that are similar to label′′. The similarity is
based on TFIDF (Sect. 5.2.1) between the expanded labels of the examples. For ex-
ample, given the label phone from o′, WHIRL may generate a prediction as follows:
〈address,0.1〉, 〈description,0.2〉, 〈agent-phone,0.7〉. Based on the confidence scores,
it can be concluded that phone is a match for agent-phone.

In the case of instance-level information, this matcher uses the data con-
tent instead of expanded labels. A training example of this case is of the form
〈data instances′, label〉, such that data instances′ belong to ontology o′ and label
belongs to ontology o. When matching a new ontology o′′ to ontology o, the TFIDF
distance between any two examples is the distance between data instances of o′′ and
the WHIRL collection of data instances.

7.5.3 Neural Networks

Artificial neural networks are made up of nodes (or neurons) and weighted con-
nections between them. Nodes are grouped into layers, having input, output and
either none, one or more hidden layers. Usually each node in a hidden layer is
connected to all nodes of the preceding and the following layer. Neural networks
have been widely used in practice due to their adaptability. Several types of neural
networks have been used for various tasks in ontology matching, such as discover-
ing correspondences among attributes via categorisation and classification (Li and
Clifton 1994; Esposito et al. 2010) or learning matching parameters, such as matcher
weights, to tune matching systems with respect to a particular matching task (Ehrig
et al. 2005; Mao et al. 2010; Gracia et al. 2011). We focus here on the first task
mentioned above, while learning matching parameters is addressed in Sect. 7.6.

Given schema-level and instance-level information, it is sometimes useful to
cluster this input into m categories in order to lower the computational complexity
of further manipulations with data. The self-organising map network and the corre-
sponding self-organisation learning algorithm can be used for this purpose (Koho-
nen 2001). It categorises n nodes of the input layer into m categories of the output
layer. Usually m is predefined based on how detailed the categories should be by
setting the radius of clusters. Input patterns or attributes, e.g., field length and data
type, are viewed as dimensions in a n-dimensional feature space. The neurons in
the network are organising themselves according to the characteristics of given in-
put patterns. This results in a clustered neuron structure, where neurons with similar
properties are arranged in related areas on the map. Every node in the output layer
represents a cluster centre.
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Fig. 7.11 Neural network identifying fields of Health_Plan_Insured# from their characteristics.

For neural networks, matching is viewed as a classification problem. The back-
propagation algorithm can be used for this purpose. Back-propagation is a super-
vised learning algorithm which is used to train a network to recognise input patterns
and give corresponding scores. First, the feature weights are loaded into the input
nodes. Then, they are propagated forward in order to generate the output. If a mis-
classification occurs, the error is backpropagated in order to change the weights of
connections in the network. Weights are modified until the errors in the output layer
are not minimised anymore.

Example 7.20 (Neural networks—adapted from (Li and Clifton 1994)) Given an
ontology, some of its attributes, such as Employee.id, Dept.Employee and Payrol.SSN,
can be clustered into one category, since their input characteristics as well as in-
tended meanings are close to each other. The corresponding vector of cluster centre
weights can be as follows: 〈0,0.1,0, . . . 〉, where vector components stand for the
features: the first position stands for data type, the second position stands for length,
etc. The key feature for grouping the attributes mentioned above was the field length,
since its value (0.1) is higher than that of others (0.0). In fact, ID fields are typically
very regular (they use the full field all the time), while name fields are more variable.

Figure 7.11 shows a three-layer network for recognising m categories of patterns,
given n features. The number of nodes in the hidden layer can be arbitrary. It is
usually chosen based on experiments in order to obtain the shortest training time.

Training phase. The training data for the neural network is composed of vectors
of cluster center weights and their target categories. For example, the vector con-
sidered previously, i.e., 〈0,0.1,0,0, . . . 〉, is tagged with its target category, which is
number 3. The back propagation algorithm will then adjust the weights so that at-
tributes characteristics corresponding to these attributes will result in a output vector
as close as possible to 〈0,0,1,0, . . . 〉 indicating that the most likely category is 3.

Matching phase. The matching phase includes feeding into the network trained
on features of ontology o a new pattern of n characteristics, e.g., of the attribute
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health_Plan.Insured#, from another ontology o′. Based on the internal classification
model of the network, it determines the similarity of this pattern and each of m

categories. For instance, this attribute matches category 3 (id numbers) with the
score 0.92 and category 1 with the score 0.05.

7.5.4 Support Vector Machines

Support vector machines (SVM) are supervised learning methods used for clas-
sification, regression and other tasks (Cristianini and Shawe-Taylor 2000). Basic
SVMs are nonprobabilistic binary linear classifiers. However, they can efficiently
perform nonlinear classification as well, by exploiting kernel functions. This im-
plicitly transforms or maps SVM inputs into a higher-dimensional feature space,
so that the originally linearly nonseparable data becomes (presumably) easier to
separate in the feature space (Boser et al. 1992; Vapnik 2000). SVMs were used
in several matching approaches as classifiers (Ehrig et al. 2005; Spiliopoulos et al.
2010; Tournaire et al. 2011).

Training instances are of two categories, those that match and those that do not
match. Based on these, SVMs build a maximal separating hyperplane in a high-
dimensional space, namely (w,b), where w stands for the weight vector and b

stands for bias. The decision function is f (x)=w× x + b. The margin or the dis-
tance between the closest data points is maximised (which can be done also softly,
namely by allowing for noise or erroneous examples (Cortes and Vapnik 1995)).
The hyperplane decision function with kernel is

f (x)=w× x + b=
n∑

i=1

yiαiK(xi, x)+ b,

such that n is the number of training examples, yi ∈ {+1,−1} is the match or no-
match label for the example i, K is a kernel function. αi is a Lagrangian multiplier
for each training point. αi ≥ 0 and

∑
αiyi = 0. Only those training examples (xi)

that are positioned closely to the decision boundary have αi > 0, and those whose
removal would change the solution found are called the support vectors.

Example 7.21 (Support vector machines) Given two ontologies, entity pairs to be
matched are extracted, such as 〈name, title〉 or 〈id, isbn〉. For each of these, feature
selection is performed through similarity calculation, e.g., by using SMOA, n-gram,
or WordNet. The final result of this operation can be viewed as a similarity cube,
where the first dimension stands for the entities of the first ontology, the second
dimension stands for the entities of the second ontology and the third dimension
stands for the features applied. For each entity pair, the target value is added, namely
the match or no-match label. Both entities in the example above match. This is
typically established by a domain expert, while preparing the training data set. In
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other words, a vector is sliced from a similarity cube and give it a target value. These
similarity vectors form a vector space, where training is performed to construct the
maximal separating hyperplane. The selection of features or kernel type is crucial
for the quality of the final result. Choosing a suitable kernel for a matching problem,
i.e., a kernel that avoids irrelevant features, improves results. Various kernels can be
used, such as polynomial, Gaussian radial basis functions or string and bag of words
kernels. The matching phase includes feeding into the trained model new unseen
features corresponding to entity pairs, which are classified by the SVM into match
or no-match.

7.5.5 Decision Trees

Decision tree classifiers learn a set of rules which are applied in a sequential way
and ultimately lead to a decision. Unlike the previous method, which are numeric
in nature, and, therefore, not easily interpretable by humans, Decision trees do not
have this drawback. A possible method for learning a decision tree for a category
can follow a divide-and-conquer strategy. In a training set T of instances charac-
terised by features and their category, a feature f1 is selected, which discriminates
the population in the best way (with regard to the set of categories). Then, T is parti-
tioned into two subsets, the subset T

yes

1 corresponding to feature f1, and the subset
T no

1 without this feature. This procedure is recursively applied to T
yes

1 and T no
1 . It

stops if all instances in a subset are assigned to the same category. It generates a tree
of rules with an assignment to actual categories in the leaves. Decision tree learner
can be tolerant and accept that some of the instances are misclassified if this pro-
duces a large simplification of the tree. This is useful when there can be errors in the
training sets.

Decision trees have been used in ontology matching for various tasks, such as dis-
covering correspondences among entities (Xu and Embley 2003; Duchateau et al.
2009; Spiliopoulos et al. 2010; Tournaire et al. 2011) and learning parameters of
matching systems, e.g., thresholds, to adapt automatically to a given matching task
(Ehrig et al. 2005; Duchateau et al. 2008). We focus here on the former, while learn-
ing matching parameters is addressed in Sect. 7.6.

Example 7.22 (Decision tree) Given a large training alignment between instances
from the two ontologies of Fig. 2.7, decision tree learning, e.g., the C4.5 decision
tree induction system (Quinlan 1993), is applied to generate rules for identifying
new instances. Figure 7.12 shows a decision tree fragment that can be learnt. The
decision first states that it can only match Books from the first ontology into the
second one. Then it distinguishes Books having one author, which is a Professor, from
those having no Professor as authors. It is then able to consider that if an author is a
topic of the Book, then this one must be classified as an Autobiography, otherwise it
should be an Essay.
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The decision tree has been built with some tolerance: the numbers after the tar-
get categories indicate the number of instances in the training set which have been
correctly and incorrectly recognised.

Fig. 7.12 Fragment of a binary decision tree. Each node is labelled by a condition that must be
satisfied by the item to classify. When no further classification is possible, the resulting target
category is indicated together with the number (in parenthesis) of correctly/incorrectly classified
items in the training set.

The decision tree fragment displayed in Fig. 7.12 can be rewritten as mapping
from the source ontology to the target ontology. The mapping rule corresponding to
the Autobiography branch can be written as

Book(e)∧ ∃e′; author(e, e′)∧ Professor(e′)∧ ∃e′′; author(e, e′′)∧ topic(e, e′′)

⇒ Autobiography(e)

Such a rule may be translated into a correspondence, albeit in an expressive lan-
guage. It is possible to use the same kind of techniques for learning from the struc-
ture instead of instances. (Xu and Embley 2003) shows how to use decision trees in
order to learn rules for matching terms in WordNet.

Summary on Matcher Learning

In this section we discussed basic matcher learning, which was essentially viewed
as a classification problem. Many methods presented, such as Naive Bayes, kNN,
SVM, and C4.5, have been used for matching by building on top of the Weka data
mining software3 (Witten et al. 2011). Some specific frameworks, such as Neu-
roph4 for neural networks and libSVM5 for support vector machines were exploited

3http://www.cs.waikato.ac.nz/ml/weka/.
4http://neuroph.sourceforge.net.
5http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.cs.waikato.ac.nz/ml/weka/
http://neuroph.sourceforge.net
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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as well with success for matching purposes. The discussed methods, their varia-
tions and other learning methods have been compared in-depth within the GLUE
(Sect. 8.2.5), CSR (Sect. 8.3.21) and YAM++ (Sect. 8.3.23) matching approaches.

Technically speaking, setting up training and testing data sets, and then running
directly a method from a package mentioned above, would rarely lead immediately
to good results. Often, issues like overfitting and appropriate method parameter se-
lection have to be addressed before achieving acceptable results. Application-wise,
machine learning approaches are usually useful in data integration scenarios occur-
ring in vertical domains (see Sect. 1.2), when new ontologies have to be matched
against an existing pool of ontologies. Thus previously learnt matchers can be read-
ily reused.

7.6 Matcher Tuning

Tuning refers to the process of adjusting a matcher for a better functioning in terms
of:

− better quality of matching results, measured, for example, through precision, re-
call or F-measure (Sect. 9.3.1), and

− better performance of a matcher, measured through resource consumption, such
as execution time, main memory, CPU or bandwidth (Sect. 9.3.4).

Fig. 7.13 General framework for tuning. Before matching, tuning decides in advance which
matchers to employ, for example, based on the specific characteristics of the input ontologies.
After matching, the output alignment (A′′) of the matcher is evaluated by a tuner which may adapt
the matcher parameters (and optionally resources). The matcher then produces a new alignment
with the adapted parameters. This process iterates until the tuner cannot provide better parameters
and returns the last computed alignment (A′).

Tuning is usually conducted before matching, i.e., as a pre-match effort, after
it, i.e., as a post-match effort, or iteratively, i.e., involving both or one of the two
mentioned phases (see Fig. 7.13). This adjusting process can be automatic, semi-
automatic or manual. Users perform tuning with the help of graphic interfaces or
through direct editing of configuration files as a pre- or post-match efforts. For ex-
ample, before matching, input ontologies may be analysed (manually or automati-
cally) to obtain actionable insights, such as if they contain long or short labels, how
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developed are their structures, if there are instances. This information is used to de-
cide in advance dynamically (based on the input) to apply certain matchers or not,
such as structure-level matchers, with respect to a default matching workflow. In
turn, matcher selection is often tackled operationally by setting appropriate weights
(in [0 1]) to matchers that are in a predefined pool (of usually at most several dozens
of matchers) and to be further aggregated. So far, mostly design-time toolboxes of-
fer manual weight selection (Do and Rahm 2007; Gal and Shvaiko 2009). Tuning
is often automated through predefined rules (Mochol and Jentzsch 2008; Li et al.
2009; Peukert et al. 2012) or machine learning (Lee et al. 2007; Duchateau et al.
2008; Gal 2011). Implementations might tightly couple tuning and matching, such
that it may appear as a run-time activity, while conceptually tuning is positioned
before or after matching.

From a methodological point of view, tuning may be applied at various levels of
architectural granularity. For example, for choosing a specific matcher, such as edit
distance, from a library of matchers, for setting parameters of the matcher chosen,
e.g., cost of edit distance operations (Sect. 5.2.1), for aggregating the results of sev-
eral matchers, e.g., through weighting (Sect. 7.4.1), for enforcing constraints, such
as 1:1 alignments (Sect. 7.4.1), or for selecting the final alignment, e.g., through
thresholds (Sect. 7.7.1). In all these examples, informed decisions, for instance, for
choosing a specific threshold of 0.55 vs. 0.57 vs. 0.6, should be made. When a li-
brary of matchers is offered by a tool, it may be challenging for users to select,
compose and parameterise them (Sect. 3.4), because the solution space is too large
to try out all the alternatives. Hence efforts have been made for achieving this auto-
matically. This is sometimes called ontology metamatching (Lee et al. 2007; Eckert
et al. 2009). We consider the above mentioned operations together because, in prac-
tice, they always operate among a predefined number of choices which can often be
reduced to a (sophisticated) variant of parameter tuning.

As the definition of the matching process indicates (Sect. 2.5.1), a matcher, be-
sides two input ontologies, may also use an input alignment A, parameters, p, e.g.,
weights, and external resources r . These three elements constitute a matcher config-
uration, cfg= {〈A,p, r〉}, which can be tuned. For simplicity its three elements can
be generalised and represented by a set of pairs:

cfg= {〈p1, v1〉, . . . , 〈pn, vn〉
}
,

of parameters (pi ) and their values (vi ), such as a threshold of 0.55. In turn, CFG is
a space of all possible configurations. The goal of tuning is to discover an optimal
configuration, namely with which changing parameters does not decrease matching
quality, e.g., precision, or matcher performance, e.g., execution time, or both. For
example, optimising matching quality through F-measure (M.5; Sect. 9.3.1) means
searching for a cfg∗ in the CFG space, that improves F-measure:

cfgi+1∗ ∈ {
cfg ∈ CFG :M.5(cfg)≥M.5

(
cfgi∗

)}

Usage Examples eTuner (Sect. 8.4.4) uses an approach to tune a library of schema
matchers at design time: given a particular matching task, it automatically tunes a
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matching system by choosing suitable matchers, and the best parameters to be used,
such as thresholds. MatchPlanner (Sect. 8.1.39) uses a decision tree as an aggrega-
tion function, such that the nodes represent similarity measures and edges are used
as conditions on the results. Such a decision tree represents a plan whose elementary
operations are matching algorithms. Moreover, since edges in the decision tree are
used as conditions, these can be viewed as thresholds, personalised to each matcher.
In turn, ECOMatch (Ritze and Paulheim 2011) uses an alignment sample provided
by users and optimises partial F-measure with respect to this sample. It considers
matchers as black boxes and uses out-of-the-box optimisation techniques to find op-
timal parameters of these systems. This allows for selecting both an optimal matcher
and parameters. AMS (Sect. 8.4.10) implements a rule-based approach to adapt a
matching process: first the matching workflow is established with respect to the
characteristics of the input ontologies, then the output is evaluated in order to adapt
the workflow. Characteristics of both the input and the output are considered fea-
tures accessible to rules. Rules are triggered in a particular context and modify the
workflow, e.g., by adding aggregators (when there are several results), suppressing
basic matchers (when their quality is not sufficient).

Below we discuss in some detail and with examples two specific methods to per-
form tuning through aggregation of basic matchers. These are stacked generalisation
(Sect. 7.6.1) and genetic algorithms (Sect. 7.6.2).

7.6.1 Stacked Generalisation

Stacked generalisation is an approach to combine multiple learning algorithms
(Wolpert 1992). From the ontology matching perspective, this approach can learn to
aggregate several basic learners, e.g., naive Bayes and WHIRL, on a particular label
(Doan et al. 2003; Esposito et al. 2010).

The training phase of stacked generalisation works in two steps. The first step
deals with collecting the output of each learner, thereby resulting in a new data set.
First, let D0 = {〈ci, xi〉}i=1,...,m be the training data set, such that ci is a category
and xi is an instance represented by the vector of its features. In terms of ontol-
ogy matching, ci can be an entity from ontology o and xi an entity of ontology
o′, e.g., an individual represented by its attributes. ci is the category to which xi

should be assigned or, for ontology matching, the entity corresponding to xi . In or-
der to avoid overfitting, i.e., that the training data does include the query instances,
a cross-validation is performed. In particular, D0 is randomly partitioned into p al-
most equal parts, D0

1, . . . ,D0
p , such that D0

k represents a test and D̄0
k = D0 −D0

k ,
represents a training set for the k-th class of cross-validation. Given q basic learning
algorithms (matchers), which are called level-0 generalisers, using the l-th matching
algorithm on training set D̄k results in a model Mk

l , which has been learnt. Such a
model, given a vector of features characterising an object, returns a prediction which
is the category it should be assigned to. These are the level-0 models. Let Mi

l be the
prediction of the model Mk

l on xi ∈Dk . The final result of cross-validation is the set
D1 which consists of exactly one prediction for each of the training examples:
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D1 = {〈
ci,

〈
Mi

1, . . . ,M
i
q

〉〉}
i=1,...,m

The output of the first step is used as the input data for the second step, where an-
other learning algorithm, called level-1 generaliser, is employed. In turn, it derives
a level-1 model M ′ for ci with respect to Mi

1, . . . ,M
i
q . Thus, while level-0 classi-

fiers deal with the possible assignment of entities to categories with regard to their
attributes, level-1 classifiers deal with the possible assignment of the same entities
to the same categories with regard to the categories predicted by the classifiers.

During the classification phase, given a new instance x, the models which have
been learnt produce a vector 〈M1, . . . ,Mq〉, which is taken as input by M ′, whose
output is the final classification for that instance.

(Ting and Witten 1999) identified that the best results, compared to such learn-
ing algorithms as C4.5 decision tree (Sect. 7.5.5) or naive Bayes (Sect. 7.5.1), are
obtained in stacked generalisation for classification tasks when (i) the higher-level
model combines the confidence and not the predictions of the lower-level models,
and (ii) the multiresponse linear regression is used as a level-1 generaliser.

Besides multiresponse linear regression, there are other algorithms that may work
equally well on this task, such as neural networks (Sect. 7.5.3).

Example 7.23 (Stacked generalisation, adapted from (Doan et al. 2003)) Assume
that two basic learners are used: (i) the WHIRL learner working with labels of en-
tities (Sect. 7.5.2), and (ii) the naive Bayes learner working with data instances of
entities (Sect. 7.5.1). The names of these matchers are abbreviated in this example
as WHIRL and NB respectively.

Training phase. Consider the label address from ontology o. Examples of corre-
sponding training data from ontology o′ for basic learners are shown in Table 7.1.
The first and the second columns list respectively the labels, e.g., location, and the
underlying data instances, e.g., 〈Miami,FL〉, of some entities from ontology o′. The
fourth and the fifth columns describe confidence scores S as produced by WHIRL
and naive Bayes based on input from the first three columns via the cross-validation.
For example, Saddress

WHIRL (location)= 0.5, while Saddress
NB (〈Miami,FL〉)= 0.8. Finally, the

last column indicates whether the correspondence under consideration holds or not.
For example, location from o′ actually matches address from o, and therefore, the cor-
responding value in the last column is 1, while listed-price does not match address,
and therefore, the corresponding value in the last column is 0.

The information from the three right-most columns is used as input for the lin-
ear regression (Breiman 1996; Birkes and Dodge 2001). Results of the WHIRL
and naive Bayes learners stand for the confidence scores (S), while the last col-
umn represents values of the response variable. As the result of least square er-
ror minimisation the weight assigned to the pair of WHIRL and label address

is 0.2, i.e., W address
WHIRL = 0.2, while W address

NB = 0.9. The interpretation of these
weights is that, based on stacked generalisation training, the naive Bayes learner
appears to be much more reliable compared to WHIRL in its predictions about ad-

dress.
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Table 7.1 Training data for basic learners and stacked generalisation.

o′ label o′ instance o label WHIRL NB True predictions

location Miami, FL address 0.5 0.8 1

listed-price 250K address 0.4 0.3 0

phone (305) 729 0831 address 0.3 0.6 0

comments Fantastic house address 0.6 0.1 0

location Boston, MA address 0.5 0.9 1

listed-price 320K address 0.2 0.2 0

Matching phase. Assume that we want to match the entity with label area and
instance 〈Seattle,WA〉 from yet another ontology o′′ to entities of ontology o. Con-
sider the case of the entity with label address from o. WHIRL will analyse the
label area and generate its confidence score, e.g., 〈address,0.4〉. The naive Bayes
learner, in turn, will analyse the data contents and generate its confidence score,
e.g., 〈address,0.8〉. By using the weights obtained during the training phase of
stacked generalisation, the weighted average of the confidence scores can be com-
puted as follows: 0.4 × 0.2 + 0.8 × 0.9 = 0.8, yielding the combined prediction
〈address,0.8〉.

There are other techniques with similar goals, such as boosting and bagging. To
combine the decisions of the individual models (matchers), boosting uses a weighted
majority vote and bagging uses unweighted majority vote. However, they require a
large number of models because they rely on varying the data distribution to obtain
a diverse set of models from a single learning algorithm, while stacking can work
with only a few level-0 models (Ting and Witten 1999). The application of boosting
(through the AdaBoost algorithm) in order to select matchers from a pool to be
further used in combination was investigated in the SMB system (Sect. 8.4.8).

7.6.2 Genetic Algorithms

Genetic algorithms are population-based computational models inspired by genet-
ics and evolution (Holland 1992). These are adaptive heuristic search methods often
used for complex parameter optimisation problems. They essentially perform a ran-
domised global search in a solution space (Mitchell 1996).

Individuals of a population are viewed as solutions and the environment they live
in corresponds to the problem objectives and constraints to which these individuals
are being adapted. In the selection process the survival of the fittest principle is fol-
lowed. Through generations of populations, which are called iterations, preferable
attributes of individuals (promising solutions) are pushed ahead in evolution, while
weaker solutions are driven to extinction from the population. The key building
blocks of genetic algorithms are as follows:
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Encoding. The original problem space is known as the phenotype space, which is
to be encoded to its genetic space counterpart, known as the genotype space,
where the search is performed. Before delivering its result, genotypes should be
decoded to the phenotype space. Individuals are represented as genotype-like
data structures in a population as a binary, integer or real-valued string. Each
string element stands for a particular feature of the solution.

Population initialisation. The first population is initialised by a random generation
of, for instance, 1000 individuals, though some problem specific heuristics can
be used as well, thereby improving an initial individual fitness.

Evaluation. Each individual in a population is evaluated through a fitness function
in order to determine its quality and to decide the respective reproductive oppor-
tunities, namely what critical information to preserve and pass to the offspring.
This results in decreasing ordering of 1000 individuals based on the values of
the fitness function.

Parent selection. Parents are selected to produce offspring. For example, this can
be done randomly by choosing individuals with a probability being directly pro-
portional to their fitness, which is known as a roulette wheel sampling. For in-
stance, out of 1000 ordered individuals, the first half can be selected as parents.

Crossover. This is a variation operation used to combine the features of the two se-
lected parent genotypes to create one or two offspring genotypes. This is (often)
a stochastic operation.

Mutation. This is another variation operation used to alter one parent genotype
to create a slightly modified offspring of it. This is a stochastic operation. It is
motivated by the possibility of reinserting the lost (in generations) information in
order to prevent premature convergence without reaching a satisfactory solution
and to foster genetic diversity.

Population generation. New individuals are created through crossover and muta-
tion to build the next generation. Individuals of the population is then evaluated
for its fitness (see Evaluation step).

Termination condition. A suitable termination condition should be determined,
e.g., by reaching the desired precision of the fitness level or once a fixed number
of iterations yielding no fitness improvements. This is typically handled through
thresholds.

Genetic algorithms were used for different purposes in the context of ontology
matching. For example, they were used in (Vázquez-Naya et al. 2010) to search
for the optimal combination of multiple matchers in order to aggregate the re-
sults of these into a single value, or in (Wang et al. 2006) and (Elmeleegy et al.
2008), to determine approximately the globally optimal alignment with respect
to similarity features which constitute the fitness function, such as extensional or
usage-based similarity. Finally, genetic algorithms have been used as a near-optimal
alignment extraction strategy (Sect. 7.7) for alignment selection (Qazvinian et al.
2008).

Example 7.24 (Genetic algorithms) Consider the use of genetic algorithms for op-
timal aggregation of multiple matchers (Vázquez-Naya et al. 2010). The task is to
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discover the weights that maximise the global alignment quality. Each individual
represents a potential solution, namely a set of weights, the sum of which should be
equal to 1. The encoding of the problem is as follows: each position in the genotype
contains a value in the [0 1] range, which represent a separation point that bounds
a matcher weight. The decoding of a genotype is performed in ascending order
of the separation values. The process starts with randomly generated aggregation,
namely a set of the respective weights. For instance, we have to aggregate the results
of five different matchers and the ith genotype composition can be of the follow-
ing four separation points: 0.51, 0.11, 0.92, 0.57 whose decoding (by re-ordering)
is as follows: 0.11, 0.51, 0.57, 0.92. The matcher weights are computed as differ-
ences between the separation points, resulting in: w1 = 0.11, w2 = 0.40, w3 = 0.06,
w4 = 0.35, w5 = 0.08. F-measure is used as a fitness function. Parent selection is
made through the roulette wheel method. Crossover passes to the next generation
only those descendants whose fitness exceeds that of the parents. Mutation is done
with low probabilities, by substituting a genotype element with a randomly gener-
ated one. The best individuals from one generation are copied to the next one. The
process stops when the individual fitness function is higher than a threshold. The
fittest individual is ultimately decoded as the selected solution.

Summary on Matcher Tuning

In this section we introduced a general framework for tuning and we discussed two
specific methods, such as stacked generalisation and genetic algorithms, used to ad-
just matching systems for a better functioning through aggregation of basic match-
ers. This topic has emerged in the recent years and deserves further investigations.
In fact, often, there are many different constraints and requirements applied to the
matching tasks, e.g., correctness, completeness, execution time, and main mem-
ory, thereby involving multi-criteria decision. The main issue is the semi-automatic
combination of matchers by looking for complementarities and balancing the weak-
nesses and reinforcing the strengths of the components. For example, the aggrega-
tion is usually performed following a pre-defined aggregation function, such as a
weighted average. The work on evaluation (Sect. 9) can be used in order to assess
the strengths and the weaknesses of individual matchers by comparing their results
with task requirements. Novel ways of performing aggregation with provable qual-
ities of alignments have to be looked for.

7.7 Alignment Extraction

The goal of matching is to identify a satisfactory set of correspondences between on-
tologies. A (dis)similarity measure between the entities of both ontologies provides
a large set of correspondences. Those which will be part of the resulting align-
ment remain to be extracted on the basis of the similarity. This can be achieved
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by a specialised extraction method which acts on the similarity matrix or on some
pre-alignment already extracted. We distinguish between the extractor itself, which
converts a (dis)similarity matrix into an alignment, and a filter, which reduces the
candidate correspondences in one of these formats. This is depicted in Fig. 7.14.

Fig. 7.14 Similarity filter, alignment extractor and alignment filter.

Similarity filters transform the (dis)similarity matrix by, for instance, by zero-ing
all cells under some threshold or by unit-ing those above a threshold. Alignment
extractors generate an alignment from a similarity matrix. They are the main topic
of this section. Alignment filters can further manipulate alignments by using the
same types of operations as similarity filters.

Users can act as alignment filters: an alignment may be obtained by display-
ing the entity pairs with their similarity scores and ranks, leaving the choice of
the appropriate pairs up to users. This user input can be taken as the definitive an-
swer in helper environments, as the definition of an anchor for helping the system
(Sect. 8.1.9) or as relevance feedback in learning algorithms (Sect. 7.5).

One could go a step further and attempt to define algorithms that automate align-
ment extraction from similarity scores. Various strategies may be applied to the task
depending on the properties of the target alignment.

This problem can be defined as follows:

Definition 7.25 (Alignment extraction problem) Given two sets of entities o and o′
and a similarity function σ : o× o′ → [0 1], extract an alignment A⊆ o× o′.

This problem statement is underconstrained since o × o′ is a solution to this
problem. So this section considers how to further constrain the problem of alignment
extraction. One guide for doing so has been introduced in Sect. 2.5.2 as the totality
and injectivity constraints on alignments.

We present two main strategies based on trimming the (dis)similarity after some
threshold (Sect. 7.7.1) and on determining an optimal overall (dis)similarity of the
extracted alignment (Sect. 7.7.3). In between, we present a kind of filter that has
been found useful in matching algorithms (Sect. 7.7.2).

7.7.1 Thresholds

If neither ontology needs to be completely covered by the alignment, a threshold-
based filtering would retain only the most similar entity pairs. Without the injectivity
constraint, the pairs scoring above the threshold represent a sensible alignment.
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Thus, applying thresholds requires that the extracted alignment is of sufficient
quality. An easier way to proceed consists of selecting correspondences over a par-
ticular threshold. Several methods can be found in the literature (Do and Rahm
2002; Ehrig and Sure 2004):

Hard threshold retains all correspondences above threshold n;
Delta threshold consists of using as a threshold the highest similarity value out of

which a particular constant value n is subtracted;
Gap threshold retains the correspondences ordered by decreasing similarity until

the difference in similarity between two correspondences becomes larger than n;
Proportional threshold consists of using as a threshold the percentage of the high-

est similarity value;
Percentage retains the n % correspondences above the others.

The Rondo system (Sect. 8.1.14) provides an original alignment extraction
method (SelectThreshold) which normalises the similarity of each node by the best
similarity it has with another node (the result is not symmetric anymore). It then
selects for the alignment the pairs of nodes for which the normalised similarity of
both nodes is above some defined threshold.

Example 7.26 (Thresholding methods) We start from the weighted sum distance
obtained in Example 7.9 with 1/4–3/4 weights. This distance is converted into a
similarity as in the following table:

Book Translator Publisher Writer

Product .19 .05 .03 .04
Provider .04 .05 .75 .14
Creator .05 .25 .04 .69

− A hard threshold of .23 would select the 〈Provider,Publisher,=〉, 〈Creator,

Writer,=〉, and 〈Creator,Translator,=〉 as correspondences.
− A delta threshold with the same .23 value would select only the first two and the

corresponding hard threshold would be .75− .23= .52.
− A gap threshold of .23 would select the same two correspondences because

.69− .25 > .23.
− On the contrary, the use of a proportional threshold of .23 would result in a

.75× .23= .17 hard threshold, so selecting 〈Product,Book,=〉 in addition to the
three ones above.

− The percentage threshold of .23 would select the 12×23 %≈ 3 initially selected
pairs.

− The SelectThreshold method for a threshold of .23 would also yield the set of four
correspondences mentioned above.
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7.7.2 Strengthening and Weakening

Some approaches, such as (Ehrig and Sure 2004), use a sigmoïd function between
0. and 1. (siga(x) = 1/(1 + e−a(x−0.5)) with a being a parameter for the slope).
This allows reinforcing values higher than 0.5 and weakening those lower than 0.5.
This treatment is meant to clearly separate two zones: the positive and negative
correspondences (see Fig. 7.15).

Fig. 7.15 Sigmoïd and trigonometric smoothing functions.

Other functions, such as 1 − sin(arccos(x)), can have an opposite effect: dis-
carding the nonconclusive measures and dispatching the highest ones on the unit
interval. This treatment is well justified by considering that very similar entities are
indeed similar but loosely similar entities give nonconclusive results. Of course, it
is possible to shift these functions in order to select threshold other than .5.

Example 7.27 (Strengthening and weakening) The two tables below display the
similarity table of Example 7.26 filtered through the two functions displayed in
Fig. 7.15.

Book Translator Publisher Writer

Product .02 0. 0. 0.
Provider 0. 0. .95 .01
Creator 0. .05 0. .91

Filtered by y = 1
1+e−12(x−.5)

Book Translator Publisher Writer

Product .02 0. 0. 0.
Provider 0. 0. .34 .01
Creator 0. .03 0. .28

Filtered by y = 1− sin(arccos(x))

The sigmoïd function provides high values for the best matches and lower ones
for the worse matches while the other proposed function requires higher similarities
than .75 to single them out: it reduces all values.
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7.7.3 Optimising the Result

If an injective alignment is required then some choices need to be made in order
to maximise the quality of the alignment. This quality is typically measured on the
total similarity of the matched entity pairs. Consequently, the matching algorithm
must optimise the global criteria rather than maximising the local similarity at each
entity pair.

To sum up, the alignment computation can be viewed as a less constrained ver-
sion of the basic set similarity functions MSim (Sect. 5.4.3). Indeed, its target fea-
tures are the same: (i) maximal global similarity, (ii) exclusivity, and (iii) maximal
cardinality (in correspondences). However, (ii) and (iii) are not mandatory: they
depend on injectivity and totality requirements, respectively. Extracting an align-
ment from a similarity table is typically what is called graph matching (Berge 1970;
Lovász and Plummer 1986) and more precisely weighted bipartite graph matching
(for injective alignments) or covering (for total alignments).

A greedy alignment extraction algorithm could construct the correspondences
stepwise, at each step selecting the most similar pair and deleting its members from
the table. The algorithm will then stop whenever no pair remains whose similarity
is above the threshold. The greedy strategy is not optimal (see Example 7.31); how-
ever the ground on which a high similarity is forgotten to the advantage of lower
similarities can be questioned and thus the greedy algorithm could be preferred in
some situations.

There are two notions of optimal matching of two sets in this context: the first one
is a local optimum called stable marriage and the second one is a global optimum
called maximum weight matching.

A stable marriage is an assignment (of only one object of the first set to only one
object of the second set), such that there is no pair of entities, involved in different
correspondences, which both may prefer to be put in a correspondence, i.e., the sim-
ilarity between these two entities is higher than the similarity each of them has with
the entity they are in correspondence. Algorithms for computing stable marriages
are the Gale–Shapley algorithm (Gale and Shapley 1962) and the greedy algorithm
presented above.

Definition 7.28 (Stable marriage problem) Given two sets of entities o and o′ and
a similarity function σ : o× o′ → [0 1], extract a one-to-one alignment from M ⊆
o× o′ such that for any 〈p,q〉 ∈M and 〈r, s〉 ∈M , σ(p,q)≥ σ(p, s) or σ(r, s) ≥
σ(p, s).

The greedy algorithm guarantees that the found solution is a stable marriage.
However, we introduced a slightly different problem, in which the constraint is that
any permutation of two assignments provides a worse result.
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Definition 7.29 (Pairwise maximal matching problem) Given two sets of entities o

and o′ and a similarity function σ : o× o′ → [0 1], extract a one-to-one alignment
from M ⊆ o× o′, such that for any 〈p,q〉 ∈M and 〈r, s〉 ∈M , σ(p,q)+ σ(r, s)≥
σ(p, s)+ σ(r, q).

A pairwise maximal assignment is not necessarily a stable marriage and vice
versa (see Example 7.31).

The second notion is the global optimum, or maximum weight matching. It is an
assignment for which there does not exist any other assignment with better weight-
ing. It can be computed by the Hungarian method (Munkres 1957).

Definition 7.30 (Maximum weight graph matching problem) Given two sets of en-
tities o and o′ and a similarity function σ : o × o′ → [0 1], extract a one-to-one
alignment from M ⊆ o× o′, such that for any one-to-one alignment M ′ ⊆ o× o′,

∑

〈p,q〉∈M

σ(p,q)≥
∑

〈p,q〉∈M ′
σ(p,q)

If weights represent dissimilarities instead of similarities, the problem to solve is
the dual minimum weight graph matching.

Example 7.31 (Stable marriage, pairwise maximal and maximum weight matchings)
Consider the following similarity table for the concepts of Fig. 6.3 from which we

want to extract a one-to-one alignment.

Book Translator Publisher Writer

Product .84 0. .90 .12
Provider .12 0. .84 .60
Creator .60 .05 .12 .84

The greedy algorithm would select first the highest scoring (.90) correspondence
〈Product,Publisher〉 and discard the corresponding line and column. It would then
select the next highest scoring (.84) one, 〈Creator,Writer〉, and then the remaining
best one, 〈Provider,Book〉. The result is clearly a stable marriage (checking that every
pair selected cannot be broken by symmetric individual preferences is left as an
exercise) but not a pairwise maximal matching. The alignment made of these three
correspondences scores 1.96.

However, there are better alignments. For instance, by replacing the last two ele-
ments with 〈Creator,Book〉 and 〈Provider,Writer〉, we obtain an alignment scoring 2.1.
This alignment is pairwise maximal, but not a stable marriage.
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This is not, however, the maximum weight matching, which is made of
〈Product,Book〉, 〈Provider,Publisher〉, and 〈Creator,Writer〉 and scores 2.52. This as-
signment is pairwise maximal, but not a stable marriage.

Summary on Alignment Extraction

Alignment extraction is usually a necessary step for similarity-based matching: a
similarity is not an alignment. The techniques which were presented apply to any
similarity or dissimilarity measure. They range from simple, e.g., those applying
thresholds, to more sophisticated methods, such as solving optimisation problems.
There is no absolute criterion for choosing one of these methods: their relevance
often depends on the application. An important criterion is the form of the expected
final result.

7.8 Alignment Improvement

Alignment improvement consists of measuring some quality of a produced align-
ment, reducing the alignment, so that the quality may improve, and possibly iterating
by expanding the resulting alignment. A general improvement process is presented
in Fig. 7.16. Because there may be several possible reductions of the initial align-
ment, the one to be used has to be selected. When the measure reaches a particular
threshold, the alignment is selected as the result of this process. If the selected align-
ment is directly provided as the output instead of being fed back to the matcher, then
improvement acts as an alignment filter (Sect. 7.7).

Fig. 7.16 General alignment improvement framework. An initial alignment (A′′) is produced by
a matcher. It is evaluated with respect to an intrinsic measure (consistency, agreement, constraint
violation), which determines sets of compatible subalignments (C). Among these, one is selected
and fed back in the process as input alignment (A), so that the matcher can improve it. This process
is iterated until the measure does show a satisfying value and the last computed alignment (A′) is
returned as final.

The improvement process can be carried out manually with users controlling
each of the steps and possibly interleaving other operations or automatically with
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matchers embedding improvements. Users may contribute (i) by indicating that a
particular set of correspondences is not correct (in replacement of the measure) or
(ii) by taking the place of the selection component.

Quality measures are the main ingredients for improvement. Contrary to other
measures described in Sect. 9.3, these must be intrinsic measures of the alignment:
they do not depend on any reference. Various such measures may be used:

− threshold on confidence or average confidence,
− cohesion measures between matched entities, i.e., their neighbours are matched

with each other,
− ambiguity degree, i.e., proportion of classes matched to several other classes,
− agreement or nondisagreement between the aligned ontologies (d’Aquin 2009),
− violation of some constraints, e.g., acyclicity in the correspondence paths,
− satisfaction of syntactic antipatterns (see Sect. 6.1.4),
− consistency and coherence (Sect. 2.5.3).

7.8.1 Alignment Disambiguation

An example of such a method is alignment disambiguation. An alignment is am-
biguous, when some entities are matched with several other entities (assuming the
relation is equivalence), e.g., a ?:? alignment is sought but a *:* alignment has been
returned.

So the measure may be an ambiguity degree, i.e., the proportion of classes
matched to several other classes, or a Boolean indicator, i.e., the alignment is am-
biguous or not. A simple method for dealing with this problem is to always choose
the correspondence with the higher confidence (greedy algorithm) or to compute a
maximal weight subalignment (Sect. 7.7.3).

An alternative solution is based on the idea that the correct match among two
classes is prone to having other correct matches among its more general and more
specific entities (Tordai 2012). So, for each of the ambiguous correspondences, the
method counts the proportion of correspondences reachable by subclasses of the
related classes, that are reachable from both sides. Then, it keeps the correspon-
dence that has the highest ratio. Hence for any ambiguous pair of correspondences
〈e, f,=〉 and 〈e, g,=〉:
If |{〈e′, f ′,=〉 ∈A; e′ 	 e ∧ f ′ 	 f }|> |{〈e′, g′,=〉 ∈A; e′ 	 e ∧ g′ 	 g}|,
then 〈e, g,=〉 can be preserved; otherwise 〈e, f,=〉 is preserved.

In case the number of more specific matched entities are the same, then no cor-
respondence can be selected. The same approach can be used with more general
entities, e.g., superclasses, instead of subclasses. This technique applies for disam-
biguation of the same types of optimisation techniques used for matching (Sect. 6.1)
or extracting alignments (Sect. 7.7.3).



194 7 Matching Strategies

7.8.2 Alignment Debugging

Alignment debugging or alignment repairing aims at restoring consistency and co-
herence of the produced alignment. Consistency is characterised by the aligned on-
tologies having no models and coherence by no model of the aligned ontologies
allowing a particular class to have instances. The measure applied depends on the
semantics given to alignments (see Sect. 2.5.3).

A comprehensive framework for alignment repair based on diagnosis theory was
developed in (Meilicke and Stuckenschmidt 2009; Meilicke 2011). Minimal inco-
herence, or unsatisfiability, preserving subalignments (MIPS) are defined as mini-
mal sets of correspondences generating inconsistency or incoherence, and diagnosis
as an inclusion minimal subset of an alignment, whose removal would restore con-
sistency or coherence. The relation between these concepts is that a minimal hitting
set (taking one correspondence from each MIPS) is a diagnosis.

The notion of optimality of a diagnosis is then defined as the maximisation of the
confidence in the repaired alignment. This optimisation can be applied for choos-
ing the correspondence to suppress from each MIPS independently (locally optimal
diagnosis) or globally (globally optimal diagnosis). In general, a globally optimal
diagnosis is smaller than a locally optimal diagnosis.

Example 7.32 (Alignment debugging) Consider the alignment presented on
Fig. 7.17.

Fig. 7.17 An incoherent alignment. It is incoherent because the class Person cannot have any
instance, otherwise it would be a Biography, thus a Book which is assumed to be disjoint from
Person.

The alignment A contains four correspondences:

c1 Book≥.8 Essay

c2 Person≤.7 Biography

c3 topic=.6 subject

c4 Person≤.9 foaf:Person
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A system may use an incoherence pattern (or antipatterns; see Sect. 6.1.4), such
as {X⊥Y, 〈X ≤ Z〉, 〈Y ≥ W 〉,Z 	 W }. Using the reduced semantics (Sect. 2.5.3),
this pattern entails that X cannot have any extension, because otherwise this ex-
tension would be included in that of Y with which it is assumed to be disjoint.
This pattern is instantiated in alignment A on the two correspondences c2 and c1.
A matcher using such a pattern could then decide to discard c2, because it has a
lower confidence (.7).

However, this is not enough to render the alignment coherent. Indeed, the topic

property can never have a value. This alignment contains two minimal unsatisfiable
preserving subalignments (MUPS): {c1, c2} and {c1, c3, c4}. As a result, there exist
three diagnoses: {c1}, {c2, c3} and {c2, c4}. A common practice would lead to re-
ducing the impact of the change on the alignment and thus to retracting c1 (globally
optimal). However, a system may choose another diagnosis, such as {c2, c3} (locally
optimal) based on the average confidence or some other measure.

This alignment is also ambiguous because Person is matched to both Biography

and foaf:Person. Disambiguating it by choosing the correspondence with the least
confidence would discard c2.

Usage Examples The LogMap system (Sect. 8.3.26) uses a logical reasoner in or-
der to pinpoint inconsistencies and incoherent classes. In order to scale to large on-
tologies, LogMap uses an incomplete reasoner. It selects the correspondences with
the lowest confidence, from among the smallest sets of correspondences causing an
inconsistency. The ASMOV system (Sect. 8.3.17) detects inconsistency through an-
tipatterns and corrects the alignment before its final delivery. The inconsistency pat-
terns used by ASMOV are semantically correct, but not complete, i.e., the remaining
alignment may still be inconsistent. It then rejects some correspondences involved
in these patterns, based on their confidence, and iterates the matching process. Con-
tentMap (Sect. 8.4.7) can also be considered as a constraint-based debugging tool
with the constraints provided by users.

The lack of disjointness axioms in ontologies prevents from applying ontology
repair techniques through inconsistency detection. It is possible to use a naive Bayes
classifier (Sect. 7.5.1) for learning how to generate disjointness axioms (Meilicke
et al. 2008). Such a classifier is trained on various data sets and uses different simi-
larity features (path distance, shared properties, similarity, instance sets) of pairs of
classes, for deciding which ones are disjoint.

Techniques of this type may be applied to networks of ontologies as soon as
they are given a semantics (see Sect. 2.5.3). Since repairing alignments at such a
scale may be very demanding, both computationally and for users, (Zurawski et al.
2008) proposed restoring consistency only within spheres, which are local sets of
ontologies and alignments.

ALCOMO6 (Applying Logical Constraints On Matching Ontologies) is the di-
rect result of these works. Instead of presenting itself as an ontology matcher, it

6http://web.informatik.uni-mannheim.de/alcomo/.

http://web.informatik.uni-mannheim.de/alcomo/
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provides a library of tools for computing MIPS, MUPS and diagnoses in either a
complete or constraint-based way. It thus allows for implementing the measure and
the selection parts of Fig. 7.16 independently from matchers. It also contains meth-
ods for generating upfront optimal incoherent avoidance alignments from a simi-
larity matrix by pushing the coherence detection one step earlier in the matching
process.

Summary on Alignment Improvement

Alignment improvement can be integrated within matchers or considered as a sep-
arate, post hoc, activity. We considered it separately because it is independent from
matching and alignment extraction techniques and can be applied to alignments
produced with any technique. Thus, any system may improve alignments based
on such techniques. We only presented clearly specified techniques for improving
alignments. As can be seen from the list of criteria given in the introduction to this
section, other techniques can be developed in the same spirit.

7.9 Summary

We have presented the strategic issues involved in creating matching systems, be-
sides using basic matchers of Chap. 5 or the more advanced global methods of
Chap. 6. In particular, this involves composing basic matchers, aggregating their re-
sults and extracting alignments. This also covers the use of learning algorithms and
strategies for improving extracted alignments.

The craft of ontology matching systems is a delicate art that combines basic
matchers in the most advantageous way. This chapter has presented techniques used
for assembling the components of a matching system. In most of the cases, the ap-
propriate architecture depends on the problem to solve. Are there any independent
basic matchers that can apply to the data? Is the data highly intricate? Are users
available to evaluate the result? Must the expected result be injective? These ques-
tions are important components of a methodology (Chap. 3) and their answers lead
to different assemblies of components.

With regard to the requirements of Chap. 1, the techniques presented in this chap-
ter are often a matter of trade-off: between completeness and correctness of the
alignment for threshold application, between quality and computation time for the
choice of global similarity computation.

Figure 7.18 displays a fictitious example involving several methods. Specifically:
(i) it runs several basic matchers in parallel, (ii) it aggregates their results, (iii) it
selects some correspondences on the basis of their (dis)similarity, (iv) it extracts
an alignment, (v) it repairs or disambiguates this alignment, and (vi) it iterates this
process if necessary.
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Fig. 7.18 A fictitious matching strategy.

The next part of the book describes how various implemented systems take ad-
vantage of the discussed techniques and how they compose them in a coherent sys-
tem (Chap. 8). This will illustrate the diversity of approaches. We will then consider
how to evaluate the merits of these systems experimentally (Chap. 9), because the
mere theoretical consideration of a system capability and architecture is not a suffi-
ciently convincing ground on which to judge its performances.



Part III
Systems and Evaluation



Chapter 8
Overview of Matching Systems

This chapter is an overview of matchers which have emerged during the last decades.
There have already been some comparisons of matching systems, in particular in
(Parent and Spaccapietra 2000; Rahm and Bernstein 2001; Do et al. 2002; Kalfoglou
and Schorlemmer 2003b; Noy 2004a; Doan and Halevy 2005; Shvaiko and Euzenat
2005; Choi et al. 2006; Bellahsene et al. 2011). Our purpose here is not to compare
them in full detail, though we give some comparisons, but rather to show their va-
riety, in order to demonstrate in how many different ways the methods presented in
the previous chapters have been practically exploited.

We have followed two principles in deciding whether a matching system should
be included in this chapter: it must have an implementation and an archival publica-
tion describing it at the time of writing. We have also excluded from consideration
the systems which assume that alignments have already been established, and use
this assumption as a prerequisite of running the actual system. These approaches
include such information integration systems as Tsimmis (Chawathe et al. 1994),
Observer (Mena et al. 1996), SIMS (Arens et al. 1996), InfoSleuth (Fowler et al.
1999; Nodine et al. 2000), Kraft (Preece et al. 2000), Picsel (Goasdoué et al. 2000),
DWQ (Calvanese et al. 2002a), AutoMed (Boyd et al. 2004), and InfoMix (Leone
et al. 2005).

From around 50 systems covered in the first edition of the book, we added about
50 more new approaches, thus having in overall about 100 systems reviewed in this
chapter (see Fig. 8.1 for a summary). This overview is still not exhaustive.

An interested reader can find a continuously updated and more complete infor-
mation on the topic at OntologyMatching.org,1 in particular, links to the web sites
of the presented systems can be found there. We only mention addresses of general-
purpose resources.

We present the matching systems in light of the classifications discussed in
Chap. 4. We also point to concrete basic and advanced matchers and matching strate-
gies used in the considered systems by referencing to the corresponding subsections

1http://www.ontologymatching.org.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_8,
© Springer-Verlag Berlin Heidelberg 2013
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of Chap. 5, Chap. 6 and Chap. 7. In order to facilitate the presentation we follow
two rules. First, the year of the system appearance is considered. Then, evolutions
of the same system or very similar systems are discussed close to each other. We
illustrate systems with the help of figures, if the matching process is of a particular
interest or substantially complex. We tried to adopt a unified presentation for these
systems. However, some of these are specific enough so that we did not enforce the
terminology of Sect. 2.4 but kept it as used by system designers.

The structure of this chapter is as follows. We first describe systems which mostly
focus on schema-level information (Sect. 8.1). Secondly, we discuss systems which
concentrate on instance-level information (Sect. 8.2). Then, we present systems
which exploit both schema-level and instance-level information (Sect. 8.3). Finally,
we overview metamatching systems (Sect. 8.4).

8.1 Schema-Based Systems

Schema-based systems, according to the classification of Chap. 4, are those which
rely mostly on schema-level input information for performing ontology matching.

8.1.1 DELTA (The MITRE Corporation)

DELTA (Data Element Tool-based Analysis) is a system that semi-automatically
discovers attribute correspondences among database schemas (Clifton et al. 1997).
It handles relational and extended entity–relationship (EER) schemas. The idea of
the approach is to use textual similarities between data element definitions in order
to find matching candidates. The system converts available information about an at-
tribute, e.g., attribute name, data type, narrative description, into a simple text string,
called document. The documents describing each database attribute constitute a doc-
ument base. Then, DELTA feeds the document base from the first schema into a
full-text information retrieval tool, such as Personal Librarian. Matching is viewed
as a Personal Librarian query based on the information from the second schema. The
query can be a string of disconnected phrases, a full Boolean query, a few relevant
words, or an entire document. The tool estimates the similarity (by using natural
language heuristics, such as considering that rare or repeated words are more im-
portant) between a search pattern and contents of a document base (Sect. 5.2.1). It
is thus exclusively based on string-based techniques. It returns a ranked list of doc-
uments that it considers to be similar. The selection of the final alignment is to be
performed by users.

8.1.2 Hovy (University of Southern California)

(Hovy 1998) describes heuristics used to match large-scale ontologies, such as Sen-
sus and Mikrokosmos, in order to combine them in a single reference ontology. In
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particular, three types of matchers were used based on (i) concept names, (ii) con-
cept definitions, and (iii) taxonomy structure. For example, the name matcher splits
composite-word names into separate words (Sect. 5.2.2) and then compares sub-
strings in order to produce a similarity score. Specifically, the name matcher score
is computed as the sum of the square of the number of letters matched, plus 20 points
if words are exactly equal or 10 points if end of match coincides. For instance, using
this strategy, the comparison between Free World and World results in 35 points, while
the comparison between cuisine and vine results in 19 points. The definition matcher
compares the English definitions of two concepts (Sect. 5.2.2). Here, both defini-
tions are first split into individual words. Then, the number and the ratio of shared
words in two definitions is computed in order to determine the similarity between
them. Finally, results of all the matchers are combined based on experimentally ob-
tained formulas. The combined scores between concepts from two ontologies are
sorted in descending order and are presented to users for establishing a cutoff value
as well as for approving or discarding operations, results of which are saved for later
reuse.

8.1.3 TransScm (Tel Aviv University)

TransScm (Milo and Zohar 1998) provides data translation and conversion mech-
anisms between input schemas based on schema matching. First, by using rules,
an alignment is produced in a semi-automatic way. Then, this alignment is used to
translate data instances of the source schema to instances of the target schema. Input
schemas are internally encoded as labelled graphs, where some of the nodes may be
ordered. Nodes of the graph represent schema elements, while edges stand for the
relations between schema elements or their components. Matching is performed
between nodes of the graphs in a top-down and one-to-one fashion. Matchers are
viewed as rules (Zohar 1997). For example, according to the identical rule, two
nodes match if their labels are found to be synonyms based on the built-in thesaurus
(Sect. 5.2.2). The system combines rules sequentially based on their priorities. It
tries to find, for the source node, a unique best matching target node, or determines
a mismatch. In case there are several matching candidates among which the system
cannot choose the best one, or if the system cannot match or mismatch a source
node to a target node with the given set of rules, user involvement is required. In
particular, users with the help of a graphic user interface can add, disable or modify
rules to obtain the desired matching result. Then, instances of the source schema
are translated to instances of the target schema according to the match rules. For the
example of the identical rule, translation includes copying the source node compo-
nents.
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8.1.4 DIKE (University of Reggio Calabria and University
of Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting the semi-
automatic construction of cooperative information systems (CIS) from heteroge-
neous databases (Palopoli et al. 2003a, 2003b). It takes as input a set of databases
belonging to the CIS. It builds a kind of mediated schema (called data repository
or global structured dictionary) in order to provide a user-friendly integrated access
to the available data sources. DIKE focusses on entity–relationship schemas. The
matching step is called extraction of inter-schema knowledge. It is performed in a
semi-automatic way. Some examples of inter-schema properties that DIKE can find
are terminological properties, such as synonyms, homonyms among objects, namely
entities and relationships, or type conflicts, e.g., similarities between different types
of objects, such as entities, attributes, relationships; structural properties, such as
object inclusion; subschema similarities, such as similarities between schema frag-
ments. With each kind of property is associated a plausibility coefficient in the [0 1]
range. The properties with a lower plausibility coefficient than a dynamically de-
rived threshold are discarded, whereas others are accepted. DIKE works by com-
puting sequentially the above mentioned properties. For example, synonyms and
homonyms are determined based on information from external resources, such as
WordNet (Sect. 5.2.2), and by analysing the distances of objects in the neighbour-
hood of the objects under consideration (Sect. 6.1). Some weights are also used to
produce a final coefficient. Then, type conflicts are analysed and resolved by taking
as input the results of synonym and hyponym analysis.

8.1.5 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that semi-
automatically discovers mappings between two ontologies (Mitra et al. 1999). Inter-
nally, input ontologies are encoded as graphs. Rules are provided by domain experts
and are encoded in first order logic. In particular, experts specify initially desired
matches and mismatches. For example, a rule President ≡ Chancellor, indicates that
we want President to be an appropriate match for Chancellor. Apart from declarative
rules, experts can specify matching procedures used to generate the new matches.
Experts have to approve or reject the automatically suggested matches, thereby pro-
ducing the resulting alignment. Matching procedures are applied sequentially. Some
examples of these procedures are: string-based matching, e.g., two terms match if
they are spelled similarly (Sect. 5.2.1), and structure matching, e.g., structural graph
slices matching, such as considering nodes near the root of the first ontology against
nodes near the root of the second ontology (Sect. 6.1).

ONION (ONtology compositION) is a successor to SKAT that semi-automati-
cally discovers mappings between multiple ontologies, in order to enable a uni-
fied query answering over these ontologies (Mitra et al. 2000). Input ontologies,
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RDF files, are internally represented as labelled graphs. The alignment is viewed
as a set of articulation rules. The semi-automated algorithm for resolving the ter-
minological heterogeneity of (Mitra and Wiederhold 2002) forms the basis of the
articulation generator, ArtGen, for the ONION system. ArtGen, in turn, can be
viewed as an evolution of the SKAT system with some added matchers. Thus, it
executes a set of matchers and suggests articulation rules to users. Users can either
accept, modify or delete the suggestions. They can also indicate the new matches
that the articulation generator may have missed. ArtGen works sequentially, first
by performing linguistic matching (Sect. 5.2.2) and then structure-based match-
ing (Sect. 5.3). During the linguistic matching phase, concept names are repre-
sented as sets of words. The linguistic matcher compares all possible pairs of words
from any two concepts of both ontologies and assigns a similarity score in [0 1]
to each pair. The matcher uses a word similarity table generated by a thesaurus-
based or corpus-based matcher called the word relator to determine the similar-
ity between pairs of words (Sect. 5.2.2). The similarity score between two con-
cepts is the average of the similarity scores (ignoring scores of zero) of all pos-
sible pairs of words in their names. If this score is higher than a given thresh-
old, ArtGen generates a match candidate. Structure-based matching is performed
based on the results of the linguistic matching. It looks for structural isomorphism
between subgraphs of the ontologies, taking into account some linguistic clues
(see Sect. 8.1.11 for a similar technique). The structural matcher tries to match
only the unmatched pairs from the linguistic matching, thereby complementing its
results.

8.1.6 Artemis (University of Milan and University of Modena
e Reggio Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Information
Systems) (Castano et al. 2000) was designed as a module of the MOMIS media-
tor system (Bergamaschi et al. 1998, 1999) for creating global views. It performs
affinity-based analysis and hierarchical clustering of database schema elements.
Affinity-based analysis represents the matching step: in a sequential manner it cal-
culates the name, structural and global affinity coefficients exploiting a common
thesaurus. The common thesaurus is built with the help of ODB-Tools (Beneven-
tano et al. 1998), WordNet (Sect. 5.2.2) or manual input. It represents intensional
and extensional relationships which depict intra- and inter-schema knowledge about
classes and attributes of the input schemas. Based on global affinity coefficients, a
hierarchical clustering technique categorises classes into groups at different levels
of affinity. For each cluster, it creates a set of global attributes and the global class.
Logical correspondence between the attributes of a global class and source schema
attributes is determined through a mapping table.
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8.1.7 H-Match (University of Milan)

H-Match (Castano et al. 2006) is an automated ontology matching system. It has
been designed to enable knowledge discovery and sharing in the settings of open
networked systems, in particular within the Helios peer-to-peer framework (Castano
et al. 2005). The system handles ontologies specified in OWL. Internally, these are
encoded as graphs using the H-model representation (Castano et al. 2005). H-Match
inputs two ontologies and outputs (one-to-one or one-to-many) correspondences be-
tween concepts of these ontologies with the same or closest intended meaning. The
approach is based on a similarity analysis through affinity metrics, e.g., term-to-
term affinity, data type compatibility (Sect. 5.3.2), and thresholds. H-Match com-
putes two types of affinities (in the [0 1] range), namely linguistic and contextual
affinity. These are then combined by using weighting schemas, thus yielding a final
measure, called semantic affinity. Linguistic affinity builds on top of the thesaurus-
based approach of the Artemis system (Sect. 8.1.6). In particular, it extends the
Artemis approach (i) by building a common thesaurus involving relations among
WordNet synsets such as meronymy and coordinate terms, and (ii) by providing an
automatic handler of compound terms, i.e., those composed by more than one token,
that are not available from WordNet. Contextual affinity requires consideration of
the neighbour concepts, e.g., linked via taxonomical or mereological relations, of
the actual concept (Sect. 6.1).

One of the major characteristics of H-Match is that it can be dynamically con-
figured for adaptation to a particular matching task, because in dynamic settings,
the complexity of a matching task is not known in advance. This is achieved by
means of four matching models. These are: surface, shallow, deep, and intensive,
each of which involves different types of constructs of the ontology (see Fig. 8.2).

Fig. 8.2 H-Match matching process: H-Match is a conditional system that can use alternatively or
in parallel four matching models depending on the resources available.
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Computation of a linguistic affinity is a common part of all the matching models.
In the surface model, linguistic affinity is also the final affinity, since this model
considers only names of ontology concepts. All the other three models take into
account various contextual features and therefore contribute to the contextual affin-
ity. For example, the shallow model takes into account concept properties, whereas
the deep and the intensive models extend previous models by including relations
and property values, respectively. Each concept involved in a matching task can be
processed according to its own model, independently from the models applied to
the other concepts within the same task. Finally, correspondences with semantic
(final) affinity higher than a cut-off threshold value are returned in the final align-
ment.

8.1.8 Tess (University of Massachusetts)

Tess (Type Evolution Software System) is a system to support schema evolution (see
Sect. 12.8) by matching the old and the new versions (Lerner 2000). Schemas are
viewed as collections of types. Since in the given application scenario changes are
typically evolutionary, rather than revolutionary, it is assumed that input schemas are
highly similar. Matching is viewed as generation of derivation rules to be applied to
data. Tess can operate in modes ranging from fully automated to completely manual.
Each derivation rule is associated with a similarity, which is meant to measure the
impact that applying the derivation rule would have on existing data. By defining a
threshold for the similarity, user involvement is determined. Matching is performed
in three stages. First, the names of the types of old and new versions are compared
(Sect. 5.2.1). Second, the structural information is taken into account. In particular,
type constructors used by the old and new types and the types of components are
analysed (Sect. 5.3.2). This provides the ability to handle cases in which, for ex-
ample, component names have been changed, but their types are unchanged. Third,
if everything else fails, matching relies upon some ordering information heuristics.
Thus, in this case, Tess will try matching components with different names and dif-
ferent types. Finally, based on the derivation rules a transformer is produced which
can update data in a database according to a newer version of the schema. In the
simplest case, such as the identity derivation rule case, when type names are iden-
tical, as in TransScm (Sect. 8.1.3), the derivation function simply copies existing
objects. A more complex transformation may include a join operation to combine
two related objects into one.

8.1.9 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt (Noy and Musen 2001) is an extension of Prompt, also formerly
known as SMART. It is an ontology merging and alignment tool with a sophis-
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ticated prompt mechanism for possible matching terms (Noy and Musen 1999).
Prompt handles ontologies expressed in such knowledge representation formalisms
as OWL and RDF Schema. Anchor-Prompt is a sequential matching algorithm
that takes as input two ontologies, internally represented as graphs and a set
of anchors, which are identified with the help of string-based techniques, such
as edit distance (Sect. 5.2.1), user-defined distance or another matcher comput-
ing linguistic similarity. Then the algorithm refines them by analysing the paths
of the input ontologies limited by the anchors in order to determine terms fre-
quently appearing in similar positions on similar paths (Sect. 6.1.1). Finally, based
on the frequencies and user feedback, the algorithm determines matching candi-
dates.

The Prompt and Anchor-Prompt systems have also contributed to the design of
other algorithms, such as PromptDiff (Sect. 10.3.5) which finds differences between
two ontologies and provides the editing facility for transforming one ontology into
another.

8.1.10 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web (Modica et al. 2001).
A typical situation the system deals with is when users are seeking for a car to be
rented. Obviously, they would like to compare prices from multiple providers in or-
der to make an informed decision. OntoBuilder operates in two phases: (i) ontology
creation (the training phase) and (ii) ontology adaptation (the adaptation phase).
During the training phase an initial ontology (in which user data needs are encoded)
is created by extracting it from a visited web site of, e.g., some car rental company.
The adaptation phase includes on-the-fly match and interactive merge operations
of the related ontologies with the actual (initial) ontology. We concentrate below
only on the ontology adaptation phase. During the adaptation phase, users suggest
the web sites they would like to further explore, e.g., the ones of various car rental
companies. Each such site goes through the ontology extraction process. This re-
sults in a candidate ontology, which is then merged into the actual ontology. To
support this, the best match for each existing term in the actual ontology to terms
from the candidate ontology is selected. The selection strategy employs thresholds
(Sect. 7.7.1). The matching algorithm works in a term-to-term fashion, sequentially
executing various matchers. Some examples of used matchers are substring match-
ing (Sect. 5.2.1), or thesaurus look-up (Sect. 5.2.2). Finally, mismatched terms are
presented to users for manual matching. Some further matchers, such as those for
precedence matching, were introduced in later work (Gal et al. 2005b). Top-k map-
pings (Gal 2006) have been proposed as an alternative for a single best matching,
i.e., top-1 category.
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8.1.11 Cupid (University of Washington, Microsoft Corporation
and University of Leipzig)

Cupid (Madhavan et al. 2001) implements an algorithm comprising linguistic and
structural schema matching techniques and computing similarity coefficients with
the assistance of domain-specific thesauri. Input schemas are encoded as graphs.
Nodes represent schema elements and are traversed in a combined bottom-up and
top-down manner. The matching algorithm consists of three phases (see Fig. 8.3)
and operates only with tree structures to which nontree cases are reduced.

Fig. 8.3 Cupid architecture: it is a very common architecture which mixes parallel and sequen-
tial composition. Structure matching takes advantage of the results of linguistic matching, but the
results of both of them are taken into consideration for weighting.

The first phase (linguistic matching) computes linguistic similarity coefficients
between schema element names (labels) based on morphological normalisation
(Sect. 5.2.2), categorisation, string-based techniques, such as common prefix, suf-
fix tests (Sect. 5.2.1), and thesaurus look-up (Sect. 5.2.2). The second phase (struc-
tural matching) computes structural similarity coefficients weighted by leaves which
measure the similarity between contexts in which elementary schema elements oc-
cur (Sect. 6.1.3). The third phase (mapping elements generation) aggregates the re-
sults of linguistic and structural matching through a weighted sum (Sect. 7.4.1) and
generates a final alignment by choosing pairs of schema elements with weighted
similarity coefficients, which are higher than a threshold (Sect. 7.7.1).

8.1.12 COMA and COMA++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) (Do and Rahm 2002) is a schema
matching tool based on parallel composition of matchers. It provides an extensible
library of matching algorithms, a framework for combining obtained results, and a
platform for the evaluation of the different matchers. As from (Do and Rahm 2002),
COMA contains 6 elementary matchers, 5 hybrid matchers, and a reuse-oriented
matcher. Most of them implement string-based techniques, such as affix, n-gram,
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edit distance (Sect. 5.2.1); others share techniques with Cupid, e.g., thesaurus look-
up. An original component, called reuse-oriented matcher, tries to reuse previously
obtained results for entire new schemas or for their fragments. Schemas are inter-
nally encoded as directed acyclic graphs, where elements are the paths. This aims
at capturing contexts in which elements occur. Distinct features of the COMA tool
with respect to Cupid are a more flexible architecture and the possibility of perform-
ing iterations in the matching process. It presumes interaction with users who ap-
prove obtained matches and mismatches to gradually refine and improve its match-
ing accuracy. COMA++ is built on top of COMA by elaborating in more detail the
alignment reuse operation. It also provides a more efficient implementation of the
COMA algorithms and a graphical user interface (Sect. 10.3.2).

8.1.13 QuickMig (SAP, University of Leipzig)

QuickMig is a semi-automatic schema matching system targeting data migration
applications (Drumm et al. 2007). It exploits sample instances, domain ontologies
and reuse matchers to compute correspondences and the respective mapping expres-
sions in order to transform instance data from a source schema to a target schema.
The overall QuickMig migration process is organised in five steps:

− Answering a questionnaire, which is done manually by a user. By answering sim-
ple questions, users indicate fragments of the target schema, that are (ir)relevant
for particular data migration needs. This is aimed at reducing the complexity of
the target schema, and hence, of the matching task.

− Injection of sample instances, which is done manually by a user, who creates in
the source system the sample instances already existing in the target system. It
is assumed that creating the same instances in the source and the legacy systems
can be done quickly by business users, since this is part of their daily activity.

− Import of the schemas to be matched as well as of the respective sample instances
into the matching system.

− Matcher execution that provides similarities between the source and the target
schemas together with a proposal for a mapping category, such as move, split,
concatenate, etc. Eleven mapping categories were identified and are used to guide
the creation of mapping expressions. For example, if the move category is as-
signed to a correspondence, this means that instance data from the source should
be simply copied to the target schema element.

− Review is manually done by a user, who validates correspondences and com-
pletes mapping expressions. After that, the mapping code is generated and the
resulting mappings are stored in a repository for future execution or reuse.

The QuickMig matching step is a further development of COMA/COMA++
(Sect. 8.1.12). Specifically, three instance-based matchers were added (Sect. 5.4)
and its reuse matcher has been enhanced. These instance-based matchers are: equal-
ity, which identifies equal instance values in the source and the target, split-concat,
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which verifies (by looking for substrings) if the instance data should be split or
concatenated, and the ontology-based matcher, which exploits background knowl-
edge codified in a domain ontology, e.g., modelling alternatives for common data
structures such as telephone numbers. In turn, the reuse matcher was extended to
handle the mapping categories mentioned above. The results of these matchers are
combined through merging (with some cleaning).

8.1.14 Similarity Flooding (Stanford University and University
of Leipzig)

The Similarity flooding approach (Melnik et al. 2002) is based on the ideas of sim-
ilarity propagation. Schemas are presented as directed labelled graphs grounded on
the OIM specification (MDC 1999). The algorithm manipulates them in an iterative
computation to produce an alignment between the nodes of the input graphs. The
technique starts from string-based comparison, such as common prefix, suffix tests
(Sect. 5.2.1), of the vertices labels to obtain an initial alignment which is refined
through iterative computation. The basic concept behind the Similarity flooding al-
gorithm is the similarity spreading from similar nodes to the adjacent neighbours
through propagation coefficients. From iteration to iteration the similarity measure
is spread to the graph until a fixed point is reached or the computation is stopped.
The full process is described in Sect. 6.2.1. The result of this step is an alignment
which is further filtered to produce the final alignment.

8.1.15 XClust (National University of Singapore)

XClust is a tool for integrating multiple DTDs (Lee et al. 2002). Its integration
strategy is based on clustering. Given multiple DTDs, it clusters them according to
their similarity. This aims at facilitating the work of system integrators by allow-
ing them to focus on already similar DTDs of single clusters. Clustering is applied
recursively until a manageable number of DTDs is obtained. XClust works in two
phases: (i) DTD similarity computation, and (ii) DTD clustering. During the first
phase, given a set of DTDs, pairwise similarities between their underlying labelled
trees are computed. This is done by using several matchers which exploit schema
names as well as some structural information. For example, the basic similarity is
computed as a weighted sum of a WordNet-based matcher that looks for synonyms
among names of schema elements (Sect. 5.2.2) and a cardinality constraint matcher
that performs a look-up in a cardinality compatibility table in order to compare car-
dinalities of schema elements (Sect. 5.3.4). Structural similarities exploit previously
computed basic similarities and are based on (i) similarity of paths, (ii) similarity
of immediate descendants and (iii) similarity of leaves (Sect. 6.1.3). For example,
similarity of paths is computed as a normalised sum of basic similarities between
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the sets of elements these paths are composed of, namely elements from the root
to the node under consideration (Sect. 5.2.1). Structural similarities are aggregated
as a weighted sum and then these aggregated similarities are used to choose the
best match pairs by applying a threshold. These constitute the alignment for a pair
of DTDs. Finally, for two DTDs, best match pairs are summed up and normalised,
thereby resulting in a final similarity between these DTDs. The result of the first
phase is the similarity matrix of a set of DTDs. During the second phase, based
on the DTD similarity matrix, a hierarchical clustering (Everitt 1993) is applied to
group DTDs into clusters.

8.1.16 MapOnto (University of Toronto and Rutgers University)

MapOnto is a system for constructing complex mappings between ontologies and
relational or XML schemas (An et al. 2005, 2006). It takes as input three arguments:
(i) an ontology specified in an ontology representation language, e.g., OWL, (ii) a
relational or XML schema, and (iii) simple correspondences, e.g., between XML at-
tributes and ontology data type properties. Input schema and ontology are internally
encoded as labelled graphs. Then, the approach looks for ‘reasonable’ connections
among the graphs. The system produces in a semi-automatic way a set of complex
mapping formulas expressed in a subset of first-order logic (Horn clauses). The list
of logical formulas is also ordered by the tool, thereby suggesting the most reason-
able mappings. Finally, users can inspect that list and choose the best ones.

8.1.17 CtxMatch and CtxMatch2 (University of Trento
and ITC-IRST)

CtxMatch (Bouquet et al. 2003a, 2003b) uses a semantic matching approach
(Sect. 6.5.1). It translates the ontology matching problem into the logical validity
problem and computes logical relations, such as equivalence, subsumption between
concepts and properties. CtxMatch is a sequential system. At the element level it
uses only WordNet to find initial matches for classes (Sect. 5.2.2). CtxMatch2 (Bou-
quet et al. 2006) improves on CtxMatch by handling properties. At the structure
level, it exploits description logic reasoners, such as Pellet (Sirin et al. 2007) or
FaCT (Tsarkov and Horrocks 2006) to compute the final alignment in a way similar
to what is presented in Sect. 6.5.2.

8.1.18 S-Match (University of Trento)

S-Match implements the idea of semantic matching as initially described in
(Giunchiglia and Shvaiko 2003). The first version of S-Match was a rationalised
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re-implementation of CtxMatch with a few added functionalities (Giunchiglia et al.
2004). Later the system has undergone several evolutions, including extensions of
libraries of element- and structure-level matchers, adding alignment explanations as
well as iterative semantic matching (Giunchiglia et al. 2007, 2012a; Shvaiko et al.
2009). S-Match is limited to tree structures and does not consider properties or
roles.

S-Match takes as input two graph structures, e.g., classifications, XML schemas,
ontologies, and returns as output logic relations, e.g., equivalence, subsumption,
which are supposed to hold between the nodes of the graphs. The relations are de-
termined by (i) expressing the entities of the ontologies as logical formulas, and
(ii) reducing the matching problem to a propositional validity problem. In particu-
lar, the entities are translated into propositional formulas which explicitly express
the concept descriptions as encoded in the ontology structure and in external re-
sources, such as WordNet. This allows for translating the matching problem into a
propositional validity problem, which can then be efficiently resolved using (sound
and complete) state-of-the-art propositional satisfiability solvers (see Sect. 6.5.1).

Fig. 8.4 S-Match architecture: ontology entities are converted to logic formulas by using the pre-
processor and oracles. The Match manager then uses various basic element-level matchers and
logic provers for finding relations between these formulas which, in turn, correspond to relations
between entities. The computed alignments can be inspected with the help of a graphical user
interface.

S-Match was designed and developed as a platform for semantic matching,
namely a modular system with the core of computing semantic relations where sin-
gle components can be plugged, unplugged or suitably customised. It is a sequential
system with a parallel composition at the element level (see Fig. 8.4). The input
ontologies are codified in a standard internal XML format. The module taking in-
put ontologies performs some preprocessing with the help of oracles which provide
the necessary a priori lexical and domain knowledge. Examples of oracles include
WordNet (Sect. 5.2.2) and UMLS (Sect. 2.1.2). The output of the module is an en-
riched tree. These enriched trees are stored in an internal database (PTrees) where
they can be browsed, edited and manipulated. The Match manager coordinates the
matching process. S-Match libraries contain around 20 basic element-level match-
ers representing three categories, namely string-based, such as n-gram, edit distance
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(Sect. 5.2.1), WordNet sense-based and WordNet gloss-based matchers (Sect. 5.2.2).
Structure-level matchers include SAT solvers, e.g., those of SAT4J (Le Berre and
Parrain 2010), and ad hoc reasoning methods (Giunchiglia et al. 2005b).

S-Match has been extended to reduce semantic heterogeneity in web service user
descriptions (Giunchiglia et al. 2008). This has been evaluated with geo-web ser-
vices (Vaccari et al. 2012). It discovers correspondences holding among the full tree
structures and preserves certain structural properties of the trees under considera-
tion. This extension is called a structure-preserving semantic matching operation
(SPSM). This operation produces a set of correspondences between those nodes of
the trees that correspond semantically to one another, (i) still preserving a set of
structural properties of the trees being matched, namely that functions are matched
to functions and variables to variables; and (ii) only in the case that the trees are
globally similar to one another according to a similarity measure, which is based on
a tree edit distance.

Another S-Match extension (Giunchiglia et al. 2012b) is minimal semantic
matching. The key idea is that, based on a set of redundancy patterns, the mini-
mal subset of correspondences can be computed such that all the other correspon-
dences can be efficiently computed from them. It was shown that such an alignment
always exists and it is unique. It is also possible to compute the set of maximum
size, namely containing the maximum number of minimal and redundant corre-
spondences, from the propagation of the correspondences in the minimal set.

8.1.19 HCONE (University of the Aegean)

HCONE is an approach to domain ontology matching and merging by exploiting
different levels of interaction with users (Kotis et al. 2006; Vouros and Kotis 2005;
Kotis and Vouros 2004). First, an alignment between two input ontologies is com-
puted with the help of WordNet (Sect. 5.2.2). Then, the alignment is processed
straightforwardly by using some merging rules, e.g., renaming, into a new merged
ontology. The HCONE basic matching algorithm works in six steps:

1. Chose a concept from one ontology, denoted by c.
2. Obtain all the WordNet senses of c, denoted by s1, s2, . . . , sm. For example, the

concept Facility has five senses in WordNet.
3. Obtain hypernyms and hyponyms of all the senses of c (Sect. 5.2.2). For example,

Police is a hyponym of Facility.
4. Build the n×m association matrix. This relates the n most frequently occurring

terms in the vicinity of the m senses determined in step 2. The vicinity terms
include those from the same synsets of m senses, hypernyms and hyponyms from
step 3. In the case of the Facility example this is a 93× 5 matrix. For example, the
number of occurrences of such a vicinity term as Police is 3.

5. Build a query q by using subconcepts of c, e.g., TransportationSystem, or terms that
are related to c via domain-specific relations in the input ontology. If the terms
considered for q also exist among the n terms from step 4, then q memorises that
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position with the help of flags. Thus, for the Facility concept, q is a 93 position
vector, and, since the position of TransportationSystem is at the 35th place the value
of q[35] is 1.

6. Taking as input the association matrix computed at step 4 and the query com-
puted at step 5, latent semantic indexing (Sect. 5.2.2) is used to compute the
grades for what is the correct WordNet sense to be used for the given context
(query).

The highest rated sense expresses the most plausible meaning for the concept under
consideration. Finally, the relationship between concepts is computed. For instance,
equivalence between two concepts holds if the same WordNet sense has been cho-
sen for these concepts based on the procedure described above. The subsumption
relation is computed between two concepts if a hypernym relation holds between
the WordNet senses corresponding to these concepts. Based on the level at which
users are involved in the matching process, HCONE provides fully automated, semi-
automated and user-based algorithms to ontology matching. Users are involved in
order to provide feedback on what is to be the correct WordNet sense on a one-by-
one basis (user-based), or only in some limited number of cases, by exploiting some
heuristics (semi-automated).

8.1.20 MoA (Electronics and Telecommunication Research
Institute, ETRI)

MoA is an ontology merging and alignment tool (Kim et al. 2005). It consists
of: (i) a library of methods for importing, matching, modifying, merging ontolo-
gies, and (ii) a shell for using these methods. MoA handles ontologies specified in
OWL-DL. It is able to compute equivalence and subsumption relations between en-
tities (classes, properties) of the input ontologies. The matching approach is based
on concept (dis)similarity derived from linguistic clues. The MoA tool is a sequen-
tial solution. The preprocessing step includes three phases: (i) names of classes and
properties are tokenised (Sect. 5.2.1); (ii) tokens of entities are associated with their
meaning by using WordNet senses; (iii) meanings of tokens of ancestors of the entity
under consideration are also taken into account, thereby extending the local mean-
ings. This step is essentially the same as some part of the preprocessing done within
S-Match (Sect. 8.1.18). Matching itself is based on rules. It is performed in a double
loop over all the pairs of entities from the two input ontologies. For example, equiv-
alence between two classes or properties holds when there is equivalence between
these entities in either step (ii) or (iii). The equivalence, in turn, is decided via rela-
tions between the WordNet senses for one of the possible solutions (see Sect. 5.2.2).
Thus, for example, author can be found to be equivalent to writer because they belong
to the same synset in WordNet.
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8.1.21 ASCO (INRIA Sophia-Antipolis)

ASCO is a system that automatically discovers pairs of corresponding elements
in two input ontologies (Bach et al. 2004). ASCO handles ontologies in RDF
Schema and computes alignments between classes, relations, and classes and re-
lations. ASCO2, deals with OWL ontologies (Bach and Dieng-Kuntz 2005).

The matching process is organised sequentially in three phases. During the first
phase (linguistic matching) the system normalises terms and expressions, e.g., by
punctuation, upper cases, special symbols. Depending on their use in the ontol-
ogy or if they are bags of words, ASCO uses different string comparison metrics
for comparing the terms. Single terms are compared by using Jaro–Winkler, Lev-
enshtein or Monge–Elkan (Sect. 5.2.1) and external resources, such as WordNet.
Based on token similarities, the similarity between sets of tokens is computed using
TFIDF. The obtained values are aggregated through a weighted sum.

The second phase (structure matching), computes similarities between classes
and relations by propagating the input of linguistic similarities. The algorithm is an
iterative fixed point computation algorithm that propagates similarity to the neigh-
bours (subclasses, superclasses and siblings). Similarities between sets of objects
are computed through single linkage. The propagation terminates when the class
similarities and the relation similarities do not change after an iteration or a certain
number of iterations is reached.

In the third phase, the linguistic and structural similarity are aggregated through a
weighted sum and, if the similarities between matching candidates exceed a thresh-
old (Sect. 7.7.1), they are selected for the resulting alignment.

8.1.22 Stroulia & Wang (University of Alberta)

Stroulia and Wang proposed a suite of methods for assessing similarity between
two WSDL specifications in order to enhance automated service discovery (Stroulia
and Wang 2005). Based on the textual description of a desired service, information
retrieval methods are used to discover and order the matching service candidates.
If a specification of the behaviour of the desired service is available, which can
be partial, the matching candidates are further refined through structural similarity
methods.

Specifically, the following methods have been proposed and implemented. When
only service documentation (textual descriptions) are available, a traditional TFIDF
vector-space method is used (Sect. 5.2.1). The vector-space method may be en-
hanced by also looking for synonyms, hyponyms, and hypernyms from WordNet
(Sect. 5.2.2). The overall matching score is computed as the weighted average
(Sect. 7.4.1) of the respective subvector matching scores. Different weights are ap-
plied giving importance, in descending order, to the original document terms, then
to synonyms, and finally to hyponyms/hypernyms.
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In turn, structure matching starts from comparing data types, then service mes-
sages and service operations. For example, data types are matched based on a com-
patibility look-up table made of four data type categories (Sect. 5.3.2). Messages
are compared based on the similarity of their parameter lists in terms of the data
types they contain and their organisation. These comparisons are performed in a
pairwise fashion between source and target operations. The overall score is taken
by maximising the sum of the individual scores. The final method directly extends
structure matching, which looks essentially for data type compatibility and XML
grouping styles, by considering also names of the respective service elements. This
is performed based on WordNet by looking for synonyms or terms related hierarchi-
cally, e.g., as hyponyms or hypernyms. The system exhaustively explores possible
correspondences between operations, and returns those with the highest matching
scores. The overall similarity is computed as a sum of the names and the operation
matching scores.

8.1.23 MWSDI (University of Georgia)

The METEOR-S Web Service Discovery Infrastructure (MWSDI) provides access
to federations of service registries in a peer-to-peer network (Oundhakar et al.
2005). It is assumed that web services are annotated with concepts from differ-
ent OWL ontologies. The web service discovery algorithm is based on match-
ing search templates (ST), where users specify names, descriptions, operations,
inputs, outputs of the desired web service, against candidate services (CS) avail-
able in service registries. Matching scores are computed for all the ST-CS pairs and
ranked in descending order before being presented to users. The overall matching
score is computed as a weighted average (Sect. 7.4.1) of service name, descrip-
tion and functional similarities. Name similarity is computed with the help of to-
kenisation (Sect. 5.2.2), n-grams (Sect. 5.2.1), and synonym look-up in WordNet
(Sect. 5.2.2); description similarity is based only on n-grams. Functional similar-
ity compares individual operation pairs, being a weighted average of name and
description similarity, input and output similarity of the operations and concept
similarity of the respective ontologies used to annotate the web services. The con-
cept similarity is a weighted average of the name and description, property, and
the coverage and context similarities. Name and description similarities are com-
puted as described previously. Property similarity is based on name and descrip-
tion, range, cardinality as well as a penalty (reduction of 0.05) for unmatched
properties. For example, data types in the range match are compared based on
the compatibility look-up table (Sect. 5.3.2). Context similarity takes into account
the neighbour concepts. In turn, coverage similarity determines whether concepts
are semantically similar or disjoint and contributes accordingly to the matching
score.
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8.1.24 SeqDisc (University of Leipzig, Queensland University
of Technology, University of Magdeburg)

SeqDisc is an automatic approach to WSDL service discovery (Algergawy et al.
2010). Web service specifications are viewed as rooted, labelled trees, which are di-
vided into concrete and abstract parts to be further matched. The concrete part has
a fixed hierarchical structure from the root (service name) to the portType element
and various names. Abstract parts have differences in names and structures, as they
correspond to the content of operation messages. The concrete hierarchical struc-
tures are matched by computing name similarity between elements at the same level
only. This is done by combining tokenisation (Sect. 5.2.2), edit distance (Sect. 5.2.1)
and 3-grams (Sect. 5.2.1). Abstract parts have differences in names and structures.
These are first represented as Prüfer sequences (Prüfer 1918). Specifically, they are
encoded as label Prüfer sequences (LPS) to capture information from labels and as
number Prüfer sequences (NPS) to capture information from structures of web ser-
vice operations. Then, similarities between service operation trees are computed by
combining the string-based methods previously mentioned with data type compari-
son and children, leaf and ancestor structural similarities (Sect. 6.1.3). The matching
result is refined through several alternatives, either by using only the results from the
abstract tree comparison, or by using both abstract and concrete tree comparisons.

8.1.25 BayesOWL and BN Mapping (University of Maryland)

BayesOWL is a probabilistic framework for modelling uncertainty in the seman-
tic web. It includes a Bayesian network mapping module (Sect. 6.4.1), which is in
charge of automatic ontology matching (Pan et al. 2005). The approach works in
three steps. First, two input ontologies are translated into two Bayesian networks.
Specifically, classes are translated into nodes in a Bayesian network, while edges
are created if the corresponding two classes are related by a predicate in the input
ontologies. During the second step, matching candidates are generated between two
Bayesian networks by learning joint probabilities from the web data. In particular,
for each concept in an ontology, a group of sample text documents (called exam-
plars) is created by querying a search engine. The query contains all the terms, e.g.,
{product book science} (opposed to a single term, e.g., {science}), in the path from
the root to the concept (term) under consideration in the given ontology, thereby
enabling some word sense disambiguation (Sect. 5.2.2). A text classifier, namely,
Rainbow,2 is trained on the statistical information about examplars from the first
ontology. Then, concepts of the second ontology are classified with respect to the
concepts of the first ontology by feeding their examplars to the trained classifier.

2http://www.cs.umass.edu/~mccallum/bow/rainbow/.

http://www.cs.umass.edu/~mccallum/bow/rainbow/
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A similarity between two concepts is determined with the help of the Jaccard coef-
ficient (Sect. 5.4) computed from the joint probabilities. These are used to construct
conditional probability tables. During the third step, the mappings are refined as an
update (combination of the Jeffrey rule and Iterative Proportional Fitting Procedure
(Jeffrey 1983; Cramer 2000)) on probability distributions of concepts in the sec-
ond Bayesian network, by distributions of concepts in the first Bayesian network,
in accordance with the given similarities. By performing Bayesian inference with
the updated distribution of the second Bayesian network, the final alignment is pro-
duced.

8.1.26 OMEN (The Pennsylvania State University
and Stanford University)

OMEN (Ontology Mapping ENhancer (Mitra et al. 2005)) is a semi-automatic prob-
abilistic ontology matching system based on a Bayesian network (Sect. 6.4.1). It
takes as input two ontologies and an initial probability distribution derived, for in-
stance, from basic (element-level) linguistic matchers. In turn, OMEN provides a
structure-level matching algorithm, thereby deriving new mappings or discarding
existing mappings. The approach can be summarised in four logical steps. First, it
creates a Bayesian network, where a node stands for a mapping between pairs of
classes or properties of the input ontologies. Edges represent the influences between
the nodes of the network. This encoding is different from the one of BayesOWL
(Sect. 8.1.25). During the second step, OMEN uses metarules that capture the in-
fluence of the structure of input ontologies in the neighbourhood of the input map-
pings in order to generate conditional probability tables for the given network. An
example of a basic metarule is as follows. There are two conditions: (i) if the i-
th concept from the first ontology, c1,i ∈ o1, matches the j -th concept from the
second ontology, c2,j ∈ o2; (ii) if there is a relation q between concepts c1,i and
c1,k in the first ontology, which matches a relation q ′ between concepts c2,j and
c2,m in the second ontology. Then we can increase the probability of match be-
tween concepts c1,k and c2,m. Other rules rely more heavily on the semantics of
the language in which the input ontologies are encoded. During the third step, in-
ferences are made (OMEN uses Bayesian Network tools in Java (BNJ)3) to gen-
erate a posteriori probabilities for each node. Finally, a posteriori probabilities,
which are higher than a threshold (Sect. 7.7.1), are selected to generate the resulting
alignment.

3http://bnj.sourceforge.net.

http://bnj.sourceforge.net
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8.1.27 DCM Framework (University of Illinois
at Urbana-Champaign)

MetaQuerier (Chang et al. 2005) is a middleware system that assists users in finding
and quering multiple databases on the web. It exploits the Dual Correlation Mining
(DCM) matching framework to facilitate source selection according to user search
keywords (He and Chang 2006). Unlike other works, the given approach takes as
input multiple schemas and returns alignments between all of them. This setting
is called holistic schema matching. DCM automatically discovers complex corre-
spondences, e.g., {author} corresponds to {first name, last name}, between attributes
of web query interfaces in the same domain of interest, e.g., books. As the name
DCM indicates, schema matching is viewed as correlation mining. The idea is that
co-occurrence patterns often suggest complex matches. That is, grouping attributes,
such as first name and last name, tend to co-occur in query interfaces. Technically,
this means that those attributes are positively correlated. Contrarily, attribute names
which are synonyms, e.g., quantity and amount, rarely co-occur, thus representing
an example of negative correlation between them. Matching is performed in two
phases. During the first phase (matching discovery), a set of matching candidates is
generated by mining first positive and then negative correlations among attributes
and attribute groups. Some thresholds and a specific correlation measure such as
the H-measure are also used. During the second phase (matching construction), by
applying ranking strategies, e.g., scoring function, rules, and selection, such as iter-
ative greedy selection (Sect. 7.7.3), the final alignment is produced.

8.1.28 HSM (Hong Kong University of Science and Technology,
City University of Hong Kong)

HSM is an approach to holistic schema matching among web query interfaces (Su
et al. 2006). It computes 1:1, 1:n and m:n alignments and takes inspiration from
DCM (Sect. 8.1.27), namely that correspondences can be discovered from term co-
occurrence patterns within a domain. For example, in the book domain, the first name

attribute is often co-present with the last name attribute, while it is rarely co-present
with the author attribute. Frequent term co-presence indicates a synonym relation,
while rare term co-presence indicates a grouping relation. The background intuition
is that synonym attributes rarely appear in the same query interface, while group-
ing attributes usually appear together within the same query interface. Based on the
above mentioned observations of the frequent or rare term co-presence, two scores
are computed between every two attributes of all the schemas: (i) matching score
evaluating the likeliness that two attributes are synonyms, (ii) grouping score evalu-
ating the likeliness that two attributes are in the same group. Then, HSM employs a
polynomial (with respect to the number of attributes) count-based greedy algorithm
that iteratively selects the highest matching score to discover synonym correspon-
dences. It also decides, based on the grouping score and a threshold, if two attributes
that match the same set of other attributes belong to the same group.
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8.1.29 CBW (Sharif University of Technology, Tehran
Institute for Studies in Theoretical Physics
and Mathematics)

CBW is a Coincidence-Based Weighting approach to ontology matching (Haeri
(Hossein) et al. 2007; Qazvinian et al. 2008). It takes as input two OWL ontologies
and a matrix of similarities between their concepts, which is computed through the
Levenshtein distance (Sect. 5.2.1), and outputs a coincidence weighted alignment
between these concepts. Ontologies are viewed as typed graphs, where concepts
correspond to nodes, while relations correspond to typed edges. The coincidence
measure (namely of being the same) is defined to evaluate coincidence of the graph
structures. Specifically, it is used to weight candidate alignments and to extract the
final one. This is done through evaluating partial orders on possible homomorphisms
between graphs. The proposed partial order is a coincidence-based weighting func-
tion. The preservation of edges between corresponding nodes is considered ideal.
Based on various combinations of edge preservation or non-preservation and node
proximity, various weighting bonuses and penalties are defined to form this function.
The approach specifically investigates several coincidence-based alignment extrac-
tion strategies (Sect. 7.7), such as:

− Optimal alignment through exhaustive search, which generates all possible align-
ments, scores them based on the coincidence measure and selects the one having
the global maximal score;

− Near-optimal alignment, which adopts genetic algorithms (Sect. 7.6.2), where
cross-over functions are based on the coincidence measure, such that new indi-
viduals have better coincidence in the new generations (Qazvinian et al. 2008);

− Approximate alignment extraction, which is based on random walks looking for
a higher coincidence factor and maximum weight non-crossing matching (Malu-
celli et al. 1993).

8.1.30 GeRoMeSuite (RWTH Aachen University)

GeRoMeSuite (GEneric ROle-based MEtamodel) is an environment for model
management (Kensche et al. 2007b). It exploits role-based modelling to provide
a unified generic representation for various models, such as relational, XML or
OWL (Kensche et al. 2007a). It implements various model management operators
(Sect. 10.3.1), such as match (Quix et al. 2007b), compose (Kensche et al. 2009),
and merge (Quix et al. 2007a) that operate in a generic fashion, namely disregarding
the original models. One of the intuitions behind this work is that different models
can be encoded differently as labelled graphs, and then, these encodings influence
particularly structural similarities among these graphs. This might become an issue
especially if matching across heterogeneous models, such as XML and OWL, is
needed.
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GeRoMeSuite provides various graph traversals over the models, e.g., through
namespaces, class hierarchies, or associations. It implements various element-level
string-based matchers, such as Levenstein, Jaro–Winkler, SMOA (Sect. 5.2.1) and a
name path matcher (Sect. 5.2.1). The included structure-level matchers are Similar-
ity flooding (Sect. 6.2.1) and the children matcher (Sect. 6.1.3). The system provides
flexible ways to configure these matchers, e.g., by providing coefficients or number
of iterations, as well as to aggregate, e.g., through average, and to filter, e.g., through
thresholds, the matcher results with the help of a graphical user interface. The mod-
els to be matched are shown side by side in a tree view, while correspondences
are displayed in the middle as coloured lines, thereby distinguishing between vari-
ous degrees of similarity. Finally, GeRoMeSuite was also used together with SMB
(Sect. 8.4.8), namely a metamatching system, in an integrated approach (Quix et al.
2010).

8.1.31 AOAS (US National Library of Medicine)

AOAS stands for the Anatomy Ontology Alignment System (Zhang and Boden-
reider 2007), which as the title indicates was specifically designed to investigate
alignment of anatomical ontologies. The system handles OWL ontologies and dis-
covers 1:1, 1:m, and n:m alignments. The approach combines direct and indirect
matching methods. Direct matching uses terminological techniques (exact and nor-
malised equality) between concept names. Terms that are lexically similar are called
anchors. The terminological matching is followed by the structural validation of
these anchors through shared or compatible, though not identical, hierarchical (is-a
and part-of ) paths among concepts of the matched ontologies. In turn, the indi-
rect matching between o and o′ is performed via the reference ontology oR , such
as UMLS (Sect. 2.1.2). The evidence for the indirect match is the combination of
evidences for two direct matches to the reference, i.e., between o and oR and be-
tween o′ and oR . Finally, the system combines (by using experimentally established
weighting schemes) direct and indirect matching. The intuition behind AOAS is
that the strongest correspondences are those supported by positive evidences, e.g.,
structural similarity, in both direct and indirect alignments. The presence of nega-
tive evidences, e.g., conflicting paths, in either case causes a correspondence to be
discarded.

8.1.32 Scarlet (The Open University)

Scarlet is a system for SemantiC relAtion discoveRy by harvesting onLinE onTolo-
gies (Sabou et al. 2008a, 2008b). It operates by contextualising the ontologies to be
matched with ontologies that can be found on the web (see Sect. 7.3). The rationale
behind Scarlet is that using more than one ontology improves the results. Scarlet
operates along the following steps:
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− Harvesting ontologies from the web: this is usually achieved through using
Swoogle (Ding et al. 2005) or Watson (d’Aquin and Motta 2011).

− Anchoring the concepts to be matched to the appropriate part of these ontologies,
i.e., a set of ontologies that can lead to a mapping. This is performed through
exact string matching of concept lemmas.

− Selecting ontologies relying on the popularity-based mechanism of Swoogle, i.e.,
the first ontology it returns is inspected first; if no relation can be derived from
it, then the next ontologies are considered.

− Inferring relations using rules that specify how a relation is computed, e.g.,
through direct and declared relations, as well as through transitivity of subsump-
tion relations, to harness also indirect relations between concepts in the back-
ground knowledge.

− Aggregating mappings derived from the considered ontologies with the help of
ad hoc inference rules to detect and handle the contradictory mappings, e.g.,
removing them.

Two strategies were investigated: (i) selecting for each pair of concepts an ontol-
ogy in which they are both anchored and returning all the relations—or in a specific
variant, the first relation—found between them; (ii) when no on-line ontology de-
fines a relation for the previous case, multiple ontologies are investigated and rele-
vant information from these is combined to derive a mapping. This latter variation
can become a very complex procedure, so it is restricted to finding, for each pair
of ontologies, the intersection between the entities subsuming one term and those
subsumed by the other, which helps in quickly finding subsumption relations.

The Scarlet system was improved by combining it with CIDER (Sect. 8.1.35).
This provided it with word sense disambiguation techniques, which allow for better
discriminating between similar terms (Gracia et al. 2007). More recently, (Po and
Bergamaschi 2010) proposed improving Scarlet through various word sense disam-
biguation algorithms, such as structural disambiguation, WordNet domain disam-
biguation, and heuristic rules, such as WordNet first sense rule, were used to provide
annotations for each concept, i.e., to assign it an explicit sense.

8.1.33 OMviaUO (University of Genova, Universidad Politécnica
de Valencia)

Upper-level ontologies may be exploited as a source of background knowledge
in order to enhance automatic ontology matching between concepts (Sect. 7.3).
OMviaUO (Mascardi et al. 2010) uses OpenCyc, SUMO-OWL and DOLCE (see
Sect. 2.1.6) as such. It anchors the ontology to be matched with string-based,
such as substring, n-gram and SMOA (Sect. 5.2.1), and language-based, such as
based on WordNet (Sect. 5.2.2), basic matching methods. They are run in parallel
(parallel_match) and their results are aggregated through the union of all the corre-
spondences discovered by the single methods.
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Several matching alternatives were investigated with these upper-level ontologies
(uo) as input, such as:

− uo_match, which relies only on concept (c) names, and thus does not take into
account structures of the input ontologies. Specifically, it uses parallel_match to
match two input ontologies (o and o′) to an upper-level ontology (u) and then
composes the resulting alignments. The intuition is that if both c ∈ o and c′ ∈ o′
match the same concept cu ∈ u, then c and c′ are related.

− structural_uo_match, similarly to the previous one, relies on parallel_match to
match two input ontologies to an upper-level ontology. The difference is in the
structural composition of the resulting alignments. It extends the intuition from
the item above by also considering possible superconcept relations in the upper-
level ontology. For example, if c ∈ o matches cu ∈ u, c′ ∈ o′ matches c′u ∈ u and
c′u is a superconcept of cu or if cu and c′u have a common superconcept, then c

and c′ are related.
− mixed_match, which aggregates results of structural_uo_match and direct

structural_parallel_match is an extension of parallel_match with structural
heuristics, such as verifying either if c ∈ o is also similar to a superconcept
of c′ ∈ o′ or if c ∈ o and c′ ∈ o′ have similar respective superconcepts.

8.1.34 BLOOMS/BLOOMS+ (Wright State University, Accenture
Technology Labs and Ontotext AD)

BLOOMS (Bootstrapping-based Linked Open Data Ontology Matching System) is
a system for discovering correspondences or schema-level links across linked open
data sets (Jain et al. 2010). The approach focusses on subsumption and equivalence
relations between classes of the linked open data cloud ontologies. The key idea
is that of bootstrapping from the community generated data available on the web.
Specifically, Wikipedia and its category hierarchy, namely a user-generated cate-
gorisation of its pages, are used. The matching process is organised as follows:

− Preprocessing of the input ontologies, which removes properties and individuals
and tokenises composite class names.

− Construction of the BLOOMS forests, namely of a set of trees, each of which
corresponds to a Wikipedia sense (its disambiguation page). These trees are con-
structed for each class of the ontologies to be matched by using Wikipedia cate-
gories (by taking a concise selection of supercategories for the class name under
consideration).

− Forest comparison, which results in the first set of correspondences based on an
ad hoc structural heuristic that counts the number of common nodes.

− Postprocessing, which is performed with the help of (i) the Alignment API
(Sect. 10.3.6) to provide additional correspondences that pass a cut-off threshold
of .95 and (ii) the Jena reasoner (Carroll et al. 2004) to infer further correspon-
dences based on ontology structures and available alignments.
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Subsequently the system evolved into a newer version, called BLOOMS+ (Jain
et al. 2011), that reinforced the third step of the process described above. In par-
ticular, it uses a more sophisticated overlap similarity measure when comparing
BLOOMS forests to determine matches between classes. It also computes a con-
textual similarity between classes, based on the taxonomic structure (Sect. 6.1.1)
of ontologies, to obtain additional evidence in order to retain or to discard a cor-
respondence. These two similarities are then aggregated through weighted average
(Sect. 7.4.1).

8.1.35 CIDER (Universidad Politécnica de Madrid, University
of Zaragoza)

CIDER is a Context and Inference baseD alignER (Gracia et al. 2011; Trillo et al.
2007). It handles OWL ontologies and computes equivalence correspondences be-
tween classes and properties. The matching process is organised in four steps as
follows. First, for each ontology term, its context is extracted, namely by involving
its synonyms, hypernyms, hyponyms, properties, domains, etc. This involves con-
sulting WordNet or other ontologies indexed by Swoogle. Transitive inference is
also used to include information not explicitly stated in the ontologies. Such con-
text information is used to reduce the ambiguity of the terms to be matched (Trillo
et al. 2007). Then, similarities between term labels are computed through the Lev-
enshtein edit distance (Sect. 5.2.1), while structure (taxonomy and relational) sim-
ilarities are computed through a vector space model by comparing features of the
extracted contexts. At the third step, these individual similarities are adaptively com-
bined with the help of an artificial neural network (Sect. 7.5.3). Specifically, a multi-
layer perceptron is used. Finally, 1:1 term alignment extraction is performed through
thresholds (Sect. 7.7.1). The system was developed by extending the Alignment API
(Sect. 10.3.6).

8.1.36 Elmeleegy and Colleagues (Purdue University)

Elmeleegy and colleagues (Elmeleegy et al. 2008) take advantage of usage-based
information, such as query logs, as additional schema (or instance) information
in order to ground correspondence discovery between attributes of two schemas.
The background intuition is to look for similarities in the query patterns to match
attributes, which presumably play the same role in the schemas under considera-
tion. Specifically, co-occurrence patterns between attributes as well as their use in
joins and with aggregate functions are exploited. Several scoring functions, e.g.,
Euclidean distance, were considered to measure similarity between features of the
attributes. A genetic algorithm (Sect. 7.6.2) was used to find the highest score corre-
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spondences (based on scoring functions) between schemas. Two specific matchers
were proposed: the structure-level usage-based matcher (SLUB) and the element-
level usage-based matcher (ELUB).

The approach is organised in two main phases: (i) feature extraction and
(ii) matching. During the first phase, structure-level features, namely those capturing
the usage relationships, e.g., select-where, select-groupby, where-select, between at-
tributes of the same schema, and element-level features, namely those capturing the
usage of each attribute in isolation from the other attributes, e.g., occurrence in joins
or with aggregate functions, such as count, minimum, maximum, sum or average are
extracted from the query log of each schema. In turn, matching is performed through
a genetic search, which examines several potential correspondences and assigns a
score for each of them based on how well the features of the corresponding attributes
match. A weighted average of the individual scores is used by the genetic algorithm
as the fitness value. The approach was experimented with in combination with a
data type matcher based on a data type compatibility matrix (Sect. 5.3.2) and with
Similarity flooding (Sect. 6.2.1).

8.1.37 BeMatch (Versailles Saint-Quentin en Yvelines, University
of Cauca)

BeMatch is a platform for matching and ranking service behaviour models (Cor-
rales et al. 2008; Grigori et al. 2008). The system handles BPEL and WSCL pro-
tocols, provides a global similarity between these, an alignment as well as a script
of edit operations required to transform the protocols under consideration. The ap-
proach operates on behaviour models (in contrast to service inputs and outputs)
and besides exact matches, also delivers approximate matches. Users formulate re-
quirements as process models, which are used as queries to retrieve services whose
respective process models match with the whole or part of these queries. The service
matching problem is reduced to a graph isomorphism problem (Sect. 6.1). Specif-
ically, approximate matching is reduced to an error-correcting subgraph isomor-
phism problem. It is based on graph edit operations that, in turn, are used for deter-
mining a global distance between the query graph and the target graph. This is facil-
itated by: (i) a linguistic analyser to match node labels, using n-grams (Sect. 5.2.1),
checking synonyms through WordNet (Sect. 5.2.2), etc.; (ii) a granularity analyser,
which checks if the same functionality is modelled at different granularity levels in
two graphs, e.g., as two nodes or as a single node; (iii) a cost function builder,
which assigns costs to different graph edit operations reflecting the importance
of dissimilarities between graphs, and allows for computing a global distance be-
tween graphs. Finally, services are ranked based on the global graph distance and
cost.
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8.1.38 PORSCHE (University of Montpellier, ETH Zurich)

PORSCHE is a Performance ORiented SCHEma mediation system (Saleem et al.
2008). It handles XML schemas and outputs 1:1, 1:m and n:1 alignments that are
used to produce a mediated schema out of the input schemas. The approach fol-
lows a holistic approach by matching a set of XML schemas and by incrementally
creating an integrated schema. Firstly, the method clusters the nodes in the given
batch of schemas based on terminological label similarity (Sect. 5.2), e.g., token-
level synonyms and abbreviation domain look-up tables, thereby producing clusters
of nodes with similar labels. Then, it applies tree mining (which looks for subtree
patterns that are frequent in the given set of trees) using node ranks calculated dur-
ing depth-first traversal. This minimises the target search space (since the source
node and candidate target nodes are in the same cluster; Sect. 7.1.2) and contributes
to the scalability of the approach. The system is hybrid and extensible to incorpo-
rate more matching methods. Finally, it applies a binary ladder incremental schema
match (Batini et al. 1986) and integrates techniques to produce the mediated schema
together with mappings from source schemas to the mediated schema.

8.1.39 MatchPlanner (University of Montpellier)

MatchPlanner is a system implementing a planning approach to the combination of
matching algorithms (Duchateau et al. 2008). It uses a decision tree (Sect. 7.5.5) as
an aggregation function in which the nodes represent similarity measures or match-
ers and edges are used as conditions on the matcher results. Such a decision tree
represents a plan, namely an ordered sequence of matching algorithms. A similar-
ity computed by a matcher, which is a tree node, is evaluated against a condition,
which is an edge. This controls the access to the subsequent tree nodes, and so, the
execution of other matchers or terminates the process, if a leaf node is reached. Leaf
nodes of these trees are either true or false, meaning that there either exists a match
or not. For a given matching task the system uses only a subset (involving pre-
sumably the most appropriate one) of the matching algorithms from an extendable
library of matchers. Thus, the complexity of the matching process is bounded by the
depth of the decision tree. The system uses various string-based matchers, such as
Levenshtein, 3-grams, Jaro–Winkler from the SecondString package (Sect. 5.2.1),
WordNet-based matchers as well as a neighbour context matcher from (Duchateau
et al. 2007b). The system is also self-configurable, namely it is able to select the
optimal configuration of matchers by finding its most appropriate parameters, such
as thresholds, weights, and coefficients (Sect. 7.6). Specifically, since edges in the
decision tree are used as conditions, these can be viewed as thresholds, personalised
to each matcher. Finally, decision trees can be designed manually or generated using
machine learning (Sect. 7.5.5). These are often domain-specific, so they may require
to be redesigned when a matching task from a new domain is considered.
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8.1.40 Anchor-Flood (Toyohashi University of Technology)

The Anchor-Flood approach aims at handling efficiently particularly large ontolo-
gies (Hanif and Aono 2009). It inputs ontologies in RDFS and OWL and outputs 1:1
alignments. The system starts with a pair of similar concepts from two ontologies
called an anchor, i.e., all pairs of concepts whose normalised names exactly match.
Then, it gradually proceeds by analysing the neighbours, i.e., superconcepts, sub-
concepts, or siblings, of each anchor, thereby building small segments (fragments)
out of the ontologies to be matched. The size of the segments is determined dy-
namically, starting from an anchor and exploring the neighbouring concepts until
either all the collected concepts are explored or no new matching pairs are found.
The system focusses on (local) segment-to-segment comparisons. Thus it does not
consider the entire ontologies. This improves the system scalability (Sect. 7.1.2). It
outputs a set of correspondences between concepts and properties of the semanti-
cally connected segments. For determining the correspondences between segments
the approach relies on terminological (WordNet and Winkler-based string metrics;
Sect. 5.2) and structural similarity measures, which are further aggregated by also
considering probable misalignments. The similarity between two concepts is deter-
mined by the ratio of the number of terminologically similar direct superconcepts
on the number of total direct superconcepts. Retrieved (local) matching pairs are
considered as anchors for further processing. The process is repeated until there is
no more matching pair to be processed.

8.1.41 Lily (Southeast University, Nanjing University)

Lily is an ontology matching system able to handle large ontologies and equipped
with debugging facilities to verify and improve alignments (Wang et al. 2011; Wang
and Xu 2009). It computes 1:1 alignments between concepts or properties. The
matching process is organised in three steps. First, ontology entities are captured
as ontology subgraphs through an extraction algorithm based on an electrical circuit
model. Then, matching is performed over the ontology subgraphs. Lily combines
various methods, namely string-based, such as Levenshtein distance (Sect. 5.2.1)
between entity names and comments, and structure-based, such as a variation of
Similarity flooding (Sect. 6.2.1) with various propagation strategies (Wang and Xu
2009). Large ontologies are handled based on reduction anchors (see Sect. 7.1.2).
Finally, the last step of the matching process is debugging (Wang and Xu 2008). It
aims at detecting deficiencies or errors, such as redundant, inconsistent, or impre-
cise correspondences in an alignment (Sect. 7.8.2). For example, a correspondence
is redundant if it can be deduced from the existing ones. Some errors are repaired au-
tomatically, while cases treated as warnings are presented to users with suggestions
for revision.
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8.1.42 AgreementMaker (University of Illinois at Chicago)

AgreementMaker is a system offering a wide range of automatic matchers, an ex-
tensible and modular architecture, a metapurpose user interface, a set of evaluation
strategies, and various manual, e.g., visual comparison, and semi-automatic fea-
tures, e.g., user feedback (Cruz et al. 2009). It has been designed to handle large-
scale ontologies based on the requirements coming from various domains, such as
the geospatial and biomedical domains. The system handles ontologies in XML,
RDFS, OWL, N3 and outputs 1:1, 1:m, n:1, and n:m alignments. In general, the
matching process is organised into two modules: similarity computation and align-
ment selection. The system combines matchers using three layers:

− The matchers of the first layer compare concept features, such as labels, com-
ments, and instances, which are represented as TFIDF vectors used with a co-
sine similarity metric (Sect. 5.2.1). Other string-based measures, e.g., edit and
substring distances, may be used as well.

− The second layer uses structural ontology properties. It includes two matchers:
descendant similarity inheritance, i.e., if two nodes are matched with high sim-
ilarity, then the similarity between the descendants of those nodes should in-
crease, and sibling similarity contribution, which uses the relationships between
sibling concepts (Cruz and Sunna 2008).

− At the third layer, a linear weighted combination is computed over the results
coming from the first two layers (Sect. 7.4.1), whose results are further pruned
based on thresholds and desired output cardinalities of the correspondences
(Sect. 7.7).

The system has a sophisticated user interface deeply integrated with the evalu-
ation of ontology alignment quality. It empowers users with more control over the
matching process.

8.1.43 Homolonto (University of Lausanne, Swiss Institute
of Bioinformatics)

Homolonto is a system for matching anatomical ontologies (Parmentier et al. 2010).
It uses the specifics of these ontologies, such as redundancy of terms, to discover and
propagate similarity between concepts. When the similarity is important enough,
concepts (anatomical elements) are considered as homologous and recorded as
a possible correspondence. The system discovers many-to-many alignments. Ho-
molonto uses weights for combining the results of various matchers (Sect. 7.4.1),
such as those performing comparison of names (identical strings, synonyms), statis-
tics of word occurrences, graph structure comparison, or user input. Specifically,
first word matching of concept names and possibly user input are used to produce
initial propositions, also called anchors. Then, the scores from these initial propo-
sitions are propagated to the neighbours (children). The system is equipped with a
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graphical user interface. Propositions are displayed to users in descending order for
validation. Users can accept a correspondence as homology, as partial homology, re-
ject it or postpone the decision. After user validation, word matching and structure
matching are iterated until users decide to terminate the process or no new proposi-
tions are generated. Since homology relationships are transitive, Homolonto allows
for merging such correspondences into homologous (organ) groups, which in turn
may be used for building a multispecies ontology.

8.1.44 DSSim (Open University, Poznan University of Economics)

DSSim is an agent-based ontology matching framework. The system handles large-
scale ontologies in OWL and SKOS and computes 1:1 alignments with equivalence
and subsumption relations between concepts and properties. It uses the Dempster-
Shafer theory (Sect. 7.4.2) in the context of query answering (Nagy and Vargas-Vera
2010). Specifically, each agent builds a belief for the correctness of a particular cor-
respondence hypothesis. Then, these beliefs are combined into a single more co-
herent view in order to improve correspondence quality. The ontologies are initially
partitioned into fragments. Each concept or property of a first ontology fragment is
viewed as a query, which is expanded based on hypernyms from WordNet. These
hypernyms are used as variables in the hypothesis to enhance the beliefs. The ex-
panded concepts and properties are matched syntactically to the similar concepts
and properties of the second ontology in order to identify a relevant graph frag-
ment of the second ontology. Then, the query graph of the first ontology is matched
against the relevant graph fragment of the second ontology. For that purpose, vari-
ous terminological similarity measures are used, such as Monge–Elkan and Jaccard
similarity, which are combined using the Dempster rule (Sect. 7.4.2). Similarities
are viewed as different experts in the evidence theory and are used to assess quan-
titative similarity values (converted into belief mass functions) that populate the
similarity matrices. The resulting correspondences are selected based on the highest
belief function over the combined evidences. Conflicts among beliefs are resolved
by using a fuzzy voting approach equipped with four ad hoc if-then rules.

8.1.45 MapPSO (FZI Research Center for Information
Technology, Griffith University)

MapPSO is an approach to Ontology Matching based on discrete Particle Swarm
Optimisation (Bock et al. 2011; Bock and Hettenhausen 2012). In such a setting,
the matching problem is reduced to the biologically inspired non-deterministic
population-based optimisation where the objective function of alignment quality
is optimised (Sect. 6.3.2). The system handles OWL ontologies and computes 1:1
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alignments between concepts and properties. The process starts with a random align-
ment, which is then evaluated and updated iteratively. Evaluation (fitness) is per-
formed through a combination of basic matchers, such as the SMOA string dis-
tance, WordNet-based distance or hierarchy distances as implemented in OntoSim
(Sect. 5.2.1). Various aggregations can be applied, such as weighted average or or-
dered weighted average (Sect. 7.4.1). The approach maintains a constant population
of individuals or swarm particles, viewed as candidate alignments. These are up-
dated iteratively by changing their positions in the search space based on particle
memory and communication between particles in order to converge to an optimal
alignment. Each particle can be updated in parallel with other particles.

Recently, a variation of this population-based optimisation approach was pro-
posed under the name of MapEVO (Bock et al. 2011). Instead of particle swarm
optimisation, it is based on evolutionary programming (Sect. 7.6.2). MapEVO op-
timises the same objective function of alignment quality as MapPSO, though pop-
ulations of candidate alignments (or individuals) are viewed as species that evolve,
i.e., become extinct or reproduce themselves.

8.1.46 TaxoMap (University of Paris-Sud 11, INRIA)

TaxoMap is a system for discovering equivalence, subsumption and proximity (is-
Close) correspondences among taxonomies (Hamdi et al. 2010a, 2010b). Matching
is based only on labels of concepts and subsumption hierarchies. TaxoMap starts
by classifying words occurring in labels as full or complimentary, based on their
part-of-speech and position in the labels. This is performed with the help of Tree-
Tagger.4 Then, these are compared through 3-grams (Sect. 5.2.1), with more impor-
tance given to full words. Correspondences are decided based on heuristic rules and
similarities between labels. For example, a subsumption relationship is suggested if
one of the labels of a concept in the source ontology is included in the labels of a
concept of the target ontology.

TaxoMap also implements a pattern-based approach and treatments to help in-
tegration engineers refine alignments by considering the specifics of the ontologies
to be matched (Sect. 6.1.4). Alignment refinement is designed with two objectives,
namely to help engineers in detecting and correcting erroneous correspondences,
and to declaratively specify treatments to be performed for processing the resulting
alignment, such as ontology merging or restructuring. In particular, by analysing
correspondence refinements provided by integration engineers, the idea is to gener-
alise them and to identify groups of correspondences requiring the same refinement
treatment. Then, the respective resolving patterns are applied to these groups. Pat-
terns are specified in a mapping refinement pattern language (MRPL) with the help
of a graphical user interface, and can be stored and reused in different alignment

4http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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refinement tasks. This activity is viewed as an iterative process of alignment refine-
ment and subsequent validation by integration engineers of the resulting updated
alignments.

8.1.47 iMatch (Ben-Gurion University)

iMatch (Albagli et al. 2012) is a probabilistic interactive ontology matching system
based on Markov networks (Sect. 6.4.2). The matching problem is viewed as that
of matching labelled graphs. The system takes as input two OWL ontologies, and
an optional partial alignment provided by users, and outputs one-to-one alignments.
The approach assumes that initial similarity between pairs of nodes is given in ad-
vance, e.g., through edit distance (Sect. 5.2.1) or through user input. The system
operates in three steps. First, a specific Markov network (Sect. 6.4.2) is built for a
given pair of ontologies. The topology of the network is defined based on constraints
and rules, such as (i) produce one-to-one alignments, (ii) if two concepts match, then
the respective parent nodes frequently match as well. Then, initial match distribu-
tions (computed though edit distance) for all possible pairs of concepts are used to
initialise evidence potentials of the network. Ultimately, iMatch exploits probabilis-
tic reasoning in the Markov network to compute the final alignment. Besides initial
similarities, it also takes into account the ontology structures through a loopy belief
(about matching) propagation (Kschischang et al. 2001). Any network node with a
posterior probability over a given threshold is considered as a correspondence.

8.2 Instance-Based Systems

Instance-based systems are those taking advantage mostly of instances, i.e., of data
expressed with regard to the ontology or data indexed by the ontology.

8.2.1 T-tree (INRIA Rhône-Alpes)

T-tree (Euzenat 1994) is an environment for generating taxonomies and classes from
objects (instances). It can, in particular, infer dependencies between classes, called
bridges, of different ontologies sharing the same set of instances based only on the
extension of classes (Sect. 5.4.1). Given a set of source taxonomies called view-
points, and a destination viewpoint, T-tree returns all the minimal bridges that are
satisfied by the available data, i.e., the set of bridges for which the objects in every
source class are indeed in the destination class. The algorithm compares the exten-
sion (set of instances) of the presumed destination to the intersection of those of the
presumed source classes. If there is no inclusion of the latter in the former, the algo-
rithm is re-iterated on all the sets of source classes which contain at least one class
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which is a subclass of the tested source classes. If the intersection of the extension
of the presumed source classes is included in that of the presumed destination class,
a bridge can be established from the latter (and also from any set of subclasses of
the source classes) to the former (and also any superclass of the destination class).
However, other bridges can also exist on the subclasses of the destination. The al-
gorithm is thus re-iterated on them. It stops when the bridge is trivial, i.e., when the
source is empty. Users validate the inferred bridges.

Bridge inference is the search for correlation between two sets of variables. This
correlation is particular to a data analysis point of view since it does not need to be
valid on the whole set of individuals (the algorithm looks for subsets under which the
correlation is valid) and it is based on strict set equality (not similarity). However,
even if the bridge inference algorithm has been described with set inclusion, it can
be helped by other measurements which will narrow or broaden the search. More
generally, the inclusion and emptiness tests can be replaced by tests based on the
similarity of two sets of objects (as is usual in data analysis).

The bridge inference algorithm is not dependent on the instance-based interpre-
tation: it depends on the meaning of the operators ⊆, ∩ and = ∅-test (which are
interpreted as their set-theoretic counterpart in the case of the instance-based algo-
rithms). A second version of the system (with the same properties) uses structural
comparison: ⊆ is subtyping, ∩ is type intersection and = ∅-test is a subtyping test.

8.2.2 CAIMAN (Technische Universität München and Universität
Kaiserslautern)

CAIMAN (Lacher and Groh 2001) is a system for document exchange, which fa-
cilitates retrieval and publishing services among communities of interest. These ser-
vices are enabled by using semi-automatic ontology matching. The approach fo-
cusses on lightweight ontologies, such as web classifications. The main idea behind
matching is to calculate a probability between the concepts of two ontologies, by
applying machine learning techniques for text classification, e.g., the Rocchio clas-
sifier. In particular, based on the documents, a representative feature vector (a word-
count, weighted by TFIDF feature vector) is created for each concept in an ontology.
Then, the cosine measure is computed for two of those class vectors (Sect. 5.2.1).
Finally, with the help of a threshold, the resulting alignment is produced.

8.2.3 FCA-Merge (University of Karlsruhe)

FCA-merge uses formal concept analysis techniques to merge two ontologies shar-
ing the same set of instances (Stumme and Mädche 2001). The overall process
of merging two ontologies consists of three steps, namely (i) instance extraction,
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(ii) concept lattice computation, (iii) interactive generation of the final merged on-
tology. The approach provides, as a first step, methods for extracting instances of
classes from documents. The extraction of instances from text documents circum-
vents the problem that in many applications there are no individuals which are si-
multaneously instances of the source ontologies and which could be used as a basis
for identifying similar concepts. During the second step, the system uses formal
concept analysis techniques (Sect. 5.4.1) in order to compute the concept lattice
involving both ontologies. The last step derives the merged ontology from the con-
cept lattice. The produced lattice is explored and transformed by users who further
simplify it and generate the taxonomy of an ontology.

The result is a merge rather than an alignment. However, the concepts that are
merged can be considered as exactly matched and those which are not can be con-
sidered in subsumption relation with their ancestors or siblings.

8.2.4 LSD (University of Washington)

Learning Source Descriptions (LSD) is a system for the semi-automatic discovery
of one-to-one alignments between the (leaf) elements of source schemas and a medi-
ated (global) schema in data integration (Doan et al. 2001). The main idea behind the
approach is to learn from mappings created manually between the mediated schema
and some of the source schemas, in order to propose in an automatic manner map-
pings for the subsequent source schemas. LSD handles XML schemas. A schema
is modelled as a tree, whose nodes are XML tag names. The approach works in
two phases. During the first (training) phase, useful objects, such as element names
and data values, are extracted from the input schemas. Then, from these objects and
manually created alignments, the system trains several basic matchers (addressing
different features of objects, such as formats, word frequencies, characteristics of
value distributions) and a metamatcher. Examples of basic matchers are the WHIRL
learner (Sect. 7.5.2) and the naive Bayes learner (Sect. 7.5.1). The metamatcher
combines the predictions of basic matchers. It is trained by using a stacked general-
isation (learning) technique (Sect. 7.6.1). During the second (matching) phase LSD
extracts the necessary objects from the remaining (new) source schemas. Then, by
applying the trained basic matchers and the metamatcher on the new objects (the
classification operation), LSD obtains a prediction list of matching candidates. Fi-
nally, by taking into account integrity constraints and applying some thresholds, the
final alignment is extracted.

8.2.5 GLUE (University of Washington)

GLUE (Doan et al. 2004), a successor of LSD, is a system that employs multiple
machine learning techniques to semi-automatically discover one-to-one mappings
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(which are sometimes called ‘glue’ for interoperability) between two taxonomies.
The idea of the approach is to calculate the joint distributions of the classes, instead
of committing to a particular definition of similarity. Thus, any particular similar-
ity measure can be computed as a function over the joint distributions. As LSD,
GLUE follows a multistrategy learning approach, involving several basic match-
ers and a metamatcher. The system works in three steps. First, it learns the joint
probability distributions of classes of the two taxonomies. In particular, it exploits
two basic matchers: the content learner (naive Bayes technique; Sect. 7.5.1) and
the name learner (a variation of the previous one). The metamatcher, in turn, per-
forms a linear combination of the basic matchers. Weights for these matchers are
assigned manually. During the second step, the system estimates the similarity be-
tween two classes with a user-supplied function of their joint probability distribu-
tions. This results in a similarity matrix between terms of two taxonomies. Finally,
some domain-dependent, e.g., subsumption, and domain-independent, e.g., if all
children of node x match node y, then x also matches y, constraints (heuristics)
are applied by using a relaxation labelling technique. These are used in order to
filter some of the matches out of the similarity matrix and keep only the best ones.

8.2.6 iMAP (University of Illinois and University of Washington)

iMAP (Dhamankar et al. 2004) is a system that semi-automatically discovers one-to-
one and, most importantly, complex, e.g., 〈address, concat(city, street),=〉, mappings
between relational database schemas. The schema matching problem is reformu-
lated as a search in a match space, which is often, very large or even infinite. To
perform the search effectively, iMAP uses multiple basic matchers, called searches,
e.g., text, numeric, category, unit conversion, each of which addresses a particular
subset of the match space. For example, the text searcher considers the concatena-
tion of text attributes, while the numeric searcher considers combining attributes
with arithmetic expressions. The system works in three steps (see Fig. 8.5). First,
matching candidates are generated by applying basic matchers (the match generator
module). Even if a basic matcher, such as the text searcher, addresses only the space
of concatenations, this space can still be very large. To this end, the search strat-
egy is controlled by using the beam search technique (Russell and Norvig 1995).
During the second step, for each target attribute, matching candidates of the source
schema are evaluated by exploiting additional types of information, e.g., using the
naive Bayes evaluator (Sect. 7.5.1), which would be computationally expensive to
use during the first step. These yield additional scores. Then, all the scores are com-
bined into a final one by the similarity estimator module. The result of this step is a
similarity matrix between 〈target attribute, match candidate〉 pairs. Finally, by us-
ing a set of domain constraints and mappings from the previous match operations (if
applicable and available), the similarity matrix is cleaned up, such that only the best
matches for target attributes are returned as result (the match selector module). The
system is also able to explain the results it produces with the help of the explanation
module (see Sect. 11.3 for details).
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Fig. 8.5 iMAP architecture: several matchers, called searchers, are run in parallel. They provide
candidate matches that can be complex. These candidates are further selected by applying the
similarity estimator, and then, the final alignment is extracted. Additionally, the explanation module
allows users to understand the results and control the process.

8.2.7 Automatch (George Mason University)

Automatch (Berlin and Motro 2002) is a system for automatic discovery of map-
pings between attributes of database schemas. The approach assumes that several
schemas from the domain under consideration have already been manually matched
by domain experts. This assumption is a realistic one for a data integration scenario.
Then, by using Bayesian learning (Sect. 7.5.1), Automatch acquires probabilistic
knowledge from the manually matched schemas, and creates the attribute dictio-
nary which accumulates knowledge about each attribute by means of its possible
values and the probability estimates of these values. In order to avoid a rapid growth
of the dictionary, the system also uses statistical feature selection techniques, such
as mutual information, information gain, and likelihood ratio, to learn efficiently,
i.e., only from the most informative values, such as 10 % of the available input
training data. A new pair of schemas is matched automatically via the precompiled
attribute dictionary. The system first matches each attribute of the input schemas
against the attribute dictionary, thereby producing individual match scores (a real
number). Then, these individual scores are further combined by taking their sum to
produce the scores between the attributes of the input schemas. Finally, the scores
between the input schemas are again combined by using a minimum cost maxi-
mum flow graph algorithm and some thresholds in order to find the overall optimal
matching between the input schemas with respect to the sum of the individual match
scores.

8.2.8 SBI&NB (The Graduate University for Advanced Studies)

SBI (Similarity-Based Integration) is a system for automatic statistical matching
among classifications (Ichise et al. 2003, 2004). SBI&NB is the extension of SBI
by plugging into the system a naive Bayes classifier (Sect. 7.5.1). The idea of SBI is
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to determine correspondences between classes of two classifications by statistically
comparing the membership of the documents to these classes. The pairs of similar
classes are determined in a top-down fashion by using the κ-statistic method (Fleiss
1973). These pairs are considered to be the final alignment. SBI&NB combines
sequentially SBI and naive Bayes learning. The naive Bayes enables hierarchical
classification of documents. Thus, the system also takes into account structural in-
formation of the input classifications. The exploited classifier is Pachinko Machine
naive Bayes from the Rainbow system.2

8.2.9 Kang and Naughton (University of Wisconsin-Madison)

Kang and Naughton proposed a structural instance-based approach for discover-
ing correspondences among attributes of relational schemas with opaque column
names (Kang and Naughton 2003). Opaque column names are names which are
hard to interpret, such as A and B instead of Model and Color. The approach works
in two phases. During the first phase, two table instances are taken as input and the
corresponding (weighted) dependency graphs are constructed based on mutual in-
formation and entropy. The conditional entropy used describes (with a nonnegative
real number) the uncertainty of values in an attribute given knowledge of another
attribute (probability distribution). Mutual information, in turn, measures (with a
nonnegative real number) the reduction in uncertainty of one attribute due to the
knowledge of the other attribute, i.e., the amount of information captured in one at-
tribute about the other. It is zero when the attributes are independent, and increases
as the dependency between the two attributes grows. Mutual information is com-
puted over all pairs of attributes in a table. Thus, in dependency graphs, a weight on
an edge stands for the mutual information between two adjacent attributes. A weight
on a node stands for the entropy of the attribute. During the second phase, match-
ing node pairs are discovered between the dependency graphs by running a graph
matching algorithm. The quality of the alignment is assessed by using metrics, such
as the Euclidean distance (Sect. 5.2.1). A distance is assigned to each potential cor-
respondence between attributes of two schemas and a one-to-one alignment which
is a minimum weighted graph matching (Sect. 7.7.3) is returned.

8.2.10 Dumas (Technische Universität Berlin
and Humboldt-Universität zu Berlin)

Dumas (DUplicate-based MAtching of Schemas) is an approach which identifies
one-to-one alignments between attributes by analysing the duplicates in data in-
stances of relational schemas (Bilke and Naumann 2005). Unlike other instance-
based approaches which look for similar properties of instances, such as distribution
of characters, in columns of schemas under consideration, this approach looks for



8.2 Instance-Based Systems 239

similar rows or tuples. The system works in two phases: (i) identify objects within
databases with opaque schemas, and (ii) derive correspondences from a set of simi-
lar duplicates.

For object identification (Sect. 5.4.2), tuples are viewed as strings and a string
comparison metric, such as the cosine measure (Sect. 5.2.1), is used to compare two
tuples. Specifically, tuples are tokenised and each token is assigned a weight based
on TFIDF (Sect. 5.2.1). In order to avoid complete pairwise comparison of tuples
from the two databases, the WHIRL algorithm (Sect. 7.5.2) is used. It performs a
focussed search based on those common values that have high TFIDF score. The
algorithm ranks tuple pairs according to their similarity and identifies the k most
similar tuple pairs.

During the second phase, based on the k duplicate pairs with highest confidence,
correspondences between attributes are derived. The intuition is that if two field
values are similar, then their respective attributes match. A field-by-field similarity
comparison is made for each of the k duplicates, thereby resulting in a similarity
matrix. For comparing tuple fields, a variation of a TFIDF-based measure, called
soft TFIDF (Cohen et al. 2003a), is used. It considers similar terms as opposed
to equal terms. The resulting alignment is extracted from the similarity matrix by
finding the maximum weight matching. Finally, if based on the maximum matching,
multiple alternative matches are possible, the algorithm iterates back to the first
phase to try to improve the result by discovering more duplicates.

8.2.11 Wang and Colleagues (Hong Kong University of Science
and Technology and Microsoft Research Asia)

Wang and colleagues propose an instance-based solution for discovering one-to-one
alignments among web databases (Wang et al. 2004) (see also Sect. 8.1.27). These
are query interfaces (HTML forms) and backend databases which dynamically pro-
vide information in response to user queries. Authors distinguish between (i) the
query interface, which exposes attributes that can be queried in the web database
and (ii) the result schema presenting the query results, which exposes attributes that
are shown to users. Matching between different query interfaces (inter-site match-
ing) is critical for data integration between web databases. Matching between the
interface and result schema of a single web database (intra-site matching), in turn, is
useful for automatic data annotation and database content crawling. The approach
is based on the following observations (among others):

− The keywords of queries (whose semantics match the semantics of the input
element of a query interface) that return results are likely to reappear in attributes
of the returned result. For example, such keywords as Logic submitted to the
input element title matches its intended use (while it is not the case with the field
author which will unlikely produce expected results), and therefore, some results
with books about logics will be returned. Moreover, part (Logic) of the value
Introduction to logic of the title attribute should reappear in the result schema.
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− Based on the work in (He and Chang 2003), the authors assume the existence
and availability of a populated global schema, that is a view capturing common
attributes of data, for web databases of the same domain of interest.

The approach presents a combined schema model that involves five kinds of
schema matching for web databases in the same domain of interest: global-interface,
global-result, interface-result, interface-interface, and result-result. The approach
works in two phases: (i) query probing and (ii) instance-based matching.

The first phase deals with acquiring data instances from web databases by query
probing. It exhaustively sends the attribute values of pre-known instances from a
global schema and collects results from the web databases under consideration in
a query occurrence cube. The cube height stands for the number of attributes in
the given global schema. The cube width stands for the number of attributes in the
interface schema. The cube depth is the number of attributes in the result schema.
Finally, each cell in this cube stores an occurrence count associated with the three
dimensions. This cube is further projected onto three query occurrence matrices,
which represent pairwise relationships between the three schemas, namely global-
interface, interface-result and result-global.

During the second phase, the re-occurrences of submitted query keywords in the
returned results are analysed. In order to perform intra-site matching, the mutual
information between pairs of attributes from two schemas is computed (see also
Sect. 8.2.9). In order to perform inter-site matching a vector-based similarity is used
(Sect. 5.2.1). In particular, each attribute of an individual interface or result schema
is viewed as a document and each attribute of the global schema is viewed as a
concept. Each row in the occurrence matrix represents a corresponding document
vector. The similarity between attributes from different schemas is computed by
using the cosine measure (Sect. 5.2.1) between two vectors. Finally, for both intra-
site matching and inter-site matching, the matrix element whose value is the largest
both in its row and column represents a final correspondence.

8.2.12 sPLMap (University of Duisburg-Essen, and ISTI-CNR)

sPLMap (probabilistic, logic-based mapping between schemas) is a framework
which combines logics with probability theory in order to support uncertain schema
mapping (Nottelmann and Straccia 2005, 2006). In particular, it is a GLAV-like
framework (Lenzerini 2002) where the alignment is defined as uncertain rules in
probabilistic Datalog. This allows for supporting imprecise matches, e.g., between
author and editor attributes and a more general attribute, such as creator, which is of-
ten the case in schemas with different levels of granularity. sPLMap matches only
attributes of the same concept (typically documents). The system operates in three
main steps. First, it evaluates the quality of all possible individual correspondences
on the basis of probability distributions (called interpretation). It selects the set of
correspondences that maximises probability on the basis of instance data.
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Then, for each correspondence, matchers are used as quality estimators: they
provide a measure of the plausibility of the correspondence. sPLMap has been tested
with the following matchers: (i) same attribute names (Sect. 5.2.1), (ii) exact tuples
(Sect. 5.4), (iii) the k-nearest neighbour classifier (Sect. 7.5.2), and (iv) the naive
Bayes classifier (Sect. 7.5.1). The results of these matchers are aggregated by using
linear or logistic functions, or their combinations (Sect. 7.4). Coefficients of the
normalisation functions are learnt by regression in a system-training phase. Finally,
the computed probabilities are transformed in correspondence weights (used as the
probability of the corresponding Datalog clause) by using the Bayes theorem.

8.2.13 FSM (Poland National Institute of Telecommunications,
Humboldt-Universität zu Berlin, Max Plank Institute
for Computer Science)

FSM is an instance-based approach to schema matching (though extensible to
schema-level information as well) on data streams or large databases (Jaroszewicz
et al. 2008). Exact calculation of similarities between values of attributes is infeasi-
ble for data streams. Instead, the approach uses only a small sample of records and
guarantees finding an approximate (quasi-optimal) alignment compared to the one
obtained by processing the entire data stream. The method can be applied to any
combination of similarity metrics that can be estimated with bounded error from a
sample. For each attribute in the schemas to be matched, it finds the k-approximately
best matching candidates and orders them according to their similarity. Then, the
attributes in each schema are sorted approximately according to their likelihood of
having a matching candidate in the other schema. An approximately optimal match-
ing problem is formulated, i.e., a stochastic approximation with confidence bounds
of the chosen similarity function. Specifically, a weighted sum over Euclidean dis-
tance, 2-grams and character proportions are used (Sect. 7.4). Users define two ma-
jor parameters, namely approximation or desired accuracy (ε) and confidence or
error probability (δ), on which the required sample size and execution time depend.
Although the method is independent from the amount of data available, a progres-
sive FSM method was also designed. It discovers alignments faster when there are
only some similar and many dissimilar elements.

8.2.14 VSBM & GBM (École Centrale Paris)

An automatic extensional approach to ontology matching has been developed in the
context of image retrieval applications (James et al. 2010), namely for associating
common sense knowledge, such as in WordNet, to specific multimedia concepts,
such as LSCOM (Naphade et al. 2006). In particular, two methods were developed:
a variable selection-based method (VSBM) and a graph-based method (GBM).
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These rely on visual and textual features of instances, which can be represented as
real-valued vectors. Visual matching is used to provide a baseline solution, which is
further refined through textual matching. Following the notion of variable selection,
VSBM computes similarities between two concepts by comparing ranks assigned
to the respective input variables. These similarities are measured through the Spear-
man correlation measure and n-TF, which measures the intersection of the top n

features. In turn, a rank per variable and per concept is computed through pointwise
mutual information (co-occurrence counts). Finally, GBM explores relationships be-
tween objects, i.e., images and their features. It computes correspondences between
concepts through measuring correlations discovered by a random walk in a mixed
multimedia graph that encodes both text and visual modalities (Tong et al. 2006).

8.2.15 ProbaMap (Université de Grenoble)

ProbaMap is an automatic system for discovering probabilistic subsumption map-
pings between classes of two populated taxonomies (Tournaire et al. 2011). Among
all possible correspondences it determines those that are the most probable based
on instance descriptions. For assessing mapping probabilities, a Bayesian estima-
tion is adopted by using the descriptions of instances categorised in each taxonomy
as observations of the involved classes. ProbaMap implements a generate-and-test
algorithm that minimises the number of calls to the probability estimator for de-
termining those mappings with a probability that is higher than a threshold. The
monotony of the probability function is used in order to facilitate pruning of prob-
ability estimations for as many mappings as possible. Various classifiers have been
used for estimating the probabilities, such as naive Bayes, C4.5 decision tree and
SVM as implemented in Weka (Sect. 7.5).

8.3 Mixed, Schema-Based and Instance-Based Systems

The following systems take advantage of both schema-level and instance-level input
information if both are available.

8.3.1 SEMINT (Northwestern University, NEC and The MITRE
Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in iden-
tifying attribute correspondences in heterogeneous databases (Li and Clifton 1994,
2000). It supports access to a variety of database systems and uses both schema- and
instance-level information to produce rules for matching corresponding attributes
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automatically. The approach works as follows. First, it extracts from two databases
all the necessary information (features or discriminators) which is potentially avail-
able and useful for matching. This includes normalised schema information, e.g.,
field specifications, such as data types, length, constraints, and statistics about data
values, e.g., character patterns, such as ratio of numerical characters, ratio of white
spaces, and numerical patterns, such as mean, variance, standard deviation. Second,
by using a neural network as a classifier with the self-organising map algorithm
(Sect. 7.5.3), it groups the attributes based on similarity of the features for the first
database. Then, it uses a back-propagation neural network for learning and recog-
nition. Training is performed on the previously obtained clusters. Finally, using a
neural network trained on the first database features and clusters, the system recog-
nises and computes similarities between the categories of attributes from the first
database and the features of attributes from the second database, thus, generating a
list of match candidates, which are to be inspected and confirmed or discarded by
users.

8.3.2 IF-Map (University of Southampton and University
of Edinburgh)

IF-Map (Information-Flow-based Map) (Kalfoglou and Schorlemmer 2003a) is an
ontology matching system based on the Barwise–Seligman theory of information
flow (Barwise and Seligman 1997). The basic principle of IF-Map is to match two
local ontologies by looking at how these are related to a common reference ontol-
ogy. It is assumed that such a reference ontology represents an agreed understanding
that facilitates the sharing of knowledge. This means that two local ontologies have
significant fragments of them that conform to the reference ontology. It is also as-
sumed that the local ontologies are populated with instances, while the reference
ontology does not need to.

Matching works as follows. If the reference ontology can be expressed in each of
the local ontologies and instances of the local ontologies can be assigned concepts
in the reference ontology (or be mapped to equivalent instances in the reference
ontology), then IF-Map uses formal concept analysis (Sect. 5.4.1) between the three
ontologies in order to find the Galois lattice from which it is possible to extract an
alignment.

When the mappings are not available, IF-Map generates candidate pairs of map-
pings (called infomorphism in information flow theory) and artificial instances. They
are generated through the enforcement of constraints that are induced by the defini-
tion of the reference ontology and by heuristics based on string-based (Sect. 5.2.1)
and structure-based (Sect. 5.3) methods.

IF-Map deals with ontologies expressed in KIF or RDF. The IF-MAP method
is declaratively specified in Horn logic and is executed with a Prolog interpreter,
so the ontologies are translated into Prolog clauses beforehand. IF-Map produces
concept-to-concept and relation-to-relation alignments.
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8.3.3 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) (Ehrig and Sure 2004) and QOM (Quick Ontol-
ogy Mapping) (Ehrig and Staab 2004) are components of the FOAM framework
(Sect. 10.3.7).

NOM adopts the idea of parallel composition of matchers from COMA
(Sect. 8.1.12). Some innovations with respect to COMA are in the set of elementary
matchers based on rules, exploiting explicitly codified knowledge in ontologies,
such as information about super- and subconcepts, super- and subproperties. As
from (Ehrig and Sure 2004), the system supports 17 rules related to those of Ta-
ble 6.1 (p. 123). For example, a rule states that if superconcepts are the same, the
actual concepts are similar to each other. These rules are based on various termino-
logical and structural techniques.

QOM (Quick Ontology Mapping) (Ehrig and Staab 2004) is a variation of the
NOM system dedicated to improve the efficiency of the system. The approach is
based on the idea that the loss of quality in matching algorithms is marginal (to a
standard baseline), however improvement in efficiency can be significant. This fact
allows QOM to produce correspondences fast, even for large-size ontologies. QOM
is grounded on the matching rules of NOM. However, for the purpose of efficiency
the use of some rules, e.g., the rules that traverse the taxonomy, has been restricted.
QOM avoids the complete pairwise comparison of trees in favour of an incomplete
top-down strategy, thereby focussing only on promising matching candidates.

The similarity measures produced by basic matchers (matching rules) are refined
by using a sigmoïd function (Sect. 7.7.2), thereby emphasising high individual sim-
ilarities and de-emphasising low individual similarities. They are then aggregated
through weighted average (Sect. 7.4). Finally, with the help of thresholds, the final
alignment is produced.

8.3.4 oMap (CNR Pisa)

oMap (Straccia and Troncy 2005) is a system for matching OWL ontologies. It is
built on top of the Alignment API (Sect. 10.3.6) and has been used for distributed
information retrieval in (Straccia and Troncy 2006). oMap uses several matchers
(called classifiers) that are used for giving a plausibility of a correspondence as a
function of an input alignment between two ontologies. The matchers include (i) a
classifier based on classic string similarity measure over normalised entity names
(Sect. 5.2.1), (ii) a naive Bayes classifier (Sect. 7.5.1) used on instance data, and
(iii) a ‘semantic’ matcher which propagates initial weights through the ontology
constructors used in the definitions of ontology entities. This last one starts with an
input alignment associating plausibility to correspondences between primitive enti-
ties and computes the plausibility of a new alignment by propagating these measures
through the definitions of the considered entities. The propagation rules depend on



8.3 Mixed, Schema-Based and Instance-Based Systems 245

the ontology constructions, e.g., when passing through a conjunction, the plausi-
bility will be minimised. Each matcher has its own threshold and they are ordered
among themselves.

There are two ways in which matchers can work: (i) in parallel, in which case
their results are aggregated through a weighted average, such that the weights cor-
respond to the credit accorded to each of the classifiers, (ii) in sequence, in which
case each matcher only adds new correspondences to the input ontologies. A typ-
ical order starts with string similarity, before naive Bayes, and then the ‘semantic’
matcher is used.

8.3.5 Xu and Embley (Brigham Young University)

Xu and Embley proposed a parallel composition approach to discover, in addition
to one-to-one alignments, also one-to-many and many-to-many correspondences
between graph-like structures, e.g., XML schemas, classifications (Xu and Emb-
ley 2003; Embley et al. 2004). Schema matching is performed by a combination
(an average function) of multiple matchers and with the help of external knowl-
edge resources, such as domain ontologies. The basic element-level matchers used
in the approach include name matcher and value-characteristic matcher. The name
matcher, besides string comparisons (Sect. 5.2.1), also performs some linguistic nor-
malisation, such as stemming and removing stop words (Sect. 5.2.2). It also detects
synonyms among node names with the help of WordNet (Sect. 5.2.2). Matching
rules are obtained via a C4.5 decision tree generator (Sect. 7.5.5) that has been
trained over WordNet by using several hundreds synonym names found in the avail-
able databases from a domain of interest. The value-characteristic matcher deter-
mines where two values of schema elements share similar value characteristics, such
as means or variances for numerical data. Similar to the name matcher, matching
rules are obtained by training the C4.5 decision tree generator over value character-
istics of the available databases from a domain of interest. Structure-level matchers
are used to suggest new correspondences as well as to confirm correspondences
identified by element-level matchers, for example, by considering similarities be-
tween the neighbour elements computed by element-level matchers. Another struc-
tural matcher tries to match both schemas to an external domain ontology in order
to decide if they match.

8.3.6 Wise-Integrator (SUNY at Binghamton, University of Illinois
at Chicago and University of Louisiana at Lafayette)

Wise-Integrator is a tool that performs automatic integration of Web Interfaces of
Search Engines (He et al. 2004, 2005). It provides a unified interface to e-commerce
search engines of the same domain of interest, such as books and music. Therefore,
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users can pose queries by using this interface and the search mediator sends the
translated subqueries to each site involved in handling this query and then the results
of these sites are reconciled and presented to users. Wise-Integrator consists of two
main subsystems: (i) an interface schema extractor, and (ii) an interface schema
integrator. The first component, given a set of HTML pages with query interfaces,
identifies logical attributes and derives some meta-information about them, e.g., data
type, thereby building an interface schema out of them. For example, the system
can derive (guess) that the field Publication Date, is likely to be of date data type. The
second component discovers matching attributes among multiple query interfaces
and then merges them, thereby resulting in global attributes. These are used, in turn,
to produce a unified search interface.

Attribute matching in Wise-Integrator is based on two types of matches: pos-
itive and predictive. Positive matches are based on the following matching meth-
ods: exact name match, look-up for synonymy, hypernymy and meronymy in Word-
Net (Sect. 5.2.2), and value-based matchers. When one of the positive matches oc-
curs, the corresponding attributes are considered as matched. Predictive matches
are based on the following matching methods: approximate name match, e.g., edit
distance (Sect. 5.2.1), data type compatibility (Sect. 5.3.2), value pattern matcher
(Sect. 5.4.3). Predictive matches have to be strong enough (which is decided based
on a threshold) in order to indicate that the attributes under consideration match.

Positive and predictive matches are used in two successive clustering steps: pos-
itive match-based clustering and predictive match-based clustering. In the first
step, all the interfaces are taken as input and attributes are grouped into clus-
ters based on the positive matches between attributes. Clustering is done by fol-
lowing pre-defined rules that govern the order of execution of underlying match-
ers and how to make groupings based on results of these matchers. For exam-
ple, the first results of exact name matches are considered before results of value-
based and WordNet-based matchers. Finally, for each cluster a representative at-
tribute name (RAN) is determined. For example, for the cluster with attribute names
{Format,Binding type,Format} the RAN is Format. During the second step, all local in-
terfaces are reconsidered again. Clustering is performed following some pre-defined
rules that employ previously determined RANs and a simple weighting scheme over
the results of predictive matching methods. When all potentially matching attributes
are clustered together, the global attribute for each group of such attributes is gener-
ated.

8.3.7 IceQ (University of Illinois at Urbana-Champaign,
University of Illinois at Chicago, SUNY at Binghamton)

IceQ is an interactive system for matching interfaces on the deep web (Wu et al.
2004). Web interfaces are modelled as trees, rather than flat lists of attributes. IceQ
discovers 1:1 and 1:m correspondences. It uses clustering based on label and in-
stance (domain) similarity to group attributes that match. All the attributes are con-
sidered holistically at once between all the web interfaces. Similarity between labels
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is computed through cosine function over vectors of normalised words (Sect. 5.2.1)
extracted from attribute labels. In turn, domain similarity is based on the derived
types and the actual values of the domains. Types are usually not specified in the
interface, so these are derived based on value patterns. Type examples are money,
area or date. Character values are compared through the cosine similarity for ev-
ery pair of values. Numeric values are compared as a percentage of the overlap-
ping range values in the domains. Label and domain similarities are further aggre-
gated as a linear combination (Sect. 7.4.1) with more importance (heavier weight)
given to the label similarity. IceQ also employs active learning to determine a clus-
ter stopping threshold to apply, possible synonyms and homonyms. For this pur-
pose, within the matching process, the system selectively poses some yes/no ques-
tions to users and shows both labels and instances of the attributes under considera-
tion.

The system has been enhanced with the WebIQ component, which automatically
acquires necessary instances for interface attributes in order to improve matching
accuracy (Wu et al. 2006). This is achieved, for example, through borrowing data
instances from other attributes, or through discovering them on the surface web and
finally validating them via the deep web.

8.3.8 OLA (INRIA Rhône-Alpes and Université de Montréal)

OLA (OWL Lite Aligner) (Euzenat and Valtchev 2004) is an ontology matching
system designed with the idea of balancing the contribution of each of the com-
ponents that compose an ontology, e.g., classes, constraints, data instances. OLA
handles ontologies in OWL. It first compiles the input ontologies into graph struc-
tures, unveiling all relationships between entities. These graph structures produce
the constraints for expressing a similarity between the elements of the ontologies.
The similarity between nodes of the graphs follows two principles: (i) it depends on
the category of node considered, e.g., class, property, and (ii) it takes into account all
the features of this category, e.g., superclasses, properties, as presented in Table 6.1.

The distance between nodes in the graph is expressed as a system of equations
based on string-based (Sect. 5.2.1), language-based (Sect. 5.2.2) and structure-based
(Sect. 5.3) similarities (as well as taking instances into account whenever neces-
sary). These distances are almost linearly aggregated (they are linearly aggregated
modulo local matches of entities). For computing these distances, the algorithm
starts with base distance measures computed from labels and concrete data types.
Then, it iterates a fixed point algorithm until no improvement is produced. From
that solution, an alignment is generated which satisfies some additional criterion on
the obtained alignment and the distance between matched entities. The algorithm is
described in more detail in Sect. 6.2.2. The OLA architecture is typically the one
displayed in Fig. 6.4 (p. 131).
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8.3.9 Falcon-AO (China Southeast University)

Falcon is an automatic divide-and-conquer approach to ontology matching (Hu et al.
2008). It handles ontologies in RDFS and OWL. It has been designed with the goal
of dealing with large ontologies (of thousands of entities). The approach operates in
three phases: (i) partitioning ontologies, (ii) matching blocks, and (iii) discovering
alignments. The first phase starts with a structure-based partitioning to separate enti-
ties (classes and properties) of each ontology into a set of small clusters. Partitioning
is based on structural proximities between classes and properties, e.g., how close
the classes are in the hierarchies of rdfs:subClassOf relations, and on an extension
of the ROCK agglomerative clustering algorithm (Sect. 7.1.1). Then it constructs
blocks out of these clusters. In the second phase the blocks from distinct ontolo-
gies are matched based on anchors (pairs of entities matched in advance), i.e., the
more anchors between two blocks, the more similar the blocks. In turn, the anchors
are discovered by matching entities with the help of the SMOA string comparison
technique (Sect. 5.2.1). The block pairs with high similarity are selected based on
a cutoff threshold. Each block is just a small fragment of an ontology. Finally, the
third phase combines two matchers between the matched block pairs via sequential
composition (see Fig. 8.6):

Fig. 8.6 Falcon-AO architecture: it is a sequential composition of two components, but if the
output of the linguistic matcher is considered of sufficient quality, then no structure matching is
performed.

LMO is a linguistic matcher. It associates with each ontology entity a bag of words
which is built from the entity label, the entity annotations as well as the labels
of connected entities (called virtual documents). The similarity between entities
is based on TFIDF (Sect. 5.2.1) (Qu et al. 2006).

GMO is a bipartite graph matcher (Hu et al. 2005). It starts by considering the RDF
representation of the ontologies as a bipartite graph which is represented by its
adjacency matrix (A and A′). The distance between the ontologies is represented
by a distance matrix (X) and the distance (or update) equations between two
entities are simply a linear combination of all entities they are adjacent to, i.e.,
Xt+1 = AXtA′T + AT XtA′. This process can be bootstrapped with an initial
distance matrix. However, the real process is more complex than described here
because it distinguishes between external and internal entities as well as between
classes, relations and instances.
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First LMO is used for assessing the similarity between ontology entities on the
basis of their name and text annotations. If the result has a high confidence, then
it is directly returned for extracting an alignment. Otherwise, the result is used as
input for the GMO matcher which tries to find an alignment on the basis of the
relationships between entities (Jian et al. 2005). Ultimately, the output alignment is
extracted through a greedy selection (Sect. 7.7).

8.3.10 RiMOM (Tsinghua University)

The RiMOM (Risk Minimisation-based Ontology Mapping) approach, being in-
spired by Bayesian decision theory, formalises ontology matching as a decision
making problem (Tang et al. 2006). Given two ontologies, it aims at an optimal and
automatic discovery of alignments which may be complex (such as including con-
catenation operators). The approach first searches for concept-to-concept correspon-
dences and then for property-to-property correspondences. The RiMOM matching
process is organised into the following phases (Li et al. 2006):

1. Select matchers to use. This task can be performed either automatically or manu-
ally. The basic idea of automatic strategy selection is that if two ontologies have
a high label similarity factor, then RiMOM will rely more on linguistic-based
strategies; while if the two ontologies have a high structure similarity factor, Ri-
MOM will exploit similarity-propagation based strategies on them.

2. Execute multiple independent matchers, given the input ontologies and, option-
ally, user input. Examples of matchers include linguistic normalisation of la-
bels, such as tokenisation, expansion of abbreviations and acronyms (Sect. 5.2.2)
based on GATE (Sect. 5.2.2), edit distance, matchers that look for label similarity
based on WordNet (Sect. 5.2.2), k-nearest neighbours statistical learning, naive
Bayes matcher (Sect. 7.5.1), as well as some other heuristics for data type simi-
larity and taxonomic structure similarity. This results in a similarity in [0 1] for
each pair of entities from the two ontologies (see also Sect. 8.1.12).

3. Combine the results by aggregating the values produced during the previous step
into a single value. This is performed by using a linear interpolation.

4. Propagate similarity. If the two ontologies have a high structure similarity factor,
RiMOM employs an algorithm called similarity propagation to refine the found
alignments and to find new alignments that cannot be discovered using the other
strategies. Similarity propagation makes use of structure information.

5. Extract alignment for a pair of ontologies based on thresholds (Sect. 7.7.1) and
some refinement heuristics to eliminate unreasonable correspondences, e.g., use
concept-to-concept correspondences to refine property-to-property correspon-
dences.

6. Iterate the above described process by taking the output of one iteration as input
into the next iteration until no new correspondence is produced. At each iteration,
users can select matchers, and approve and discard correspondences from the
returned alignment
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RiMOM offers three possible structural propagation strategies: concept-to-
concept propagation strategy (CCP), property-to-property propagation strategy
(PPP), and concept-to-property propagation strategy (CPP). For choosing between
them, RiMOM uses heuristic rules. For example, if the structure similarity factor is
lower than some threshold then RiMOM does not use the CCP and PPP strategies,
only CPP is used.

Fig. 8.7 RiMOM architecture.

A new version of RiMOM (Li et al. 2009) is a dynamic metastrategy ontology
matching framework (see Fig. 8.7). It quantitatively estimates the similarity char-
acteristics, called similarity factors, for each matching task. Two basic matching
methods are employed: (i) linguistic matching (edit distance over entity labels, vec-
tor distance among comments and instances of entities) and (ii) structural matching,
a variation of Similarity flooding (Sect. 6.2.1) implemented as the three similar-
ity propagation strategies mentioned above, namely CCP, PPP, and CPP. In turn, the
strategy selection uses label and structure similarity factors, obtained by preprocess-
ing the ontologies to be matched, in order to determine what information should be
employed in the matching process. Specifically, the strategy selection dynamically
regulates the concrete feature selection for linguistic matching, the combination of
weights for similarity combination, and the choice of the concrete similarity prop-
agation strategy. After similarity propagation, the matching process concludes with
alignment refinement and extraction of the final result.

8.3.11 Corpus-Based Matching (University of Washington,
Microsoft Research and University of Illinois)

Madhavan and colleagues (Madhavan et al. 2005) proposed an approach to schema
matching which, besides input information available from the schemas under con-
sideration, also exploits some domain-specific knowledge via an external corpus of
schemas and mappings. The approach is inspired from the use of corpus in informa-
tion retrieval, where similarity between queries and concepts is determined based on
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analysing large corpora of text. In schema matching, such a corpus can be initialised
with a small number of schemas obtained, for example, by using available standard
schemas in the domain of interest, and may evolve in time with new matching tasks.

Since the corpus is intended to have different representations of each concept in
the domain, it should facilitate learning these variations in the elements and their
properties. The corpus is exploited in two ways. First, to obtain additional evidence
about each element being matched by including evidence from similar elements in
the corpus. Second, in the corpus, similar elements are clustered and some statistics
for clusters are computed, such as neighbourhood and ordering of elements. These
statistics are ultimately used to build constraints that facilitate selection of the cor-
respondences in the resulting alignment.

The approach handles web forms and relational schemas and focusses on one-
to-one alignments. It works in two phases. Firstly, schemas under consideration are
matched against the corpus, thereby augmenting these with possible variations of
their elements based on knowledge available from the corpus. Secondly, augmented
schemas are matched against each other. In both cases, the same set of matchers is
applied. In particular, basic matchers, called learners, include (i) a name learner,
(ii) a text learner, (iii) a data instance learner, and (iv) a context learner. These
matchers mostly follow the ideas of techniques used in LSD (Sect. 8.2.4) and Cupid
(Sect. 8.1.11). For example, the name learner exploits names of elements. It ap-
plies tokenisation and n-grams (Sect. 5.2.1) to the names in order to create training
examples. The matcher itself is a text classifier, such as naive Bayes (Sect. 7.5.1).
In addition, the name learner, uses edit distance (Sect. 5.2.1), in order to determine
similarity between element names. The data instance learner determines whether
the values of instances share common patterns, same words, etc. A matcher, called
metalearner, combines the results produced by basic matchers. It uses logistic re-
gression with the help of the stacking technique (Sect. 7.6.1) in order to learn its pa-
rameters. Finally, candidate correspondences are filtered by using constraints based
on the statistics obtained from the corpus, in order to produce the final alignment.

8.3.12 iMapper (Norwegian University of Science and Technology)

iMapper is a semi-automatic ontology matching system (Su and Gulla 2006). It
handles ontologies in RML (Referent Ontology Language), an extended entity–
relationship language. The matching process is organised in two phases: (i) ontol-
ogy enrichment and (ii) matching. The enrichment phase uses ontology instances
or documents associated with its concepts. In turn, these are exploited to construct
feature vectors (through TFIDF; Sect. 5.2.1) for each concept in the ontologies to
be matched. A linguistic classifier, called classification and search, is used to assign
documents to the ontologies (Brasethvik and Gulla 2001). User intervention is ex-
pected to verify the correctness of the assignments made by the classifier, and adjust
them, if necessary. The matching phase is organised as follows. First, similarities
between concepts are computed through the cosine measure between the respective
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feature vectors. Then, the WordNet path length (Sect. 5.2.2) is used to enhance and
re-rank the list of previously computed similarities. Based on the similarities be-
tween concepts, the respective similarities between relations and concept clusters
are computed. For example, similarity between relations is computed as the arith-
metic mean of the similarities of the respective domain and range concepts. The
system provides a graphical user interface, so that users can validate or edit cor-
respondences. Concept clusters help users focus on similar areas when inspecting
the correspondences. Finally, the exporter module translates the alignments into a
desired format.

8.3.13 SAMBO (Linköpings University)

SAMBO is a system for matching and merging biomedical ontologies (Lambrix and
Tan 2006). It handles ontologies in OWL and outputs 1:1 alignments between con-
cepts and relations. The system uses various similarity-based matchers, including:

− terminological: n-gram, edit distance, comparison of the lists of words of which
the terms are composed. The results of these matchers are combined via a
weighted sum with pre-defined weights;

− structural, through an iterative algorithm that checks if two concepts occur in
similar positions with respect to is-a or part-of hierarchies relative to already
matched concepts, with the intuition that the concepts under consideration are
likely to be similar as well;

− context-based, using (i) a relationship between the matched entities in UMLS
(Sect. 2.1.2) and (ii) a corpus of knowledge collected from the published litera-
ture exploited through a naive Bayes classifier (Sect. 7.5.1).

The results produced by these matchers are combined based on user-defined
weights. Then, filtering based on thresholds is applied to come up with an alignment
suggestion, which is further displayed to users for feedback (approval, rejection or
modification). Once matching has been accomplished, the system can merge the
matched ontologies, compute the consequences, or check the newly created ontol-
ogy for consistency. SAMBO was subsequently extended into a toolkit for evaluat-
ing ontology matching strategies, called KitAMO (Lambrix and Tan 2007).

8.3.14 AROMA (University of Nantes, INRIA)

AROMA is an Association Rule Ontology Matching Approach (David et al. 2006,
2007). It is based on the association paradigm and a (statistical) implication intensity
measure. It is able to discover equivalences and subsumptions between entities of
web directories and OWL ontologies. The association rules are if antecedent, then
consequent propositions, which can be interpreted as subsumptions. The underlying
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intuition is as follows: an entity e is equivalent or more specific than an entity e′ if its
vocabulary, made of terms and instances, comprising also those of its descendants,
tends to be included in the vocabulary of e′. The matching process is organised in
three steps:

− Extraction of a set of the relevant stemmed terms for each concept and property.
− Discovery of binary association rules between entities, by evaluating statistically

quasi-implications, i.e., allowing for some counter-examples, based on the re-
spective sets of relevant terms. Selection of significant rules is grounded on: (i) an
assessment of the implication quality through the implication intensity measure,
(ii) an assessment of the generativity of the rule and reducing its redundancy.

− Cleaning, e.g., by removing redundant correspondences, and enhancing, e.g., by
using string equality and the Jaro–Winkler string similarity (Sect. 5.2.1), of the
final alignment.

8.3.15 ILIADS (University of Maryland, University of Toronto)

ILIADS (Integrated Learning in Alignment of Data and Schema) is a system for in-
tegrating ontologies that couples statistical and logical inference (Udrea et al. 2007).
In particular, it combines a clustering algorithm with incremental rule-based logical
inference. ILIADS performs both schema and instance matching in an interleaved
manner. It provides schema-level and instance-level correspondences as well as an
integrated consistent ontology.

The approach finds candidate clusters of similar entities. Then, based on rules
it individuates an equivalence or subsumption correspondences between the sets of
entities. For example, if a set of instances of one concept is almost a subset of a
set of instances of another concept (what is quantified through a threshold), then a
subsumption relation should hold (see also Sect. 5.4). Hierarchical agglomerative
clustering is applied separately to classes, properties and instances. Similarity be-
tween clusters is based on a linear combination of lexical (Jaro–Winkler and Word-
Net), structural (Jaccard similarity on neighbour subclasses or subproperties) and
extensional (Jaccard similarity on sets on instances) similarities between entities.
Similarity values are propagated incrementally based on clustering, which consid-
ers relations among sets of equivalent entities. Rule-based logical inference is used
to evaluate whether two clusters must be merged by checking for inconsistencies.
It also provides an estimate of the logical consequences of updating the similarities
among the remaining clusters.

8.3.16 SeMap (Georgia Tech, University of British Columbia)

SeMap is a system that constructs generic mappings across data models (Wang and
Pottinger 2008). It discovers 1:1, 1:n, n:1 relationships of four types, namely, equiv-
alence, has-a, is-a and associates. Its key idea is to search for a globally optimal
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match assignment from a pool of possible assignments, solving conflicts among the
selected matches by involving users and identifying a generic relationship between
these matches. Specifically, the matching process is organised as follows:

− Schema matching identifies candidate correspondences. A linear combination
is performed from scores computed by a label matcher (that includes tokenisa-
tion, stop word elimination, etc.), a data type matcher, a WordNet sense matcher
(Sect. 5.2.2), and a data instance matcher that uses data formats and distributions
(Sect. 5.4.3). These combined similarities are employed as input to a structure
matcher, implementing Similarity flooding (Sect. 6.2.1), which provides the final
similarity score for each pair of elements.

− Match selection, given previously computed matches, searches a global optimal
match assignment that satisfies a set of domain constraints. Hence, match se-
lection is reduced to a constrained optimisation problem (Sect. 7.7.3). It results
in two sets of correspondences that stand for the source (Maps ) and the tar-
get (Mapt ) perspectives. Users are involved to disambiguate several cases or to
provide correct match assignments. In particular, elements are ranked based on
their potential information value and user feedback is asked only for those with
highest (mutual information) values. Then, the rest of the assignment is updated
according to this feedback.

− Mapping assembling combines available mappings (Maps and Mapt ) into a final
one. Relationship types for the selected matches are identified based on rules and
matchers used, e.g., similar names suggest the equivalence relation; if instances
of two elements intersect, this suggests the associate relation.

8.3.17 ASMOV (INFOTECH Soft, Inc., University of Miami)

ASMOV (Automatic Semantic Matching of Ontologies with Verification) is an auto-
matic approach for ontology matching that targets information integration for bioin-
formatics (Jean-Mary et al. 2009). The approach can be summarised in two steps:
(i) similarity calculation, and (ii) semantic verification (see Fig. 8.8). It takes as input
two OWL ontologies and an optional input alignment and returns as output an n:m
alignment between ontology entities (classes and properties). In the first step, it uses
lexical (string equality, a variation of the Levenshtein distance), structural (weighted
sum of the domain and range similarities) and extensional matchers to iteratively
compute similarity measures between two ontologies, which are then aggregated
into a single one with a weighted average. It also uses several sources of general
and domain-specific background knowledge, such as WordNet and UMLS, to pro-
vide more evidence for similarity computation (see also Sect. 7.3). Then, it derives
an alignment and checks it for inconsistency. Consistency checking is (anti)pattern-
based (Sect. 7.8.2), i.e., that instead of using a complete solver, the system recog-
nises sets of correspondences that are proved to lead to an inconsistency. The seman-
tic verification process examines five types of patterns, e.g., disjoint-subsumption



8.3 Mixed, Schema-Based and Instance-Based Systems 255

Fig. 8.8 ASMOV architecture.

contradiction, or subsumption incompleteness. This matching process is repeated
with the obtained alignment as input until no new correspondence is found.

8.3.18 HAMSTER (University of Michigan, Microsoft Research)

HAMSTER (Human Assisted Mapping of Schema and Taxonomies to Enhance Rel-
evance) is a system for unsupervised matching of schemas and taxonomies from a
large number of data sources into the schema and taxonomy of a data warehouse
(Nandi and Bernstein 2009). It is aimed at using structured data sources to enhance
the results of keyword-based web search. In such a setting, data, such as shopping
lists, coming from third-party providers have to be integrated into a data warehouse
that is indexed by the search engine for keyword queries.

The system handles schemas and taxonomies in XML. Matching between these
is viewed as node matching of the underlying tree structures. The approach, besides
schema-based methods, e.g., lexical similarities of labels, and instance-based meth-
ods, e.g., naive Bayes over content of entities (Sect. 7.5.1), uses an additional source
of information, such as query logs extracted from a search engine. Specifically,
click-through data, namely search results that users clicked on, is used. The key in-
tuition is that if two items in a database are similar, then they should be searched by
using similar queries. Technically, two schema or taxonomy entities are matched in
a pairwise fashion if the normalised frequency distribution of keyword queries that
cause click-throughs on their instances are similar. The similarity alternatives inves-
tigated are the Jaccard similarity on words (Sect. 5.4.1) and exact string comparison
(Sect. 5.2.1). Tunable thresholds are used to select candidate correspondences. Fi-
nally, schema-based, instance-based and query distribution methods are combined
in a consensus algorithm by summing the normalised scores for each candidate cor-
respondence to estimate the impact of various features on matching quality.

8.3.19 Smart Matcher (Vienna University of Technology)

Smart Matcher is a system that combines matching and transformation through a
mapping layer in order to bridge alignments, mappings and executable transforma-
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tion code (Wimmer et al. 2009). It finds mappings between two schemas sharing a
common set of instances describing the same real-world objects. It uses a dedicated
mapping language, whose mappings can be executed directly as transformations.
The results of the transformations can be compared, thus contributing to their eval-
uation. The integration process is organised as follows:

− Instance generation: Sample instances for the source and target schemas that
represent the same real-world objects are developed. These serve verification
purposes, namely for calculating differences between manually created instances
which are transformed through mappings. This is the only step requiring user
input. It is also conjectured that such instances can be used for increasing the
quality of correspondences, similarly to QuickMig (Sect. 8.1.13).

− Seed matching: Initial alignments are provided with the help of COMA++
(Sect. 8.1.12), FOAM (Sect. 10.3.7) or any external matcher able to produce
alignments in the Alignment format (Sect. 10.1.5).

− Alignment interpretation: Previously produced alignments are transformed by
mapping engine into an executable mapping model.

− Instance transformation is performed by the transformation engine which exe-
cutes the current alignment as a transformation.

− Difference calculation is performed through a fitness function that heuristically
compares source and target instances in terms of contained objects, values and
links. Then, the presumably missing or wrong objects, values or links are propa-
gated back to the mapping engine.

− Alignment adaptation: The current alignment is adapted by the mapping engine,
by looking for a suitable adaptation through various strategies. For example, by
verifying locally that a mapping can be appropriately applied for a given set of
schema elements and globally by choosing the sequence of transformations to
apply, such as first those between classes and then those between attributes. The
process goes back to Alignment interpretation.

The process terminates when no differences are produced or a particular threshold
is reached.

8.3.20 GEM/Optima/Optima+ (University of Georgia, Wright State
University)

GEM (Doshi et al. 2009) is an iterative approach to ontology matching based on
the Generalised Expectation-Maximisation method (Sect. 6.3.1). It inputs ontolo-
gies in RDF and OWL and outputs many-to-one concept alignments. Ontologies are
represented as directed labelled graphs. The matching problem is viewed as a maxi-
mum likelihood problem, i.e., finding the most likely alignment between two ontolo-
gies, where likelihood is computed iteratively through the expectation-maximisation
(EM) method (Dempster et al. 1977).
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Essentially, the EM technique computes expected values of the hidden variables
(correspondences) using the observed instances and a previous estimate of the model
(match matrix). The approach uses a generalised version of EM, which relaxes the
maximisation objective and requires the selection of a mixture model that is better
than the previous one. Random sampling is used to come up with a representative
set of mixture models, out of which the candidate is selected.

The approach was extended within the Optima system (Thayasivam and Doshi
2011). Specifically, the system computes many-to-many alignments and the Smith–
Waterman similarity combined through a 3D sigmoid with WordNet-based mea-
sures, such as Lin and gloss-based cosine similarity (Sect. 5.2.2). The Optima+ sys-
tem (Thayasivam and Doshi 2012) is a new implementation of Optima targeting
efficiency. In particular, it employs block coordinate descent to improve the conver-
gence of the iterative process as well as ontology partitioning (Sect. 7.1.1) to handle
more efficiently large ontologies.

8.3.21 CSR (University of the Aegean, Institution of Informatics
and Telecommunications)

CSR (Classification-based learning of Subsumption Relations) is a generic method
for automatic ontology matching between concepts based on supervised machine
learning (Spiliopoulos et al. 2010). It specifically focusses on discovering subsump-
tion correspondences. CSR assesses a hypothesis concerning a subsumption rela-
tion holding between concept pairs through a binary classification task. This is done
based on the best fit to the training examples and generalising beyond them. For
the training of classifiers, the approach uses traditional TFIDF strategies on statis-
tically generated examples (latent classification features) from the input ontologies.
CSR investigated the use of various classifiers, such as naive Bayes, KNN, SVM,
C4.5 (Sect. 7.5), and data set balancing methods, ensuring that the training examples
of all classes are equal in number, such as random over-sampling, under-sampling
and synthetic sampling. The implementation of the classifiers are those of the Weka
and the libSVM toolkits. Given a pair of ontologies in OWL-DL, CSR processes as
follows:

− enhance ontology hierarchies, infer, with the help of reasoning, all subsumption
relations separately in each ontology;

− generate features for the classifier based on properties of concepts, TFIDF of the
extracted words from labels, comments or instances, latent features, etc.;

− generate training examples, i.e., pairs of concepts, based on rules, such as, in-
clude all concept pairs from both input ontologies that are related through sub-
sumption, and involves also training set balancing;

− train classifier with the training data set;
− generate testing pairs or match the input ontologies by classifying their concept

pairs through the trained classifier.
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During the matching step, the search space is pruned in order to exclude pairs of
concepts for which a subsumption relation cannot presumably hold, e.g., due to the
computed relations.

8.3.22 Prior+ (SAP Labs, Yahoo!, University of Pittsburgh)

Prior+ is a system implementing a generic and adaptive ontology matching approach
(Mao et al. 2010). The system consists of the following main modules: (i) informa-
tion retrieval-based similarity generator, (ii) adaptive similarity filter and weighted
similarity aggregator, (iii) constraint satisfaction solver based on a neural network.
The matching process is organised as follows. First, linguistic and structural simi-
larities between ontologies are measured in a vector space model using information
retrieval methods. Specifically, three similarity measures are employed, after entity
label preprocessing:

− name similarity, based on the Levenshtein distance (Sect. 5.2.1),
− profile similarity, generated for each ontology entity, and based on entity fea-

tures, e.g., IDs, labels, and comments, represented as TFIDF vectors used with
cosine similarity (Sect. 5.2.1);

− structural similarity, which is computed for classes only and is based on such fea-
tures as the number of direct properties of the class, the number of its instances,
and the number of its children.

Then, these similarities are aggregated using an adaptive weight assignment method
based on the estimated harmonies of these similarities (Sect. 7.4.1). Finally, an inter-
active activation and competition neural network (Sect. 7.5.3) is selectively invoked
to satisfy ontology constraints, e.g., cardinality of a property, and to improve the
overall accuracy from the previously aggregated results. The harmony parameter is
used as an indication as to whether the neural network should be activated or not.
The resulting alignments are extracted through a naive descendant extraction algo-
rithm.

8.3.23 YAM & YAM++ (University of Montpellier, University
of Toronto)

YAM (not Yet Another Matcher) is a schema matcher factory (Duchateau et al.
2009). It aims at generating a dedicated matcher for a matching task under con-
sideration. The approach is based on machine learning and matchers are viewed as
classifiers (Sect. 7.5). The background intuition is that matching algorithms, which
combine various similarities, provide diverse results on different matching tasks.
YAM, in order to allow for such diversity, learns over a large set of different match-
ers and different similarity measures. Then, within this search space, using a small
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amount of training data, YAM selects and tunes a dedicated matcher for a given
matching task (Sect. 7.6), e.g., through weights and thresholds. The approach is ex-
tendable and it uses a library of classifiers and of similarity measures. Specifically, it
includes 20 classifiers from the Weka library, e.g., decision trees (J48, NBTree), ag-
gregation functions (simple logistic), lazy classifiers (IBk, K*), rule-based (NNge,
Jrip) and Bayes Networks (Sect. 7.5). It also includes 30 similarity measures, e.g.,
Levenshtein, and Jaro–Winkler, from the second string package (Sect. 5.2.1). The
process is organised in two steps: (i) training of matchers, and (ii) dedicated matcher
selection. YAM uses correspondences stored in an internal repository to produce a
matcher trained with best average results for each classifier. A dedicated matcher
for a matching task under consideration is selected based on the highest F-measure
obtained on the given training data cross-validated with the correspondences in the
repository.

The system was extended under the YAM++ name (Ngo et al. 2011; Ngo and Bel-
lahsene 2012). It handles multilingual ontologies. More similarity measures were
included: such as Smith–Waterman, from the SimMetrics package (Sect. 5.2.1),
string-based methods (Sect. 5.2.1), such as prefix, suffix, SMOA, and language-
based methods (Sect. 5.2.2), such as Lin and Wu–Palmer metrics over WordNet.
YAM++ also introduced profiles capturing relational and extensional information.
Specifically, the IndividualProfile of an entity is a string concatenation of its identi-
fier, label and comments. The StructureProfile of an entity is a union of individual-
Profiles of its neighbour entities, e.g., of its subclasses and all restricted properties.
The ExtensionalProfile of an entity is a string concatenation of instances belong-
ing to this class or its descendants. Similarities between these profiles are computed
through information retrieval techniques. The system also included a variation of
the Similarity flooding algorithm (Sect. 6.2.1), several alignment extraction meth-
ods, such as the Hungarian method (Sect. 7.7.3), as well as semantic verification
of inconsistent correspondences by exploiting conflict patterns and the ALCOMO
diagnosis library (Sect. 7.8.2). Finally, the system is equipped with a graphical user
interface, so that users can provide (optional) input by specifying preferences be-
tween precision and recall or by providing partial input alignment or by modifying
correspondences.

8.3.24 MoTo (University of Bari)

MoTo is an automatic system for Mapping Ontology To Ontology (Esposito et al.
2010). It handles ontologies in OWL and computes equivalences between concepts.
The matching process is organised in two phases. In the first phase various basic
matchers, implemented as learners, are used to produce single predictions. These
are: k-nearest neighbour classifier, neural network (Sect. 7.5.3), and two Bayesian
classifiers for content and names (Sect. 7.5.1). The predictions produced by these
matchers are combined through the stacked generalisation metalearner (Sect. 7.6.1).
The alignments resulting from this phase are classified into certain, uncertain and
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those to be discarded. This is done with the help of two thresholds. The second
phase is meant to resolve the uncertain alignments through validation. Two types of
validation were employed, namely, taxonomic validation and structural validation.
These use taxonomic and other relations between concepts, respectively (Sect. 6.1).
For example, taxonomic validation compares two concepts by looking at their posi-
tions in the respective subsumption hierarchies (Sect. 6.1.1). Finally, aggregation of
the individual validatory predictions is performed through ordered weighted average
(Sect. 7.4.1) and linguistic quantifiers are used to determine weights (Sect. 7.4.1).
This leads to the final decision concerning uncertain alignments.

8.3.25 CODI (University of Mannheim)

CODI (Combinatorial Optimization for Data Integration) is a probabilistic-logical
ontology matching system (Niepert et al. 2010; Huber et al. 2011). It provides a
declarative framework for matching classes, properties and individuals. It is based
on Markov logic networks (Sect. 6.4.2). The matching problem is reduced to a max-
imum a posteriori inference in the Markov logic network, which is in turn solved
by using integer linear programming. Given a set of constants, e.g., classes, a set
of formulae, e.g., axioms holding between classes, and confidence values for corre-
spondences, a Markov logic network defines a probability distribution over possible
correspondences. An input a priori confidence value for each matching hypothesis is
computed through a combination of several string-based methods from the Simmet-
rics package (Sect. 5.2.1), such as Levenshtein, Jaro–Winkler and Jaccard. Several
combination strategies are supported, such as average, maximum, specific prede-
fined weights assigned to each measure. Pellet (Sirin et al. 2007) is used to create
the ground Markov logic network formulation. TheBeast (Riedel 2008) is used to
convert the Markov logic network to the corresponding integer linear programming
instance, and a mixed integer programming solver is used to ultimately resolve it.
The approach handles various constraints, such as cardinality, e.g., returning 1:1
alignments, incoherence mitigation within the matching process, and stability, e.g.,
that alignment should not introduce new structural knowledge.

8.3.26 LogMap (University of Oxford)

LogMap is a scalable logic-based ontology matching system (Jiménez-Ruiz and
Cuenca Grau 2011). It can deal with ontologies of hundreds of thousands of entities
and billions of mappings.

The LogMap matching process is organised as in Fig. 8.9:

− Indexing: LogMap builds inverted indices for the labels as well as for their vari-
ations (such as synonyms) found in WordNet or UMLS. Extended class hierar-
chies, produced with the help of reasoners, such as HermiT and Condor, are also
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Fig. 8.9 The LogMap matching process.

indexed. Specifically, an interval labelling schema is used, which is an optimised
data structure for storing directed acyclic graphs and trees.

− Computation of initial anchor mappings: finding an initial set of equivalences by
intersecting, through exact string matching, the lexical indices of the ontologies
to be matched.

− Mapping repair: running a sound and possibly incomplete reasoning to iden-
tify unsatisfiable classes with respect to the merge of the input ontologies and
the mappings computed so far (see Sect. 7.8.2). Specifically, extended hierar-
chies and existing mappings are encoded into Horn propositional logic and the
satisfiability of the encoding is tested by using the Dowling-Gallier algorithm
(Dowling and Gallier 1984). A repair is computed for each unsatisfiable class
through a greedy diagnosis algorithm.

− Mapping discovery: using the SMOA measure (Sect. 5.2.1) to match classes in
the extended class hierarchies starting from the initial anchor mappings. LogMap
iteratively alternates the mapping repair and the mapping discovery steps.

− Overlap estimation: computing fragments of each ontology which are overlap-
ping, such that users can inspect presumably only these fragments when looking
for the missing mappings.

LogMap2 (Jiménez-Ruiz et al. 2012) provides support for user interaction during
the matching process. In an assisted mode, it operates in two phases:

− computation of candidate mappings to maximise recall. It starts with lexical
matching supported by the indexing scheme of its predecessor. Then, it com-
putes modules of the ontologies (Sect. 7.1.1) that encode the meaning of the
entities involved in the candidate mappings, which are further used (instead of
entire ontologies) for reasoning-based mapping error diagnosis.

− assessment of candidates to maximise precision without losing recall. This is
done by discarding candidates through high thresholds as well as by path match-
ing. The mapping repair functionality over modules (to improve performance) is
also used to ultimately produce what is called reliable mappings.
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User interaction is used for accepting or rejecting the uncertain mappings by pre-
senting a reasonable number of such questions to users with reasonable delay be-
tween these.

8.3.27 PARIS (Inria, Télécom ParisTech)

PARIS is an automatic system for Probabilistic Alignment of Relations, Instances
and Schema of (large) ontologies in RDFS (Suchanek et al. 2012). Instance- and
schema-level links are put in interplay to enhance the overall entity (comprising
classes, relations and instances) alignment quality. As the system name indicates,
the underlying approach is probabilistic. Hence, confidence in correspondences is
based on probability estimates, where logical rules used to model equality are trans-
formed into probability assessments. It is assumed that the ontologies are available
in their deductive closure, namely that all implications were explicitly added. It is
also assumed that single ontologies do not contain equivalent entities in themselves.
The system does not require any parameter tuning and computes equivalence and
subclass relations. For example, the probability of a subclass (≤) relation between
two classes c and c′ is proportional to the number of instances of c that are also
instances of c′. In turn, the probability of a subrelation (≤) between two relations r

and r ′ is proportional to the number of pairs 〈x, y〉 in r (namely that r holds between
the entities x and y) that are also pairs in r ′. Initially the probability of equivalences
between instances and then for subrelations is computed through a fixed point com-
putation. Then, from the final assignment the equivalence between classes is pro-
duced. The probability of equivalence of two literals is set directly, e.g., for two
strings being inversely proportional to the respective edit distance (Sect. 5.2.1).

8.4 Metamatching Systems

Metamatching systems are systems whose originality is in the way they use and
combine other matching systems rather than in the matchers themselves.

8.4.1 APFEL (University of Karlsruhe and University
of Koblenz-Landau)

APFEL (Alignment Process Feature Estimation and Learning) is a machine learning
approach that explores user validation of initial alignments for optimising automati-
cally the configuration parameters of some of the matching strategies of the system,
e.g., weights, thresholds, for the given matching task (Ehrig et al. 2005). It is a com-
ponent of the FOAM framework (Sect. 10.3.7). The overall architecture of APFEL
is given in Fig. 8.10.
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Fig. 8.10 APFEL architecture (adapted from (Ehrig 2007)): it generates alignments and asks users
for feedback. Then it adjusts methods and aggregation parameters in order to minimise the error
and iterate, if necessary.

APFEL parameterises the FOAM steps by using declarative representations
of the (i) features engineered (QF ); (ii) similarities assessed (QS ); (iii) weight
schemas, e.g., for similarity aggregation (QW ); and (iv) thresholds (QT ). For that
purpose, the interfaces of matching systems are unified as Parameterisable Align-
ment Methods (PAM), which accept these parameters. First, given a matching sys-
tem, for example QOM (Sect. 8.3.3), a PAM is initialised with it, e.g., PAM(QOM).
Then, once an initial alignment is obtained, this alignment is validated by users.
Finally, by analysing the validated alignment and the above parameters, with the
help of machine learning techniques (Sect. 7.5), e.g., decision tree learner, neu-
ral networks, support vector machines of the Weka machine learning environment
(Sect. 7.5), a tuned weighting scheme and thresholds are produced for the given
matching task. This process can be iterated.

8.4.2 LCS (Queen’s University Belfast)

LCS is a linguistic combination system for ontology matching (Ji et al. 2006). It
handles ontologies in RDF and OWL and computes one-to-one alignments. The ap-
proach is based on ordered weighted average (Sect. 7.4.1) and linguistic quantifiers
used to determine weights (Sect. 7.4.1). The weights are assigned not to match-
ers, but to a particular ordered position. LCS operates in four steps: (i) reorder the
similarities provided by basic matchers in descending order; (ii) define a linguis-
tic quantifier; (iii) compute the weights through the linguistic quantifier; (iv) apply
the weights to aggregate the basic matcher results. The similarity computed by a
matcher is viewed as a degree to which this matcher is satisfied for a pair of ontology
entities. Various weight computation formulas have been defined as nondecreasing
proportional fuzzy quantifiers inspired by linguistic quantifiers (see also Sect. 7.4.1).
Examples of such linguistic quantifiers include at least half, namely that it satisfies
at least half the matchers, most, namely that most matchers are satisfied, or as many
as possible, namely that it satisfies as many matchers as possible. The system was
evaluated with various basic matchers, looking for name, taxonomy, domain and
range similarities and with different linguistic quantifiers.
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8.4.3 Besana and Robertson (University of Edinburgh)

Besana and Robertson proposed a framework that aims at reducing the scope
of matching tasks in open and distributed environments, such as peer-to-peer
(Sect. 1.4) or multiagent (Sect. 1.6.1) systems, through service choreography statis-
tics (Besana and Robertson 2007). In particular, the lightweight coordination cal-
culus (LCC) was used as a communication language to implement the interactions
among peers (Robertson 2004). The key idea is that the usage of certain terms in ex-
changed messages can be predicted by analysing the history of interactions between
peers. The background intuition is that interactions that aim at performing the same
tasks, such as booking a hotel, tend to be repetitively similar at each occurrence. In
fact, different travel agencies would perform interactions with a customer on book-
ing a hotel in a similar fashion. Thus, such repetitive interactions lead to patterns
that are likely to be repeated in future when similar situations arise. Specifically, a
probability distribution for a class of interactions is computed, which is then used
as a basis for predicting the content of messages in future interactions. This aims
at focussing the matching process only on the fragments of the underlying peer on-
tologies relevant to the interaction. These suggested terms, which are presumed to
be used in the exchange messages in new interactions, are to be further matched
by other ontology matchers. If the actual correspondences turn out to be correct,
this avoids matching terms and more generally fragments of the peer ontologies,
that are unrelated to the interaction, thereby reducing the scope and of the matching
task, which is particularly crucial for dynamic applications. More specifically, this
is meant to reduce the possible ambiguity of the terms to be matched, as well as to
increase the efficiency of the matching process. Experiments showed that after less
than a hundred of interactions, the proposed model consistently provides reliable
suggestions.

8.4.4 eTuner (University of Illinois and The MITRE Corporation)

eTuner (Sayyadian et al. 2005; Lee et al. 2007) is a system which, given a particular
matching task, automatically tunes a schema matching system (computing one-to-
one alignments). For that purpose, it chooses the most effective basic matchers, and
the best parameters to be used, e.g., thresholds. eTuner models a matching system
as a triple: 〈L,G,K〉, such that

− L is a library of matching components, including basic matchers, e.g., edit dis-
tance, n-gram (Sect. 5.2.1), combiners, e.g., modules taking average, minimum
and maximum of the results produced by basic matchers, constraint enforcers,
e.g., pre-defined domain constraints or heuristics which are computationally ex-
pensive to be used as basic matchers, and match selectors, e.g., modules applying
thresholds for determining the final alignment (Sect. 7.7.1).

− G is a directed graph which encodes the execution flow among the components
of the given matching system.
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− K is a set of knobs to be set (and named knob configuration). Matching compo-
nents are viewed as black boxes which expose a set of adjustable knobs, such as
thresholds, weights, or coefficients.

Fig. 8.11 eTuner architecture: eTuner generates a set of schemas to match with an initial schema.
Then, it generates a plan for learning parameters. Finally, it tunes the method parameters and
aggregation parameters.

The system works in two phases (see Fig. 8.11). During the first phase, a training
task is synthesised with a known reference, given a single schema S. The system
synthesises several schemas (S1, S2, . . . , Sn) out of S by altering it (for instance
by modifying names of attributes, e.g., authors becomes aut). Thus, by taking a set
of pairs {〈S,S1〉, 〈S,S2〉, . . . , 〈S,Sn〉} together with the reference correspondences
available for free by construction of the synthetic schemas, the F-measure (Sect. 9.3)
can be computed over any knob configuration. The second phase consists of search-
ing the best parameters. Since the space of knob configurations can be large, the
system uses a sequential, greedy approach, called staged tuning. In particular, by
using the synthetic training task, it first tunes each of the basic matchers in isola-
tion. Then, it tunes the combination of the basic matchers and the combiner, having
the knobs of the basic matchers fixed (see also Sect. 7.6). Once the entire system is
tuned, it can be applied to match schema S with any subsequent schemas.

8.4.5 mSeer (University of Wisconsin-Madison, The MITRE
Corporation)

mSeer (match seer) is an approach for improving mediated schemas in data in-
tegration applications in order to facilitate finding correspondences with local or
source schemas (Chai et al. 2008). It focusses on 1:1 alignments between re-
lational sources. It introduced the notion of a matchability score, computed via
a synthetic training task, which quantifies how well on average a given schema
matches future schemas with a particular matching system. Thus, given a medi-
ated schema (S), presumable future schemas (T ) that will be matched against a
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mediated schema, as well as a matching tool (M), mSeer computes a matchabil-
ity score m(S,T ,M) based on F-measure (Sect. 9.3). Technically, it adapts eTuner
(Sect. 8.4.4) for establishing T from S through a synthetic training task, e.g., by
changing the employees table name to emp, and by replacing ,000 with K in the
data values of the salary column. Using the matchability score, different types of
matching mistakes, such as missing a correspondence or predicting a wrong cor-
respondence, are analysed, e.g., by looking into the most likely general reasons
leading to them. Once the matchability score has been computed for all the entities,
these entities are ordered by increasing score. A matchability report is generated
for each entity by grouping incorrect matches based on their underlying (general)
reasons and by displaying (i) the reason, (ii) an example to illustrate the reason,
and (iii) a suggestion of revisions to be made, thereby guiding users in revising
the correspondences by addressing the reported mistakes. Finally, the system pro-
poses changes to the mediated schema, such as renaming attributes or reformatting
data values, still preserving its original semantics, while making it presumably eas-
ier to match with. Specifically, a revised mediated schema is automatically gener-
ated and users are then free to inspect (accept, reject, modify) the suggested revi-
sions.

8.4.6 GOALS (Polytechnic of Porto)

GOALS is the Gecad Ontology ALignment System (Maio and Silva 2009). It im-
plements a plug-in incremental and flexible approach to prototyping of complex
matching systems without being committed to any predefined system architecture.
The key building blocks of the system are (i) data structures, such as ontologies,
which are manipulated by (ii) components (basic matchers) that are configurable,
and used in (iii) a workflow specification to build complex matchers or metamatch-
ers, that are finally run by (iv) an execution engine. Components, such as Falcon-
AO (Sect. 8.3.9) and FOAM (Sect. 10.3.7), are independent from the system and
are plugged-in through adapters. The metamatchers are configurable via an XML
file. So, components can be added, changed or removed in order to improve over
the previous results or one matching system can be used as a component in another
more complex matching system. An example of a metamatcher is as follows. Load
two ontologies in OWL. Match the input ontologies in parallel with the help of the
following components: Jaro–Winkler (Sect. 5.2.1), WordNet (Sect. 5.2.2), Falcon
(Sect. 8.3.9) and ClassStructure from the Alignment API (Sect. 10.1.5). The results
of the first two components are combined through the maximum aggregator and the
results of the second two components are combined through ordered weighted av-
erage (see Sect. 7.4.1). The results of these two aggregations are in turn combined
through a weighted average (Sect. 7.4.1), while a threshold filter (Sect. 7.7.1) is used
to produce the final alignment.
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8.4.7 ContentMap (Universitat Jaume I, University of Oxford)

ContentMap is a logiC-based ONtology inTEgratioN Tool using MAPings (Jiménez
Ruiz et al. 2009). It aims at helping users understand and evaluate the consequences
of the integration of two ontologies as well as identify and handle possible errors.
The proposed approach includes four main parts:

− Computation and selection of alignments. The system handles ontologies in
OWL and allows for selecting matching tools, such as OLA (Sect. 8.3.8),
AROMA (Sect. 8.3.14) or CIDER (Sect. 8.1.35), to generate alignments, which
can be further filtered or edited manually.

− Computation of new entailments that hold in the merged ontology, identified
through deductive differences between the two matched ontologies.

− Detection of errors, namely of unintended entailments, which should not be en-
tailed in the merged ontology.

− Repair of errors through repair plans such that the unintended entailments are
removed, while the desired ones still hold. Repair plans may be automatically
selected based on confidence measures (see also Sect. 7.8.2). In turn, this helps
in improving alignment quality.

The system was implemented as a Protégé plug-in and is equipped with a graphi-
cal user interface that helps users understand correspondences, accept or reject them,
or filter them based on confidence thresholds. It also shows new entailments, the re-
spective justifications (Sect. 10.2.2) and the available repair plans for the unintended
entailments. Users can customise the kinds of entailments that should be invalidated
or that should necessarily hold.

8.4.8 SMB (Technion Israel Institute of Technology)

SMB (Schema Matcher Boosting) is an approach to combining matchers into en-
sembles (Marie and Gal 2008; Gal 2011). It is based on a machine learning tech-
nique called boosting, that is able to select (presumably the most appropriate)
matchers that participate in an ensemble. The approach re-uses about 30 match-
ers from OntoBuilder (Sect. 8.1.10). It also uses the statistical monotonicity princi-
ple when dealing with similarities. Specifically, a matcher is said to be statistically
monotonic with respect to a matching task if its resulting similarity increases with
precision. In turn, statistically monotonic matchers, implemented as classifiers, only
slightly correlate with the true classification and their results are at least slightly bet-
ter than a random choice.

Boosting strengthen weak classifiers by re-weighting the importance of elements
in the training data set (Sect. 7.6.1). Specifically, the AdaBoost algorithm is used in-
stead of least-square linear regression as in LSD (Sect. 8.2.4). SMB initiates greedily
by selecting matchers (from a pool) that provide correct correspondences to a large
part of the problem. Then, the ensemble is extended by adding matchers that solve
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more specific cases. In the conducted experiments SMB ultimately used 24 out of
31 matchers.

8.4.9 AMC (SAP Research, University of Leipzig)

AMC (Auto Mapping Core) is a metamatching framework for rapid building and
tuning of matching approaches (Peukert et al. 2011). It takes as input a pair of
schemas and produces a mapping as output. It has an extensible library of diverse
operators. These are:

− Matcher operators, which constitute the key part of the library and compute
mappings among two schemas. Examples include the LMO matcher of Falcon
(Sect. 8.3.9) or the NamePath matcher of COMA (Sect. 8.1.12).

− Combination operators, which combine multiple similarities into a single one,
e.g., through a weighted average (Sect. 7.4.1).

− Selection operators, which filter mappings, e.g., by using thresholds (Sect. 7.7).
− Analyser operators, which define conditions for executing or not the subpro-

cesses in order to adapt to a particular matching problem. For example, if a
linguistic matcher provides sufficient quality, then no structure matching is per-
formed as implemented in Falcon (Sect. 8.3.9).

− Blocking operators, which are used to reduce the search space and further com-
pute mappings between possibly intersecting and smaller blocks. Examples in-
clude the partitioning method of Falcon (Sect. 8.3.9) or the fragmentation method
of COMA (Sect. 8.1.12).

AMC provides a Matching Process Designer that visually supports building match-
ing processes (Sect. 11.1), which can be executed and debugged with the help of
breakpoints. A matching process is viewed as a directed acyclic graph that rep-
resents the execution order of the above mentioned operators. The operators can
be dragged and connected visually. The currently executed operator is highlighted
and intermediate results are visualised with the help of mapping cubes, where the
axes represent source elements, target elements, and the respective similarity val-
ues. Such a representation helps individuating possible thresholds for the selection
operators. Finally, AMC integrates as plug-ins the COMA++ (Sect. 10.3.2), Falcon
(Sect. 8.3.9) and Rondo (Sect. 10.3.1) systems which are reused as specific opera-
tors.

8.4.10 AMS (SAP Research, Dresden University of Technology,
University of Leipzig)

AMS is an Adaptive Matching System (Peukert et al. 2012). Its approach is based
on the analysis of features computed from the input schemas and from the interme-
diate matching results. These features provide suggestions for the adaptation pro-
cess. For example, the lengths of paths in a schema tree can suggest when to use a
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path matcher (Sect. 5.2.1). In turn, intermediate matching results from a similarity
matrix, such as low similarities, also viewed as ‘noise’, can negatively affect their
future aggregations, and thus, it may be advisable to turn them to zero. Based on
these features, several matching rules are applied in order to automatically build
and adapt a matching process. The matching process is represented as a directed
acyclic graph, whose nodes stand for operations to be executed, such as matching or
aggregation. Rules are made of (i) a pattern that indicates a part of the graph where
the rule should be applied, (ii) an action that applies changes to the patterns, (iii) a
relevance function that indicates the relevance of the rule for the current process,
(iv) a check function that rates the quality of changes introduced by an action. The
system selects and runs rules based on their relevance to the current matching prob-
lem. Different types of rules are introduced. Some examples include starting rules,
which add basic matchers, such as the DataType matcher, aggregation rules, which
add various aggregations of matching results, such as average or ordered weighted
average (Sect. 7.4.1), rewrite rules, which rewrite a non-empty process into a new
one by changing its structure, e.g., noise reduction rule. The system provides li-
braries of several dozens of feature analysers and of rules. The whole matching
process is iteratively extended and can also be edited by users.

8.5 Summary

The survey of systems considered in this chapter has multiplied the diversity of basic
and advanced techniques of Chap. 5 and Chap. 6 by the variety of strategies for
combining them introduced in Chap. 7. Moreover, usually each individual system
innovates on a particular aspect. However, there are several constant features that
are shared by the majority of systems.

In summary, the following can be observed concerning the presented systems:

− We have reviewed about 100 systems in this chapter, most of which, namely
about 50 % are schema-based; about 25 % are mixed, i.e., rely both on schema-
and instance-level information. Compared to the first edition of the book, the
number of schema-based systems has doubled, of mixed systems has grown 1.5
times, of metamatching systems has quadrupled, while only a few new instance-
based systems have appeared. We conclude that schema-based matching solu-
tions have been so far investigated more intensively than instance-based or mixed
solutions. In turn, investigation of metamatching systems have gained particular
interest recently. We believe that this is an objective trend, since we have striven
to cover state-of-the-art systems without bias towards any particular kind of so-
lution. This is facilitated by the availability of other systems which may not have
been the case in 2007.

− Most of the systems under consideration focus on specific application domains,
such as books, music and biomedicine, as well as on dealing with particular
ontology types, such as DTDs, relational schemas and OWL ontologies. Only
few systems aim at being general, i.e., suit various application domains, and
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generic, i.e., handle multiple types of ontologies. Some examples of the latter
include Cupid (Sect. 8.1.11), COMA and COMA++ (Sect. 8.1.12), Similarity
flooding (Sect. 8.1.14), S-Match (Sect. 8.1.18), GeRoMeSuite (Sect. 8.1.30) and
Anchor-Flood (Sect. 8.1.40).

− Most of the approaches take as input a pair of ontologies, while only few sys-
tems take as input multiple ontologies. Some examples of the latter include
DCM (Sect. 8.1.27), HSM (Sect. 8.1.28), Wise-Integrator (Sect. 8.3.6), and IceQ
(Sect. 8.3.7).

− Most of the approaches handle only tree-like structures, while only few sys-
tems handle graphs. Some examples of the latter include Cupid (Sect. 8.1.11),
COMA and COMA++ (Sect. 8.1.12), OLA (Sect. 8.3.8) and GeRoMeSuite
(Sect. 8.1.30).

− Most of the systems focus on the discovery of simple one-to-one correspon-
dences, though only few systems have tried to address the problem of discovering
more complex correspondences, e.g., iMAP (Sect. 8.2.6), DCM (Sect. 8.1.27),
HSM (Sect. 8.1.28), AOAS (Sect. 8.1.31), PORSCHE (Sect. 8.1.38), Agreement-
Maker (Sect. 8.1.42) and Optima & Optima+ (Sect. 8.3.20).

− Most of the systems focus on computing confidence measures in the [0 1] range.
They also most of the time return correspondences asserting equivalence rela-
tions. Only few systems compute different relations between ontology entities,
such as disjointness or subsumption. Some examples of the latter include Ctx-
Match (Sect. 8.1.17), S-Match (Sect. 8.1.18), DSSim (Sect. 8.1.44), TaxoMap
(Sect. 8.1.46) and CSR (Sect. 8.3.21).

− Only several systems have introduced new ways of encoding the matching pro-
cess, e.g., through Markov networks, such as iMatch (Sect. 8.1.47) and CODI
(Sect. 8.3.25), or by proposing interesting interplays between data interlinking
and schema matching, such as ILIADS (Sect. 8.3.15) and PARIS (Sect. 8.3.27),
or by analysing in the matching process also image data, such as VSBM and
GBM (Sect. 8.2.14).

− Many recent systems, such as Scarlet (Sect. 8.1.32), OMviaUO (Sect. 8.1.33)
and BLOOMS & BLOOMS++ (Sect. 8.1.34), went beyond using WordNet as a
source of background knowledge, for instance, by using Wikipedia and upper-
level ontologies.

− Several recent systems have introduced alignment verification or debugging
into the matching process, such as ASMOV (Sect. 8.3.17), Lily (Sect. 8.1.41),
YAM++ (Sect. 8.3.23) and LogMap (Sect. 8.3.26).

− There is a growing number of systems that declare explicitly being able to han-
dle efficiently large-scale ontologies, that is of tens of thousands of entities, e.g.,
Falcon (Sect. 8.3.9), Anchor-Flood (Sect. 8.1.40), Lily (Sect. 8.1.41), Agree-
mentMaker (Sect. 8.1.42), LogMap (Sect. 8.3.26) and FSM (Sect. 8.2.13).

− Most of the systems are not equipped with a graphical user interface. Some ex-
amples of those with a graphical user interface include COMA++ (Sect. 8.1.12),
S-Match (Sect. 8.1.18), AgreementMaker (Sect. 8.1.42), DSSim (Sect. 8.1.44),
SAMBO (Sect. 8.3.13) and YAM++ (Sect. 8.3.23).
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Table 8.1 summarises how matching systems cover the solution space in terms of
the classifications of Chap. 4. For example, S-Match (Sect. 8.1.18) exploits string-
based element-level matchers, external matchers based on WordNet, propositional
satisfiability techniques, etc. OLA (Sect. 8.3.8), besides string-based element-level
matchers, also exploits a matcher based on WordNet, iterative fixed point com-
putation, etc. Table 8.1 also testifies that ontology matching research was mainly
focussed on syntactic techniques so far. In fact, many systems rely on the same
string-based techniques. Similar observation can also be made concerning the use
of WordNet as an external resource of common knowledge. In turn, semantic tech-
niques are only exploited in a few systems, e.g., CtxMatch (Sect. 8.1.17), S-Match
(Sect. 8.1.18), or LogMap (Sect. 8.3.26). Concerning instance-based systems, tech-
niques based on naive Bayes classifiers and common value patterns are the most
prominent.

Table 8.1 Techniques used by the different systems.

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

DELTA
Sect. 8.1.1

String-based – – –

Hovy
Sect. 8.1.2

String-based,
Language-based

– Taxonomic structure –

TransScm
Sect. 8.1.3

String-based,
Built-in
thesaurus

– Taxonomic structure,
Matching of
neighbourhood

–

DIKE
Sect. 8.1.4

String-based,
Domain
compatibility,
WordNet

– Matching of
neighbourhood

–

SKAT
Sect. 8.1.5

String-based,
Auxiliary
thesaurus,
Corpus-based

– Taxonomic structure,
Matching of
neighbourhood

–

Artemis
Sect. 8.1.6

Domain
compatibility,
Language-based,
Common
thesaurus

– Matching of neighbours
via thesaurus,
Clustering

–

H-Match
Sect. 8.1.7

Domain
compatibility,
Language-based,
Domains and
ranges,
Common
thesaurus

– Matching of neighbours
via thesaurus,
Relations

–

Tess
Sect. 8.1.8

String-based,
domain
compatibility

– Matching of neighbours –
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

Anchor-
Prompt
Sect. 8.1.9

String-based,
Domains and
ranges

– Bounded paths
matching: (arbitrary
links),
Taxonomic structure

–

OntoBuilder
Sect. 8.1.10

String-based,
Language-based,
Thesaurus
look-up

– - –

Cupid
Sect. 8.1.11

String-based,
Language-based,
Data types,
Key properties,
Auxiliary
thesauri

– Tree matching weighted
by leaves

–

COMA/
COMA++
Sect. 8.1.12

String-based,
Language-based,
Data types,
Auxiliary
thesauri

Alignment
reuse

DAG (tree) matching
with a bias towards
various structures, e.g.,
leaves,
Repository of structures

–

QuickMig
Sect. 8.1.13

String-based Domain
ontology

– –

Similarity
flooding
Sect. 8.1.14

String-based,
Data types,
Key properties

– Iterative fixed point
computation

–

XClust
Sect. 8.1.15

Cardinality
constraints,
WordNet

– Paths, Children, Leaves,
Clustering

–

MapOnto
Sect. 8.1.16

– External
alignments

Structure comparison –

CtxMatch
Sect. 8.1.17

String-based,
Language-based,
WordNet

– – Based on
description
logics

S-Match
Sect. 8.1.18

String-based,
Language-based,
WordNet

– – Propositional
SAT

HCONE
Sect. 8.1.19

Language-based,
(LSI), WordNet

– – –

MoA
Sect. 8.1.20

Language-based,
WordNet

– – –

ASCO
Sect. 8.1.21

String-based,
Language-based,
WordNet

– Iterative similarity
propagation

–

Stroulia &
Wang
Sect. 8.1.22

String-based,
Language-based,
WordNet

– Structure comparison –
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

MWSDI
Sect. 8.1.23

String-based,
Language-based,
WordNet

– Structure comparison –

SeqDisc
Sect. 8.1.24

String-based,
Language-based

– Leafs, Children,
Ancestor comparison

–

BayesOWL
Sect. 8.1.25

Text classifier,
Google

– Bayesian inference –

OMEN
Sect. 8.1.26

– External
alignment

Bayesian inference,
Metarules

–

DCM
Sect. 8.1.27

– – Correlation mining,
Statistics

–

HSM
Sect. 8.1.28

– – Co-occurrence patterns,
Statistics

–

CBW
Sect. 8.1.29

String-based – Coincidence-based
weighting

–

GeRoMeSuite
Sect. 8.1.30

String-based – Similarity flooding,
Children

–

AOAS
Sect. 8.1.31

String-based,
Language-based

UMLS Compatible,
is-a, part-of paths

Rule-based
inference

Scarlet
Sect. 8.1.32

String-based Multiple
on-line
ontologies

– Ad hoc
rule-based
inference

OMviaUO
Sect. 8.1.33

String-based,
Language-based

SUMO-
OWL,
OpenCyc,
DOLCE

Taxonomic structure Rule-based
inference

BLOOMS/
BLOOMS+
Sect. 8.1.34

Language-based,
Alignment API

– Taxonomic structure Rule-based
inference

CIDER
Sect. 8.1.35

String-based,
Language-based

Swoogle
ontologies

Structure comparison Transitive
inference

Elmeleegy &
al.
Sect. 8.1.36

Data type
compatibility,
Query logs

– Similarity flooding –

BeMatch
Sect. 8.1.37

String-based,
Language-based,
WordNet

– Graph isomorphism –

PORSCHE
Sect. 8.1.38

String-based,
Language-based,
Domain thesauri

– Clustering,
Tree mining

–

MatchPlanner
Sect. 8.1.39

SecondString,
Language-based,
WordNet

– Neighbor profiles –
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

Anchor-Flood
Sect. 8.1.40

String-based,
Language-based,
WordNet

– Internal, external
similarities,
Iterative anchor-based
similarity propagation

–

Lily
Sect. 8.1.41

String-based – Variations of similarity
flooding

–

Agreement-
Maker
Sect. 8.1.42

String-based,
Language-based,
WordNet

– Descendant,
sibling similarities

–

Homolonto
Sect. 8.1.43

Language-based,
Word occurrence

– Children similarity –

DSSim
Sect. 8.1.44

String-based,
Language-based,
WordNet

– Graph similarity based
on leaves

Rule-based
fuzzy
inference

MapPSO
Sect. 8.1.45

String-based,
Language-based,
WordNet

– Population-based
optimisation

–

TaxoMap
Sect. 8.1.46

String-based,
Language-based

– Structure comparison via
is-a hierarchies

–

iMatch
Sect. 8.1.47

String-based External
alignment

Probabilistic (Markov)
reasoning,
Metarules

–

T-tree
Sect. 8.2.1

– – Correlation mining –

CAIMAN
Sect. 8.2.2

String-based
(Rocchio
classifier)

– – –

FCA-merge
Sect. 8.2.3

– – Formal concept analysis –

LSD/GLUE/
iMAP
Sect. 8.2.4–
8.2.6

WHIRL,
Naive Bayes,
Domain
constraints

– Hierarchical structure –

Automatch
Sect. 8.2.7

Naive Bayes – Internal structure,
Statistics

–

SBI&NB
Sect. 8.2.8

Statistics,
Naive Bayes

– Pachinko Machine,
Naive Bayes

–

Kang &
Naughton
Sect. 8.2.9

Information
entropy

– Mutual information,
Dependency graph
matching

–

Dumas
Sect. 8.2.10

String-based,
WHIRL

– Instance identification –

Wang & al.
Sect. 8.2.11

Language-based – Mutual information –
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

sPLMap
Sect. 8.2.12

Naive Bayes,
kNN classifier,
String-based

– – –

FSM
Sect. 8.2.13

String-based – – –

VSBM&
GBM
Sect. 8.2.14

Statistics,
SVM

– Correlations in a
multimedia graph

–

ProbaMap
Sect. 8.2.15

Statistics, Naive
Bayes,
C4.5, SVM

– – –

SEMINT
Sect. 8.3.1

Neural network,
Data types,
Value patterns

– – –

IF-Map
Sect. 8.3.2

String-based – Formal concept analysis –

NOM/QOM
Sect. 8.3.3

String-based,
Domains and
ranges,
Application
vocabulary

– Matching of neighbours,
Taxonomic structure

–

oMap
Sect. 8.3.4

Naive Bayes,
String-based

– Similarity propagation –

Xu & al.
Sect. 8.3.5

String-based,
Language-based,
WordNet

Domain
ontology

Decision trees –

Wise-
Integrator
Sect. 8.3.6

Language-based,
String-based,
Data types,
Value patterns,
WordNet

– Clustering –

IceQ
Sect. 8.3.7

String-based,
Value patterns,
Domain
dictionary

– Clustering –

OLA
Sect. 8.3.8

String-based,
Language-based,
Data types,
WordNet

– Iterative fixed point
computation,
Matching of neighbours,
Taxonomic structure

–

Falcon-AO
Sect. 8.3.9

String-based,
WordNet

– Structural affinity –

RiMOM
Sect. 8.3.10

String-based,
Naive Bayes,
WordNet

– Taxonomic structure,
Similarity propagation

–
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

Corpus-based
matching
Sect. 8.3.11

String-based,
Language-based,
Naive Bayes,
Value patterns,
Domain
constraints

– Corpus schemas —

iMapper
Sect. 8.3.12

Linguistic
classifier,
WordNet

– Linguistic classifier,
Structure comparison

–

SAMBO
Sect. 8.3.13

String-based,
Naive Bayes,
WordNet

UMLS Iterative structural
similarity base on is-a,
part-of hierarchies

–

AROMA
Sect. 8.3.14

String-based – Association rules –

ILIADS
Sect. 8.3.15

String-based,
Language-based,
WordNet

– Matching neighbours,
Clustering

Rule-based
inference

SeMap
Sect. 8.3.16

String-based,
Language-based,
Instance
distribution,
WordNet

Domain
ontology

Similarity flooding –

ASMOV
Sect. 8.3.17

String-based,
Language-based,
Object similarity,
WordNet

UMLS Iterative fixed point
computation,
Hierarchical, restriction
similarities

Rule-based
inference

HAMSTER
Sect. 8.3.18

String-based,
Language-based,
Naive Bayes,
Click logs

– Structure comparison –

Smart
Matcher
Sect. 8.3.19

COMA++,
FOAM

– Structure comparison –

GEM/Optima
/Optima+
Sect. 8.3.20

String-based,
Language-based,
WordNet

– Expectation-
Maximisation,
Matching of neighbours

–

CSR
Sect. 8.3.21

Feature-based
similarity,
Machine learning

– Feature-based similarity,
Machine learning

–

Prior+
Sect. 8.3.22

String-based,
Language-based

– Feature-based similarity,
Neural network

–

YAM/YAM++
Sect. 8.3.23

Machine
learning,
SecondString,
SimMetrics,
WordNet

– Structure profiles,
Similarity flooding

–
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Table 8.1 (Continued.)

Element-level Structure-level

Syntactic Semantic Syntactic Semantic

MoTo
Sect. 8.3.24

Naive Bayes,
Neural network,
k-Nearest
neighbour

– Structural validation:
taxonomy,
Other relations

–

CODI
Sect. 8.3.25

SimMetrics – Structure comparison Markov net
inference

LogMap/
LogMap2
Sect. 8.3.26

String-based,
Language-based,
WordNet

UMLS Structure comparison Propositional
Horn
satisfiability

PARIS
Sect. 8.3.27

String-based – Probabilistic estimates
via iterative fixed point
computation

–

Table 8.2 summarises the position of these systems with regard to some of the
requirements of Table 3.1 (p. 59), namely, those requirements that can be given in
the specification of the system rather than being measured. In Table 8.2, the Input
column stands for the input taken by the systems. In particular, it mentions the lan-
guages that the systems are able to handle (if this information was not available
from the articles describing the corresponding systems, we used general terms, such
as database schema and ontology instead). This is, of course, very important for
someone who has a certain type of ontology to match and is looking for a system.
The Needs column stands for the resources that must be available for the system to
work. This covers the automatic aspect of Sect. 3.2, which is here denoted by user
when user feedback is required, semi when the system can take advantage of user
feedback but can operate without it and auto when the system works without user
intervention (of course, users can influence the system by providing the initial input
or evaluating the results afterwards, but this is not taken into account here). Simi-
larly, the instances value specifies that the system requires data instances to work.
In addition, some systems may require training before the actual matching as well
as alignment to be improved. The Output column denotes the form of the results
given by the system: Alignment means that the system returns a set of correspon-
dences, merge that it merges the input ontologies or schemas, axioms or rules that it
provides rules for querying or completing the ontologies, etc.

The Output delivered by a system is very important because it shows the capacity
of the system to be used for some applications, e.g., a system delivering views and
data translators cannot be used for merging ontologies as is. It is remarkable that
many systems deliver alignments. As such, they are not fully committed to any kind
of operation to be performed and can be used in a variety of applications. This could
be viewed as a sign of possible interoperability between systems. However, due to
lack of a common alignment format (see Chap. 10), each system uses its own way
to deliver alignments (as lists of URIs, tables, etc.). Finally, the Operation column
describes the ways in which a system can process alignments.
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Table 8.2 Position of the presented systems with regard to the requirements of Chap. 3.

System Input Needs Output Operation

DELTA
Sect. 8.1.1

Relational schema,
EER

User Alignment –

Hovy
Sect. 8.1.2

Ontology Semi Alignment –

TransScm
Sect. 8.1.3

SGML,
OO

Semi Translator Data translation

DIKE
Sect. 8.1.4

ER Semi Merge Query
mediation

SKAT
Sect. 8.1.5

RDF Semi Bridge rules Data translation

Artemis
Sect. 8.1.6

Relational schema,
OO, ER

Auto Views Query
mediation

H-Match
Sect. 8.1.7

OWL Auto Alignment P2P query
mediation

Tess
Sect. 8.1.8

Database schema Auto Rules Version
matching

Anchor-
Prompt
Sect. 8.1.9

OWL, RDF User Axioms
(OWL/RDF)

Ontology
merging

OntoBuilder
Sect. 8.1.10

Web form,
XML schema

User Mediator Query
mediation

Cupid
Sect. 8.1.11

XML schema,
Relational schema

Auto Alignment –

COMA/
COMA++
Sect. 8.1.12

Relational schema,
XML schema, OWL

User Alignment Data translation

QuickMig
Sect. 8.1.13

COMA++ User,
Sample data
injection

Alignment,
Mapping
category

Data translation

Similarity
flooding
Sect. 8.1.14

XML schema,
Relational schema

User Alignment –

XClust
Sect. 8.1.15

DTD Auto Alignment –

MapOnto
Sect. 8.1.16

Relational schema,
XML schema, OWL

Alignment Rules Data translation

CtxMatch/
CtxMatch2
Sect. 8.1.17

Classification,
OWL

User Alignment –

S-Match
Sect. 8.1.18

Classification,
XML schema, OWL

Auto Alignment –

HCONE
Sect. 8.1.19

OWL Auto, Semi,
User

Ontology Ontology
merging
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Table 8.2 (Continued.)

System Input Needs Output Operation

MoA
Sect. 8.1.20

OWL Auto Axioms,
OWL

–

ASCO
Sect. 8.1.21

RDFS, OWL Auto Alignment –

Stroulia &
Wang
Sect. 8.1.22

WSDL Auto Alignment –

MWSDI
Sect. 8.1.23

WSDL, OWL Auto Alignment –

SeqDisc
Sect. 8.1.24

WSDL Auto Alignment –

BayesOWL
Sect. 8.1.25

Classification,
OWL

Auto Alignment –

OMEN
Sect. 8.1.26

OWL Auto,
Alignment

Alignment –

DCM
Sect. 8.1.27

Web form Auto Alignment Data integration

HSM
Sect. 8.1.28

Web form Auto Alignment –

CBW
Sect. 8.1.29

OWL Auto Alignment –

GeRoMeSuite
Sect. 8.1.30

SQL DDL,
XML, OWL

Auto, Semi Alignment Merge,
Compose

AOAS
Sect. 8.1.31

OWL Auto Alignment –

Scarlet
Sect. 8.1.32

OWL Auto Alignment –

OMviaUO
Sect. 8.1.33

RDFS, OWL Auto Alignment –

BLOOMS/
BLOOMS+
Sect. 8.1.34

RDFS, OWL Auto Alignment –

CIDER
Sect. 8.1.35

OWL Auto,
Training

Alignment –

Elmeleegy &
al.
Sect. 8.1.36

Relational schema Auto,
Query logs

Alignment –

BeMatch
Sect. 8.1.37

BPEL,
WCSL

Auto,
Semi

Alignment Service
transformation

PORSCHE
Sect. 8.1.38

XSD Auto Alignment Mediated
schema

Match-
Planner
Sect. 8.1.39

XML Auto,
Decision tree

Alignment –
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Table 8.2 (Continued.)

System Input Needs Output Operation

Anchor-Flood
Sect. 8.1.40

RDFS, OWL Auto Alignment –

Lily
Sect. 8.1.41

OWL Auto, Semi Alignment –

Agreement-
Maker
Sect. 8.1.42

XML, RDFS,
OWL, N3

Auto, Semi Alignment –

Homolonto
Sect. 8.1.43

OBO Auto, Semi Alignment, Homologous
groups

DSSim
Sect. 8.1.44

OWL,
SKOS

Auto Alignment Question
answering

MapPSO
Sect. 8.1.45

OWL Auto Alignment –

TaxoMap
Sect. 8.1.46

OWL Auto, Semi Alignment –

iMatch
Sect. 8.1.47

OWL Auto, Semi Alignment –

T-tree
Sect. 8.2.1

Ontology Auto,
Instances

Alignment –

CAIMAN
Sect. 8.2.2

Classification Semi, Instances,
Training

Alignment –

FCA-merge
Sect. 8.2.3

Ontology User,
Instances

Ontology Ontology
merging

LSD/GLUE
Sect. 8.2.4,
Sect. 8.2.5

Relational schema,
XML schema,
Taxonomy

Auto,
Instances,
Training

Alignment –

iMAP
Sect. 8.2.6

Relational schema Auto, Instances,
Training

Alignment –

Automatch
Sect. 8.2.7

Relational schema Auto, Instances,
Training

Alignment –

SBI&NB
Sect. 8.2.8

Classification Auto, Instances,
Training

Alignment –

Kang &
Naughton
Sect. 8.2.9

Relational schema Instances Alignment –

Dumas
Sect. 8.2.10

Relational schema Instances Alignment –

Wang & al.
Sect. 8.2.11

Web form Instances Alignment Data integration

sPLMap
Sect. 8.2.12

Database schema Auto, Instances,
Training

Rules Data translation

FSM
Sect. 8.2.13

Database schema Auto,
Instances

Alignment –

VSBM&
GBM
Sect. 8.2.14

Ontology Auto,
Instances, Training

Alignment –
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Table 8.2 (Continued.)

System Input Needs Output Operation

ProbaMap
Sect. 8.2.15

Taxonomy Auto, Instances,
Training

Alignment –

SEMINT
Sect. 8.3.1

Relational schema Auto,
Instances (opt.),
Training

Alignment –

IF-Map
Sect. 8.3.2

KIF, RDF Auto, Instances,
Common reference

Alignment –

NOM/QOM
Sect. 8.3.3

RDF, OWL Auto,
Instances (opt.)

Alignment –

oMap
Sect. 8.3.4

OWL Auto,
Instances (opt.),
Training

Alignment Query
answering

Xu & al.
Sect. 8.3.5

XML schema,
Taxonomy

Auto,
Instances (opt.),
Training

Alignment –

Wise-
Integrator
Sect. 8.3.6

Web form Auto Mediator Data integration

IceQ
Sect. 8.3.7

Web form Auto, Semi Alignment –

OLA
Sect. 8.3.8

RDF, OWL Auto,
Instances (opt.)

Alignment –

Falcon-AO
Sect. 8.3.9

RDF, OWL Auto,
Instances (opt.)

Alignment –

RiMOM
Sect. 8.3.10

OWL Auto,
Instances (opt.)

Alignment –

Corpus-based
matching
Sect. 8.3.11

Relational schema,
Web form

Text corpora,
Instances,
Training

Alignment –

iMapper
Sect. 8.3.12

RML Auto, Semi,
Documents

Alignment –

SAMBO
Sect. 8.3.13

OWL Auto,
Documents (opt.)

Alignment Ontology
merging

AROMA
Sect. 8.3.14

Classification,
OWL

Auto,
Instances

Alignment –

ILIADS
Sect. 8.3.15

OWL Auto,
Instances (opt.)

Alignment Ontology
merging

SeMap
Sect. 8.3.16

XML Auto, Semi
Instances (opt.)

Alignment –

ASMOV
Sect. 8.3.17

OWL Auto,
Instances (opt.)

Alignment –

HAMSTER
Sect. 8.3.18

XML Auto, Instances
(opt.),
Clicklog

Alignment –
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Table 8.2 (Continued.)

System Input Needs Output Operation

Smart
Matcher
Sect. 8.3.19

UML Auto,
User instances (opt.)

Alignment Instance
transformation

GEM/Optima/
Optima+
Sect. 8.3.20

RDF, OWL, N3 Auto,
Instances (opt.)

Alignment –

CSR
Sect. 8.3.21

OWL Auto,
Instances (opt.)

Alignment –

Prior+
Sect. 8.3.22

OWL Auto,
Instances (opt.)

Alignment –

YAM/YAM++
Sect. 8.3.23

XML,
OWL

Auto,
Semi

Alignment –

MoTo
Sect. 8.3.24

OWL Auto,
Instances (Opt.)

Alignment –

CODI
Sect. 8.3.25

OWL Auto,
Instances (Opt.)

Alignment –

LogMap/
LogMap2
Sect. 8.3.26

OWL Auto, Semi Alignment,
Ontologies
overlap

–

PARIS
Sect. 8.3.27

RDFS Auto,
Instances

Alignment –

APFEL
Sect. 8.4.1

RDF, OWL User Alignment –

LCS
Sect. 8.4.2

RDF, OWL Auto Alignment –

Besana &
Robertson
Sect. 8.4.3

LCC Auto,
History of
interactions

Suggested
terms

–

eTuner
Sect. 8.4.4

Relational schema,
Taxonomy

Auto Alignment –

mSeer
Sect. 8.4.5

Relational schema Auto, Semi,
Instances

Matchability
score &
report

Revised
mediated
schema

GOALS
Sect. 8.4.6

OWL Auto Alignment –

ContentMap
Sect. 8.4.7

OWL Auto, Semi Alignment,
Alignment
repairs

Integrated
ontology

SMB
Sect. 8.4.8

Web form,
XML schema, OWL

Auto Alignment –

AMC
Sect. 8.4.9

Relational schema,
XML, OWL

Auto, Semi,
Instances (Opt.)

Alignment –

AMS
Sect. 8.4.10

Relational schema,
XML, OWL

Auto, Semi,
Instances (Opt.)

Alignment –
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Not all the requirements are addressed in Table 8.2. Indeed, completeness, cor-
rectness, run time should not be judged from the claims of system developers. No
meaningful system can be proved to be complete, correct or as fast as possible in
a task like ontology matching. Therefore, the degree of fulfilment of these require-
ments must be evaluated and compared across systems. Moreover, different applica-
tions have different priorities regarding these requirements. Hence, they may need
different systems. Thus, this evaluation depends on an application in which the sys-
tem is to be used.

It is difficult to evaluate and compare systems without commonly agreed test
benches, principles and available implementations. The next chapter presents meth-
ods for empirical evaluation and comparison of matching systems.



Chapter 9
Evaluation of Matching Systems

The increasing number of methods available for ontology matching commands the
evaluation of these methods.

Matching systems are difficult to compare, but the ontology matching field can
only evolve if evaluation criteria are provided. These should help system designers
assess the strengths and weaknesses of their systems as well as help application
developers choose the most appropriate algorithm.

In this chapter, we first consider the main motivations for evaluating matching
systems and the principles that could guide such an evaluation (Sect. 9.1). We also
discuss existing evaluation resources, different available data sets and the structure
of some of these data sets (Sect. 9.2). Then, we overview the measures used for
the evaluation of matching systems (Sect. 9.3). Finally, we consider in more detail
the settings of an evaluation protocol for a particular application, as opposed to
evaluation for comparing matching systems in general (Sect. 9.4).

9.1 Evaluation Principles

All evaluation activities must be carried out with a clear procedure. So we first recall
here the goal of evaluating ontology matching systems (Sect. 9.1.1), the principles
on which evaluation should be based (Sect. 9.1.2) and some examples of evaluation
initiatives (Sect. 9.1.3).

9.1.1 Goals

A major and long term purpose of the evaluation of ontology matching methods is to
help designers and developers of such methods improve them and to help users eval-
uate the suitability of the proposed methods to their needs. The evaluation should
thus be run over several years in order to allow for adequate measurement of the
evolution of the field.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_9,
© Springer-Verlag Berlin Heidelberg 2013
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Evaluation should also help assess absolute results produced by the matching
systems, i.e., what are the properties achieved by a system, and relative results, i.e.,
how these compare to the results of other systems.

One particular kind of evaluation is benchmarking. A benchmark is a well-
defined set of tests on which the results of a system or subsystem can be measured
(García Castro et al. 2004). It should enable the measure of the degree of achieve-
ment of proposed tasks on a well-defined scale (that can be achieved or not). It
should be reproducible and stable, so that it can be used repeatedly for (i) testing
the improvement or degradation of a system with certainty, (ii) situating a system
among others.

A medium term goal for evaluation efforts is to set up a collection of reference
sets of tests, or benchmark suites of the available tools and to compare tool evolution
with regard to this reference. Building benchmark suites is highly valuable not just
for those who participate in planned evaluations but for all the research community,
since system designers can use these at any time and compare themselves to others.

9.1.2 Principles

We describe below several principles that must guide the evaluation process:

Systematic procedure. Evaluation results have to be nonambiguous and their pro-
cedure should be reproducible. Thus, the application of the procedure to dif-
ferent systems or to the same system at different moments of time should be
comparable.

Continuity. Evaluation, and most particularly benchmarking, must not be a one-
shot exercise but a continuous effort in order to identify the progress made by
the field and eventually stop when no more progress is made anymore.

Quality and equity. The evaluation rules must be precise and defined beforehand.
In order to be worthwhile, the evaluation material must be of the best possible
quality. This also means that the evaluation material must not be biased towards
a particular kind of algorithm but driven only by the tasks to be solved.

Dissemination. In order to have a high impact, the evaluation activity must be dis-
seminated without excessive barriers. To that extent, the data sets and results
produced must be published and made as freely available as possible. The eval-
uation campaigns must be open to participants worldwide.

Intelligibility. It is of high importance that the evaluation results could be analysed
by the stakeholders and understood by everyone. For that purpose, it is useful
not only that the final results are published but also the alignments themselves.
Finally, of high importance is the archival explanation of the results to the stake-
holders.

Evaluations are usually based on three successive steps (García Castro et al.
2004):
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Planning involves defining the task to be performed as well as its constraints, e.g.,
resources allowed, computer environment, required output, finding data sets on
which to perform the tasks and setting the measures to be used.

Processing consists of executing the plan.
Analysing evaluates the results achieved according to planned measurements.

These three steps can be complemented by a recalibration loop that helps in re-
defining the plan for the next evaluation from lesson learnt in the current one.

9.1.3 Examples of Evaluations

In order to illustrate what can be done as evaluation, we briefly discuss a model
evaluation initiative, called TREC, and the Ontology Alignment Evaluation Initia-
tive modelled upon it.

Text REtrieval Conference

TREC1 is the Text REtrieval Conference organised by the National Institute of Stan-
dards and Technology (NIST) in the USA. It has been run yearly since 1992. It is
a very good model for evaluation in a focussed computer science research field,
especially because it has been very successful in helping the field to progress.

The goals of TREC are to:

− increase research in information retrieval-based on large-scale collections,
− provide a forum for stakeholders,
− facilitate technology transfer,
− improve the evaluation methodology,
− create a series of test collections on various aspects of information retrieval.

It is now organised in several tracks, each of which corresponding to one kind
of evaluation, which, in turn, is organised over several years. Five years is now the
accepted standard in order to be able to compare results. Tracks organised so far
include

− static text retrieval,
− interactive retrieval,
− information retrieval in a narrow domain, e.g., genomics, using ad hoc resources,
− media retrieval (other than text), or
− answer finding.

Typically each track has between 8 and 20 participants. While each track is pre-
cisely defined, TREC has now a track record on investigating the evaluation of many
different features of retrieval tasks.

1http://trec.nist.gov.

http://trec.nist.gov
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Table 9.1 Overview of the OAEI campaigns (extended from (Euzenat et al. 2011)).

year location #tests #participants

I3CON 2004 Gaithersburg, US 10 5

OAC 2004 Hiroshima, JP 1 4

OAEI 2005 Banff, CA 3 7

OAEI 2006 Athens, US 6 10

OAEI 2007 Busan, KR 7 17

OAEI 2008 Karlsruhe, DE 8 13

OAEI 2009 Chantilly, US 9 16

OAEI 2010 Shanghai, CN 6 15

OAEI 2011 Bonn, DE 5 18

OAEI 2011.5 Heraklion, GR 5 19

OAEI 2012 Boston, US 7 23

Ontology Alignment Evaluation Initiative

Since 2004, a group of researchers on ontology matching have run several evaluation
campaigns which are identified as the Ontology Alignment Evaluation Initiative
(OAEI).2 After a cold start in 2004, with two events, the Information Interpretation
and Integration Conference (I3CON), held at the NIST Performance Metrics for
Intelligent Systems (PerMIS) workshop, and the Ontology Alignment Contest at
the third Evaluation of ONtology-based tools (EON) workshop, OAEI started under
this name in 2005 and has been run yearly since then with an extra 2011.5 edition
in 2012 (Euzenat et al. 2011). It has offered various tracks summarised in Table 9.1.
Since 2009, it has also offered an instance matching track, which is not reported
here.

Until 2011, in each of these campaigns, the participants were required to pro-
vide their resulting alignments in the Alignment format (Sect. 10.1.5). They are
equipped with the Alignment API (Sect. 10.3.6) for helping them to produce and to
assess the results before the meeting. Results to all tests are compulsory as well as
a fixed-format paper describing experiences with tests processing. Participants were
also expected to present their results at the meeting. The results of these tests are
evaluated by clearly announced measures, typically precision and recall (Sect. 9.3).
Finally, the results of evaluation campaigns as well as the full data sets are available
for download from the OAEI web site.2

Since 2011, some of these evaluations have been automated through the SEALS
platform (see Sect. 9.1.5). The OAEI campaigns tend to set a solid basis for evaluat-
ing the progress in matching algorithms by providing a stable benchmark suite, thus
allowing progress to be monitored year after year and facilitating the calibration of
the participating matching algorithms. A summary of these campaigns is available

2http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org
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in (Euzenat et al. 2011; Aguirre et al. 2012) and full details are on the OAEI web
site.

9.1.4 Types of Evaluations

In Chap. 2, we characterised an alignment as a set of pairs of entities e and e′, com-
ing from each ontology o and o′, related by a particular relation r . In addition, many
algorithms assign a confidence measure n to correspondences. From this character-
isation it is possible to require any matching method to output an alignment (Noy
and Musen 2002a; Euzenat 2003), given

− two ontologies to be matched,
− a partial input alignment, which may be possibly empty,
− a characterisation of the desired alignment, e.g., 1:+, ?:?.

From this output, the quality of the matching process could be assessed with the
help of measurements of the difference between the output and a reference align-
ment (see Fig. 9.1).

Fig. 9.1 Basic evaluation design: a matcher receives two ontologies o and o′ as input and generates
an alignment A using a fixed set of resources and parameters. An evaluation component receives
this alignment and computes a (set of) quality measure(s) m—typically precision and recall—by
comparing it to the reference alignment R.

From this basic setting, there are several ways of planning the evaluation depend-
ing, in part, of its purpose. There may be several classifications depending on the
criteria used. Let us consider a classification of evaluations with regard to what they
are supposed to evaluate:

Competence benchmarks allow the characterisation of the level of competence
(and performance) of a particular system with regard to a set of well defined
tasks. Usually, tasks are designed to isolate particular characteristics. This kind
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of benchmarking is reminiscent to kernel benchmarks or unit tests, such as the
Standard Performance Evaluation Corporation (SPEC) benchmarks.3

Competence benchmarks aim at characterising the kind of task each method
is good for or the kind of input it can handle well. There are many different
areas in which methods can be evaluated. One approach is to look at the kind
of features they use for finding matching entities, for example, following one of
the classifications of Chap. 4.
Benchmark suites must be stable so that they enable the monitoring of the evo-
lution of the field over time. Moreover, they do not need to be run blindly since
they are run several times. Thus, they can be freely distributed and designers of
new systems can take advantage of them at any time.

Comparative evaluation allows for comparing the results of various systems or
several versions of the same system on a common task. Since the goal is to
compare systems, it is of the utmost importance that the rules and the evaluation
criteria are clearly specified.
Because it is difficult to guarantee that the systems are not tuned for the evalua-
tion, it is preferable to run blind tests or nearly blind tests. This means that the
participants become aware of the data set very shortly before the evaluation and
that the data set must be changed at each evaluation.
Finally, because it is run in a limited time span with relatively similar resources,
such an evaluation requires a well defined processing mode. In counterpart, this
allows acquiring more accurate nonfunctional measurements, such as run time
and memory.

Application-specific evaluation allows for comparing the results of various sys-
tems on the output of a particular application instead of considering the align-
ments in isolation. Such evaluations are useful for a company that has a real
application and wants to find the best system to use in this application. It can
also be useful for a competitive evaluation.

The goals of these three kinds of evaluations are different. Competence bench-
marks aim at helping system designers to evaluate their systems and to situate them
with regard to a common stable framework. It is also helpful for improving indi-
vidual systems. A comparative evaluation enables the comparison of systems on
general-purpose tasks. Its goal is mainly to help the improvement of the field as a
whole, rather than individual systems. It can also help users in selecting an appropri-
ate system. Application-specific evaluations aim at identifying an adequate system
for one particular application at one particular moment (see also Sect. 9.4).

9.1.5 Automation

The evaluation scheme presented in Sect. 9.1.4 (Fig. 9.1) suggests that by requiring
matchers to implement a minimal interface, it would be possible to automate evalu-

3http://www.spec.org.

http://www.spec.org
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ation. The SEALS (Semantic Evaluation at Large Scale) project4 experimented with
this and automated evaluation to a large extent. One of its goals was to provide an
infrastructure, the SEALS platform, for automatically executing evaluations. It has
been experimented with in two ways in OAEI:

− In 2010, a web service-based infrastructure was set up and used for three data
sets (Trojahn et al. 2010a): participants had to implement a web service interface
at their premises and the platform submitted them tests and recorded the results.
In this configuration, tool developers could trigger the evaluation and receive the
results.

− In 2012 (OAEI 2011.5 and 2012), participants submitted their system packaged
with a minimal Java interface to the platform in which the tools were run against
the tests. The SEALS modality was used for all data sets on ontology matching.
In this configuration, all tests were executed in the same environment but an
organiser had to run the tests.

The benefits of automation, as observed in SEALS, are as follows:

− Automatic and uniform results are provided.
− Since systems are not run by their designers, automation evaluates how systems

are portable.
− All systems are run in the same controlled environment. As a by-product, this

allows for meaningful performance measurements (see Sect. 9.3.4).
− New tests can be run on existing systems in order to check that they are correctly

designed.
− Reproducibility is enhanced (results are automatically archived).

As of now, evaluation organisers still have to run evaluation campaigns, but one
could imagine that system developers could run themselves tests. This would pro-
vide additional benefits: direct feedback to developers and no need for organisers to
supervise evaluation synchronously.

9.2 Data Sets for Evaluation

One very important aspect of evaluation is the data set used for performing it. Find-
ing a suitable data set is a critical issue because of the differences in form and
quality of the possible data sets. We present first different factors that can influence
evaluation (Sect. 9.2.1) and then discuss various data set categories (Sect. 9.2.2).

9.2.1 Dimensions and Variability of Alignment Evaluation

(Giunchiglia et al. 2009) proposed the following criteria for designing or selecting
data sets for ontology matching evaluation:

4http://www.seals-project.eu.

http://www.seals-project.eu
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− Complexity, i.e., that the data set is hard for state-of-the-art matching systems.
− Discrimination ability, i.e., that the data set can discriminate sufficiently among

various matching approaches.
− Incrementality, i.e., that the data set allows for incrementally discovering the

weaknesses of the tested systems.
− Monotonicity, i.e., that the matching quality measures calculated on subsets of

gradually increasing size converge to the values obtained on the whole data set.
− Correctness, i.e., that a reference alignment is available for the data set, and

allows for identifying correct and incorrect generated correspondences.

Each of the elements featured in the matching process definition (Chap. 2) can
have specific characteristics that influence the difficulty of the matching task. It is
thus necessary to identify and control these characteristics. We called them dimen-
sions because they define a space of possible tests.

Characterising the variability of matching tasks helps in assessing the limitations
of benchmark suites and designing benchmarks spanning the whole spectrum of
matching. Indeed, for each point in this variability space a specific test could be
designed. However, there could be too many of them and it is thus necessary, for
each data set, to choose among the most representative values for most of these
possible parameters.

These dimensions and the questions they raise are a refinement of the require-
ments that have been studied in Sect. 1.8. These requirements only considered gen-
eral categories called input and process. Such categories need to be refined for pre-
cisely defining what a particular application can expect from a matching system,
while the initial requirements concern application classes. Knowing the relations
between a data set and the dimensions can be used by the application designer for
finding a suitable data set with which to evaluate systems.

We review below the dimensions and justify some choices in designing bench-
marks. This extends the typology introduced in (Noy and Musen 2002a; Do et al.
2002) with regard to our definition of the matching process in Sect. 2.5.1.

Although the discussions usually conclude on a least common feature set for
evaluation, which can be observed from Chap. 8, OAEI has, over the years,
tested many uncommon settings, e.g., input alignments, different sets of relations,
application-specific evaluations.

Input Ontologies

Input ontologies o and o′ can be characterised by at least three different dimen-
sions:

Heterogeneity of the input languages: are they described in the same knowledge
representation languages?

Languages: what are the languages of the ontologies? Some examples of languages
include KIF, OWL, RDFS, F-Logic, UML, SQL DDL, or XML Schema.
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Number: is this an alignment between two ontologies or should it match more
ontologies?

As mentioned in Chap. 2, we consider here matching between homogeneous lan-
guages. The language used should be adapted to the kinds of features to be assessed
by the evaluation. Thus, for example, a data set about directory matching should
not be expressed in UML. However, the choice of language will also determine the
systems that can be evaluated. It is admissible that not all the evaluation campaigns
use the same languages.

Tasks involving multiple matching are very specific at the moment and only a
small number of algorithms are considering them (He and Chang 2006; Su et al.
2006). Therefore, we consider here only evaluation of the matching results between
two ontologies.

Input Alignment

The input alignment A can have the following characteristics:

Complete or update: Is the matching process required to complete an existing in-
put alignment or is it authorised to change it?

Multiplicity: How many entities of one ontology can correspond to one entity of
the other ontology?

It is reasonable to start with tests without input alignment, especially since this
helps focus on the intrinsic capabilities of matchers instead of capabilities of match-
ers helped by input.

Parameters and Resources

Parameters p and resources r of the matching process are identified as:

Oracles and resources: Are oracles permitted? If so, which ones (the answer can
be ‘any resource’)? Is user input allowed?

Training: Can training be performed on a sample?
Proper parameters: Are some parameters necessary? If so, what are they? This

point is quite important when a method is very sensitive to the variation of pa-
rameters. A good tuning of these must be available.

Many systems take advantage of some external resources, such as WordNet, sets
of morphological rules or a previous alignment of general-purpose catalogues, e.g.,
Yahoo and Google. In OAEI, for instance, it is perfectly possible to use these re-
sources as long as they have not been specifically tuned for the evaluation. Using a
sublexicon which is dedicated to the domain considered by the tests is prohibited.
On the contrary, it is perfectly accepted that the algorithms prune or adapt these re-
sources to the actual ontologies, as long as it is the normal process of the algorithm.
However, this processing time must be considered within the running time.



294 9 Evaluation of Matching Systems

Some algorithms may take advantage of the web for selecting resources that are
adapted to the considered ontology. This is acceptable, but may compromise the
replicability of the evaluation results.

In the current state, there is no consensus or valuable method for handling and
evaluating the contribution of user input to the matching process, so allowing it is
hard to account for.

Training on some sample is very often used by methods for matching ontologies.
Thus, providing a training set can be useful for comparing algorithms based on
machine learning. The training set can also be considered as some partial input
alignment.

Of course, some parameters can be provided to the methods participating in the
evaluation. However, these parameters must be the same for all tests. Only automatic
tuning (Sect. 7.6), as part of the matching process, is acceptable.

Output Alignment

We identify the following possible constraints on the output alignment A′ of the
algorithm:

Multiplicity: How many entities of one ontology can correspond to one entity of
the others, e.g., injective, total, one-to-one? (see Sect. 2.5.2).

Justification: Should a justification of the results be provided?
Relations: Should the relations involved in the correspondences be only equiva-

lence relations (=) or could they be of other types, such as subsumption (≤) or
incompatibility (⊥).

Strictness: Can the result be expressed with degrees of confidence different from
� and ⊥ or should they be hardened before?

In real life, there is no reason why two independently developed ontologies
should have a particular alignment multiplicity other than *:*. This should be the
default (non) constraint on the output alignment. However, if all tests provide some
particular type of alignment, e.g., ?:? in the EON ontology tests, this introduces a
bias. This bias can be suppressed by having each type of alignment equally repre-
sented. This is neither easy to find nor realistic. What would be realistic is to have a
statistical evaluation of the proportion of each type of alignment.

Another worthwhile feature for users is the availability of meaningful explana-
tions or justifications of the correspondences. However, in the absence of a standard
for explanations (see Sect. 11.3) it is not possible to evaluate them at the moment.

As mentioned in Chap. 8, some systems associate a relation between entities that
is different from equivalence, e.g., specificity, and some of them associate a degree
of confidence to the correspondence. Concerning the relation, not all algorithms
deliver the same structure, however, they can deliver equivalence. Thus, this is a
common ground for evaluation. When a larger set of relations become standard, it
will be worth taking them into account. As far as the degree of confidence is con-
cerned, reference alignments should express correspondences that hold or not. It is
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natural that reference alignments contain only � confidence measure. For the re-
sulting alignment, it is appropriate that an algorithm delivers a weighted alignment.
In particular, some useful measures take these weights into account (Sect. 9.3.1).
However, the lack of consensus on the interpretation of these weights renders such
alignments difficult to evaluate.

Matching Process

The matching process f itself can be constrained by:

Resource constraints: Is there a maximal amount of time or space available for
computing the alignment?

Language restrictions: Is the matching scope limited to some kind of entities, e.g.,
only classes?

Property: Must some property be true of the alignment? For instance, one might
want that the alignment is satisfiable (as defined in Chap. 2) or that it preserves
consequences or that the initial alignment is preserved, i.e., o, o′,A′ |=A.

Resource constraints can be considered either as constraining the amount of a
resource or a measure of the amount consumed (Sect. 9.3.4). It is an important
factor, at least for comparative evaluation, and must be measured. It can also be
measured for competence benchmarks, even if it is difficult due to the heterogeneity
of the environments in which benchmarking is performed.

Constraints on the kind of language construct to be found in alignments can be
designed. However, currently very few matching algorithms can match complex
expressions. Most of them match the identified (named) entities and some of them
are only restricted to concepts. With regard to its importance and its coverage by
current matching systems, it makes sense to ask for matching named entities and
consider complex expressions later.

The properties of the alignments provided by the matching algorithms are not
very often mentioned and they are very heterogeneous depending of the imple-
mented techniques. It is thus difficult to ask for particular properties.

9.2.2 Examples of Data Sets

Datasets for matching ontologies are not easy to find. The first problem is that they
require pairs of public and well-designed ontologies with a meaningful overlap.

Moreover, for evaluating the matching algorithms they should also provide ref-
erence alignments, making them even scarcer.

In addition, it is necessary to take into account the quality of the ontologies and
alignments: the ontologies are more interesting if their matching reflects realistic
matching problems and the alignments must be correct or, at least, be the expected
ones.
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Most of the reference alignments used for evaluation involve human judgements.
However, humans are not usually very good at matching ontologies manually (Tor-
dai et al. 2011). Thus, it would be useful to evaluate the task in which alignments are
embedded, e.g., information retrieval, web service invocation, instead of matching
itself.

Below are some examples of data sets that have been used so far.

OAEI Systematic Benchmark Suite

The data set made for the first OAEI campaign is an artificial data set built from one
OWL ontology on the bibliography topic. It contains 33 named classes, 24 object
properties, 40 data properties, 56 named individuals and 20 anonymous individuals.

This initial ontology is systematically and automatically altered by distorting
the features of ontology languages, e.g., names, properties, subclass relations. The
alteration results in a set of more than 50 pairs of ontologies. The kind of proposed
alignments is still limited: they only match named classes and properties and they
mostly use the equivalence relation with confidence of 1.

This data set can be considered as correct by construction. It is not realistic nor
very hard: it is based on small tests and offers some easy ways to reach the correct
result. It is especially made for evaluating the strengths and weaknesses of matching
systems. The initial data set has been used for every OAEI campaign in order to
measure the evolution of the field.

Since 2011, OAEI uses a benchmark suite generator able to generate similar test
suites from any ontology (see Sect. 9.2.3).

Large Scale Ontology Sets

There is a need for large scale ontologies to be matched. One early attempt to do this
has been reported in (Zhang et al. 2004). It consists in matching two large ontologies
from the domain of anatomy. The two considered ontologies are FMA and Galen.

These are huge real-world ontologies which contain classes, relations, text doc-
umentation and labelling. These ontologies contain thousands of classes and barely
no instance data.

This test case is obviously realistic. The experiments reported in (Zhang et al.
2004) show that it is difficult, and helps in finding weaknesses. The main problem
with the task is that it does not have a widely acknowledged reference alignment.

In the same spirit, OAEI 2012 proposed the task of matching FMA, SNOMED
CT, and the (US) National Cancer Institute Thesauri. The full ontologies or thesauri
contain respectively 78 989, 306 591, and 66 724 classes. The reference alignments
are taken from UMLS (Sect. 2.1.2) and come in two versions: the raw and incon-
sistent version and a refined consistent version. They respectively contain around
3 000 (FMA-NCI), 8 000 (FMA-SNOMED) and 18 000 (SNOMED-NCI) corre-
spondences. The test sets are further decomposed into three sets of increasing size.



9.2 Data Sets for Evaluation 297

Directory Sets

(Avesani et al. 2005) proposed a practical way to build test sets for matching web
directories or classifications. This has the advantage of generating automatically a
test set that changes with time. The idea is to consider two web directories, i.e.,
a hierarchy of topical web pages that index web pages, and to take advantage of
the corresponding indexed pages for deciding if two topics are equivalent. This can
already be considered as a matching technique in itself (Sect. 8.2.8).

This technique has been used in OAEI campaigns between 2005 and 2010. The
collection reported in (Avesani et al. 2005) contained from 300 000 to 800 000 top-
ics. It has been characterised by the authors as a difficult test.

Thesauri

There is currently a wealth of resources available from the fields of libraries, mu-
seums and more generally cultural heritage. These are thesauri covering hierarchies
of concepts considered as terms and large amounts of textual knowledge, usually
about pieces of art. A huge interest in using different thesauri together has created
the need for matching them.

For OAEI 2006, a pair of thesauri on the topic of food has been provided:
AGROVOC is a thesaurus for the Food and Agriculture Organisation and NAL
is a thesaurus from the US Agricultural department. They respectively contain
16 000 and 41 000 terms. The two test sets have been made available in SKOS
(Sect. 10.1.7).

This task can be considered as a representative of real-world matching problems.
These thesauri are certainly challenging with respect to their size. However, at the
moment, there is only a partial reference alignment for these tests.

Other Test Collections

The Illinois Semantic Integration Archive had offered until recently some of the data
sets used for evaluating various schema matchers presented in Chap. 8. Some data
sets for schema matching are also available: THALIA (Hammer et al. 2005) is a data
set of XML university course descriptions which is used for testing data integration
through queries (in XQuery), and (Marie and Gal 2008) offers a data set on finance
used by schema matchers. OAEI also uses the OntoFarm data set made of ontologies
on the conference domain coming from various origins. This data set is assumed
to be realistic and has the advantage of providing several ontologies of the same
domain. The MultiFarm data set (Meilicke et al. 2012) is a translation of OntoFarm
in 7 different languages (see Table 9.2). In addition, the ontology matching web page
refers to test cases that have been built and published by matching tools designers.5

5http://www.ontologymatching.org/evaluation.html.

http://www.ontologymatching.org/evaluation.html
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Table 9.2 summarises the characteristics of several available data sets used in
OAEI.

Table 9.2 Characteristics of test cases (adapted from (Euzenat et al. 2011)). ‘open’ evaluation is
made with already published reference alignments, ‘blind’ evaluation is made by organisers from
reference alignments unknown to the participants and ‘expert’ evaluation involves post hoc analysis
of results, by expert users.

Dataset Formalism Relations Confidence Modalities Language

benchmarks OWL = [0 1] open EN

generated b. OWL = [0 1] blind EN

anatomy OWL = [0 1] blind EN

largebio OWL =, ≤, ≥ [0 1] open EN

conference OWL-DL =, ≤ [0 1] blind+ open EN

multifarm OWL-DL =, ≤ [0 1] blind+ open EN+CN+RU+
FR+DE+NL+
PT

directory OWL =, ≤, ≥, ⊥ 1 blind+ open EN

library SKOS+OWL exact-, narrow-,
broadMatch

1 blind EN+NL+ FR

benchsubs OWL =, ≤, ≥ [0 1] open EN

ars RDF = [0 1] open EN

tap RDF = [0 1] open EN

iimb RDF = [0 1] open EN

vlcr SKOS+OWL exact-,
closeMatch

[0 1] blind expert NL+ EN

9.2.3 Test Generation

Instead of using existing data sets, it may be worth generating test cases automati-
cally. This has several advantages, such as (i) always providing a new test set, instead
of reusing known ones, (ii) controlling the parameters of the test set to what has to
be tested, and (iii) generating tests of various sizes for scalability experiments.

The main principle behind test set generation is that the generator introduces
variability, i.e., the generated sets are different, yet they can be controlled so that
a matcher always obtains results whose evaluation is the same, for a test generated
with the same parameters. This may require averaging over several tests instead of
a single test.

The OAEI benchmark generator starts with one ontology and generates a modi-
fied ontology and the alignment between the two ontologies. Because the program
generates the target ontology from the source ontologies, it records, without con-
testation, in the alignment the correspondences between entities. This generation is



9.2 Data Sets for Evaluation 299

based on elementary transformations (alterators) which apply one type of transfor-
mation. Alterators may be applied (i) partially so as to affect only a portion of the
ontologies, and (ii) sequentially to generate test cases with different transformations.

Several efforts took inspiration from the original OAEI Benchmark for gener-
ating test sets through alteration, e.g., for generating test sets for geographic web
services (Vaccari et al. 2012). In general, such efforts tend to publish the resulting
test set and not the generator. For example, both IIMB (Ferrara et al. 2008) and
ONTOBI (Zaiss et al. 2010) benchmarks have been developed for testing instance-
based ontology matching systems. On the same basis as the OAEI benchmark suite,
they add a large number of instances based on external sources (the Internet Movie
Database or Wikipedia data). The Swing approach (Ferrara et al. 2011a) is a further
effort to generate instance matching test sets taking the same approach. It introduces
a new interesting way of selecting data sets from which to generate benchmarks by
using patterns, and offers a variety of ways for altering data on the basis of an inter-
mediate ontology.

In XML schema matching, SGen (the schema generation part of STBenchmark)
(Alexe et al. 2008c, 2008b) generates tests (pairs of schemas) by altering a source
schema based on the specification of 11 scenarios (base alterators). The scenarios
are defined through a set of input parameters which include the characteristic param-
eter, e.g., nesting depth, number of subelements, length of joint paths, the standard
deviations to be applied for sampling each characteristic, and a repetition parameter.
It does not generate a reference alignment because it tests the result of the transfor-
mation from source instances into target instances.

The benchmarks of database schema matching systems closest to OAEI are those
of XBenchMatch (Duchateau et al. 2007a). Schema instances can also be included in
the generated schemas. XBenchMatch (Duchateau et al. 2007a) provides reference
integrated schema for evaluating matchers. It can be extended programmatically.

The initial OAEI Benchmark was automatically generated, but in an ad hoc way:
the generator applied to only one ontology. The Alignment API (Sect. 10.3.6) fea-
tures a test generator API (Euzenat et al. 2013). It offers an extendible library of
alterators which may be used programmatically for generating different test sets
from different seed ontologies and different alteration modalities. It allows different
modifications at each run of the program and the set of input parameters may be
adjusted in order to cover the problem space with any precision. It has been used
for reproducing the OAEI benchmark suite both with the original seed ontology and
with other ontologies. The generator has been used for generating test sets on the
model of OAEI benchmarks with different seed ontologies and different modalities.
This largely improved the variability of generated tests. Some of these generated
tests have been used in OAEI since 2011.

An automatic generator aiming at following a precise distribution has been pro-
posed in (Tournaire 2010). This approach generates the structure and the instances
of two taxonomies, and an alignment between these two generated taxonomies. Both
taxonomies must have a fixed size, and a Boltzmann sampler is used to achieve this.
The probabilistic model used ensures an equal probability of appearance of a tree
having a given size. Therefore, the input data is controlled using this sampler.
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9.3 Evaluation Measures

In order to evaluate the results of matching algorithms, it is necessary to confront
them with ontologies to be matched and to compare the alignments produced with
a reference alignment based on some criteria.

This section considers different possible measures for evaluating matching algo-
rithms and systems. This includes both qualitative and quantitative measures. We di-
vide them into compliance measures and performance measures. Compliance mea-
sures evaluate the degree of conformance of returned alignments to what is expected.
We will present some classical evaluation measures (Sect. 9.3.1) and measures es-
pecially designed for ontology matching evaluation (Sect. 9.3.2). We also discuss
measures designed to overcome the lack of a full reference alignment (Sect. 9.3.3).
Performance measures account for such features of algorithms as speed and mem-
ory consumption (Sect. 9.3.4). User-related measures focus on evaluation of user
interaction with a matching system (Sect. 9.3.5).

9.3.1 Compliance Measures

Compliance measures evaluate the degree of compliance of a system with regard
to some standard. One common standard is the use of a reference alignment R to
which the result from the evaluated matching algorithm A is compared. In what
follows, the alignments A and R are considered to be sets of correspondences, being
pairs of entities. As noted before (Sect. 9.2), such a reference output is not always
available, not always useful and not always consensual. However, for the purpose of
benchmarking, we can assume that it is desirable to provide such a reference.

Let us consider the case of the evaluation of three alignments on classes that must
be compared to the alignment of Fig. 2.9 (p. 45). This alignment is considered to be
the reference alignment (R) and contains three correspondences:

Book= Volume Person= Human Science= Essay (R)

The alignments to be compared are nearmiss (A1), farone (A2) and noncomplete (A3).
These are presented in Fig. 9.2. They are made of the following correspondences:

Product=.4 Volume Person=.7 Writer Science=.9 Essay (A1)

Book=.8 Volume Children=.4 Literature Pocket=.8 Essay (A2)

Book≤.7 Volume Person≥.7 Writer Person≤.6 Human (A3)

A first simple distance between two sets is the Hamming distance. It measures the
dissimilarity between two alignments by counting the joint correspondences with
regard to the correspondences of both sets.
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Definition 9.1 (Hamming distance) Given a reference alignment R, the Ham-
ming distance between R and some alignment A is a dissimilarity H : Λ ×
Λ→[0 1] defined as

H(A,R)= 1− |A∩R|
|A∪R| .

Example 9.2 (Hamming distance on alignments) Taking the class part of the align-
ment of Fig. 2.9, as the reference alignment, we can compare it with the result given
by the alignments of Fig. 9.2. The shorter the distance, the better. For A1 and A2,
the Hamming distance between these alignments is very high: .8. Indeed, both align-
ments only found one correct correspondence out of three. Thus, this results in two
inaccurate correspondences and two missed correspondences. The distance is even
higher for A3 (1.).

Fig. 9.2 Three class alignments between the ontologies of Fig. 2.7. These are to be compared with
the alignment of Fig. 2.9 restricted to class correspondences.

The most prominent criteria are precision and recall originating from informa-
tion retrieval (van Rijsbergen 1975) and adapted to ontology matching (Do et al.
2002). Precision and recall are based on the comparison of the resulting alignment
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A with a reference alignment R, effectively comparing which correspondences are
discovered and which are not. These criteria are well understood and widely ac-
cepted.

Precision measures the ratio of correctly found correspondences (true positives)
over the total number of returned correspondences (true positives and false posi-
tives; see Fig. 9.3). In logical terms, precision is meant to measure the degree of
correctness of the method.

Fig. 9.3 Two alignments as sets of correspondences and relations between them.

Definition 9.3 (Precision) Given a reference alignment R, the precision of some
alignment A is a function P :Λ×Λ→[0 1] such that

P(A,R)= |R ∩A|
|A| .

Precision can also be determined without explicitly having a complete reference
alignment. In this case, only the correct correspondences among the retrieved cor-
respondences have to be determined, namely R ∩A.

Recall measures the ratio of correctly found correspondences (true positives)
over the total number of expected correspondences (true positives and false neg-
atives). In logical terms, recall is meant to measure the degree of completeness of
the alignment.

Definition 9.4 (Recall) Given a reference alignment R, the recall of some align-
ment A is a function R :Λ×Λ→[0 1] such that

R(A,R)= |R ∩A|
|R| .

In the definition above, the letter R stands for both the recall function and the
reference alignment. Since one is a function and the other is a set, these are easy to
be distinguished by their use even if referred by the same letter.
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Fig. 9.4 Precision/recall curves for the yearly best results on the OAEI benchmark data set
2007–2010 (edna, edit distance on class names, is a simple matcher used as baseline). The curves
are obtained from the provided alignments in which correspondences are ordered by decreasing
confidence. For each decimal value v between 0 and 100, the algorithm selects the first correspon-
dences in order to reach v % recall, i.e., the corresponding percentage of correspondences from the
reference alignment, and it reports the precision at that point, i.e., with only these correspondences.

When comparing systems in which precision and recall can be continuously de-
termined, it is convenient to draw the precision/recall curve, or precision@k, i.e.,
precision at k % recall, and compare these curves (see Fig. 9.4). There are two ad-
vantages to these curves: (i) they allow for the comparison of alignments with con-
fidence measures; (ii) they are independent from the interpretation of confidence:
only its induced order is relevant. More generally, it is always possible to plot any
measure@k to understand what recall the optimal measure would provide. This kind
of measure is widespread when presenting results (in the TREC competitions for in-
stance). It is computed slightly differently here because no interpolation is produced.

Noise and silence are the complement measures of precision and recall. These are
defined as follows: Noise(A,R)= 1− P(A,R) and Silence(A,R)= 1−R(A,R).

The fallout measures the percentage of false positives over the incorrect corre-
spondences, and the miss measures the percentage of false negatives over the non-
retrieved correspondences.

Definition 9.5 (Fallout) Given a reference alignment R, the fallout of some align-
ment A is a function F :Λ×Λ→[0 1] such that

F(A,R)= |A \R|
|C ×C′ ×Θ \R| .
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Definition 9.6 (Miss) Given a reference alignment R, the miss of some alignment
A is a function M :Λ×Λ→[0 1] such that

M(A,R)= |R \A|
|C ×C′ ×Θ \A| .

Although precision and recall are the most widely and commonly used measures,
when comparing systems one may prefer to have only a unique measure. Moreover,
systems are often not comparable based solely on precision or recall. The one which
has higher recall may have a lower precision and vice versa. So, it is not a good idea
to compare systems on precision or recall alone. For this purpose, two measures are
introduced which aggregate precision and recall: F-measure and overall.

Definition 9.7 (F-measure) Given a reference alignment R and a number α between
0 and 1, the F-measure of some alignment A is a function Mα :Λ×Λ→[0 1] such
that

Mα(A,R)= P(A,R)×R(A,R)

(1− α)× P(A,R)+ α×R(A,R)
.

If α = 1, then the F-measure is equal to precision and if α = 0, the F-measure is
equal to recall. In between, the higher the value of α, the more importance is given
to precision with regard to recall. Very often, the value α = 0.5 is used, i.e.,

M0.5(A,R)= 2× P(A,R)×R(A,R)

P (A,R)+R(A,R)
.

This is the harmonic mean of precision and recall.
The F-measure attempts at balancing the importance of precision and recall so

that it is not possible to compensate one for the other: if they are equal, then the
F-measure will be the same, but if they are not equal, F-measure will be below their
average:

min
(
P(A,B),R(A,B)

)≤Mα(A,B)≤ P(A,B)+R(A,B)

2

Such a measure may be used for selecting the parameters, in particular, a thresh-
old to put on the results, such that the F-measure is optimal. Moreover, it allows
comparing systems by their precision and recall at the point where their F-measure
is maximal.

The overall measure, also defined in (Melnik et al. 2002) as matching accuracy,
is the ratio of the number of errors on the size of the expected alignment. It may be
considered as an edit distance between an alignment and a reference alignment in
which the only operation is ‘error correction’. In this respect, it is considered as a
measure of the effort required to fix the alignment. The overall is always lower than
the F-measure and it ranges between [−1 1]. In fact, if precision is under .5 overall
has a negative value denoting that repairing the alignment is not worth the effort.
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Definition 9.8 (Overall) Given a reference alignment R, the overall of some align-
ment A is a function O :Λ×Λ→[−1 1] such that

O(A,R)=R(A,R)×
(

2− 1

P(A,R)

)
.

Alternatively, it can also be defined as

O(A,R)= 1− |(A∪R)− (A∩R)|
|R| = 1− |R −A| + |A−R|

|R| .

Table 9.3 illustrates the use of these measures.

Table 9.3 Results of the evaluation measures for the three alignments of Fig. 9.2 as well as for the
reference alignment itself. For Fallout and Miss, values are expressed with respect to ε which is in
this case around 10−3.

Alignment Precision Recall F-measure Fallout Miss Overall

refalign 1.00 1.00 1.00 1.00 0.00 0.00

nearmiss (A1) 0.33 0.33 0.33 2ε 2ε −0.33

farone (A2) 0.33 0.33 0.33 2ε 2ε −0.33

noncomplete (A3) 0.00 0.00 0.00 3ε 3ε 0.00

Typically, when using the same matcher on different tasks, performances may
vary. One strategy with respect to this is to test matchers on tasks similar to a target
task (see Sect. 9.4). Another strategy is to evaluate the measure on various different
tasks and try to deduce guarantees on any new tasks. (Niu et al. 2011) proposed
measures of stability of a matcher that aggregate the results of several evaluations.
Roughly speaking, these measures compute for each task the F-measure optimal
threshold, i.e., the threshold for which, if the alignments are reduced to correspon-
dences above it, F-measure is optimised. The smaller the standard deviation of this
measure or the smaller the standard deviation of the difference between the optimal
F-measure and the F-measure obtained by the average F-measure optimal thresh-
old, the more stable the matcher, i.e., the closest to the optimum the average of
these values is. This method does not only provide a stability evaluation measure,
but an effective means of computing the threshold.

9.3.2 Generalising Precision and Recall

The classical precision and recall measures described above consider the alignments
as simple sets. This means that they do not take into account specifics of alignments
such as:
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− They may be assigned confidence: an incorrect correspondence with low confi-
dence is better than one with high confidence;

− They may be interpreted in the context of the ontology structure: a correspon-
dence which is close to the expected one is better than one which is remote;

− They may be interpreted logically: a correspondence which is entailed by the
reference alignment should be considered correct.

This does not help in comparing alignments: the lines A1 and A2 of Table 9.3 are
identical.

As precision and recall are well-understood measures, it is preferable to extend
them. This also ensures that measures derived from precision and recall, e.g., F-
measure, still can be computed easily. We provide below three generalisations of
precision and recall dealing with these problems.

Weighted Precision and Recall

Confidence-weighted precision and recall are designed for taking into account con-
fidence provided by matchers in the evaluation of precision and recall. They assess
the capacity of matchers to provide good confidence in a complementary way as
precision and recall. For that purpose, if a matcher has provided an incorrect cor-
respondence, but with a low confidence, it should not be penalised by 1, but by
a measure of its confidence. Similarly, if it has provided a correct correspondence
with a low confidence, it should not be rewarded more than its confidence. Weighted
precision and recall are defined as follows.

Definition 9.9 (Weighted precision and recall) Given a reference alignment R, the
weighted precision of some alignment A is given by

PW(A,R)=
∑

c∈A 1− |κA(c)− κR(c)|
|A|

and weighted recall is given by

RW(A,R)=
∑

c∈R 1− |κA(c)− κR(c)|
|R|

Confidence values (given by the κ function) are assumed to have a difference
operation ranging between 0. and 1. These measures take into account confidences
in the reference alignment for preserving the symmetry of precision and recall. But
when the reference has only correspondences with full confidence, as usual in OAEI,
the measures may be simplified. However, this may also be used for dealing with
reference alignment assessed by several person: in this case, each particular cor-
respondences can be assigned a confidence corresponding to the ratio of assessors
who have considered the correspondence correct:

κR(c)= |assessors choosing c|
|assessors|
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These measures are useful because they integrate the capacity of the matcher
to highlight the correspondences worthy of attention by a human user. Contrary
to precision/recall curves, however, they do not deal with the different scales of
confidence that matchers may use.

If an alignment contains only 1. confidences, then it scores exactly as in classical
precision and recall (given that the reference contains only 1. as well). Otherwise,
it scores for the amount of confidence. If the correspondence is correct, this will
contribute to decreasing recall—it will be counted for less than 1.—, if the corre-
spondence is incorrect, this will increase precision—by counting the mistake for
less than 1. This rewards systems able to provide accurate confidence measures (or
penalises less mistakes on correspondences with low confidence). So, weighted re-
call may decrease if correct correspondences are given with low confidence (they
may also decrease precision in case the reference alignment has lower confidence).

Relaxed Precision and Recall

Classical precision and recall have a drawback: whatever correspondences have not
been discovered are definitely not considered (all-or-nothing). As a result, they do
not discriminate between an alignment that may be very close to the expected result
and another remote from it, and they do not measure the effort required from users
to correct alignments. In fact, the alignment A1 of Fig. 9.2 is arguably better than
the alignment A2. However, as testified in Table 9.3, they score exactly the same for
all presented measures.

Often, it makes sense to not only have a decision whether a particular corre-
spondence has been found or not, but also a measure of the proximity of the found
alignments. This implies that near misses are also taken into consideration instead
of only exact matches.

Moreover, the alignments have to go through users scrutiny and correction be-
fore being used. Therefore, it is worth measuring the effort required from users for
correcting the provided alignment instead of only if some correction is needed. This
also calls for a relaxation of precision and recall.

Similar remarks have been made in computational linguistics and some solutions
have been proposed in (Langlais et al. 1998; Sun and Lin 2001). In the context of
alignment evaluation, (Ehrig and Euzenat 2005) investigated relaxing precision and
recall in order to overcome these problems. Relaxing precision and recall amounts
to measuring the proximity of alignments rather than the strict size of their overlap.
Instead of taking the cardinality of the intersection of the two sets |R ∩A|, natural
relaxations of precision and recall measure their proximity ω(A,R). Moreover, the
relaxed measure is required to preserve positiveness, maximality and boundedness
satisfied by |R ∩A|.

Definition 9.10 (Relaxed precision and recall) Given a reference alignment R and
an overlap function ω between alignments, the relaxed precision of an alignment A



308 9 Evaluation of Matching Systems

is

Pω(A,R)= ω(A,R)

|A| ,

and relaxed recall is

Rω(A,R)= ω(A,R)

|R| ,

such that ω satisfies the following conditions:

∀A,B,ω(A,B)≥ 0 (positiveness)

∀A,B,ω(A,B)≤min
(|A|, |B|) (maximality)

∀A,B,ω(A,B)≥ |A∩B| (boundedness)

Symmetry is not required, especially since R and A are not in symmetrical posi-
tions: the former is the reference and the latter is judged against it. There are many
different ways to design a proximity between two sets satisfying these properties.

From this simple set of constraints, several concrete measures detailed in (Ehrig
and Euzenat 2005) have been designed:

Symmetric calculates the distance in the ontologies between the found entities and
the reference ones. The closer they are, the higher the similarity.

Effort-based computes the effort necessary to modify the errors found in the align-
ments: it is based on a model of what is involved in modifying an alignment
through an alignment editor for retrieving the reference alignment. This mea-
sure is arguably better than the overall (Melnik et al. 2002) presented before
because it can weight differently different errors depending on the difficulty to
correct it which itself depends on the editing environment used.

Oriented is a specific measure which uses a different ω for precision and recall
depending on the impact an error has on these measures. For example, when
one wants to retrieve instances of some class, a subclass of the expected one is
correct but not complete and thus affects recall but not precision. This measure
is targeting application-specific evaluation (see Sect. 9.4).

If these proposed precision and recall measures are applied to the alignments of
Fig. 9.2, they yield the results of Table 9.4. They mainly illustrate entity pair simi-
larities, as relations and confidences are always identical. For the oriented measure
we assume that the query is given in ontology o and the answer has to be retrieved
from ontology o′. Since the oriented measure is nonsymmetric, one has to define the
direction beforehand.

The presented relaxed measures keep precision and recall untouched for the best
alignment R and they help discriminate between irrelevant alignments, such as A2

(farone), and those which are not far from target ones, like A1 (nearmiss). However,
they do not, except partially the oriented measure, account for the correctness of A3

(noncomplete).
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Semantic Precision and Recall

For solving this last problem, semantic versions of precision and recall have been
proposed (Euzenat 2007). The natural semantic extension of these measures consists
of using the set of α-consequences (see Sect. 2.5.3) instead of |A∩R|. So, A and R

are replaced by their respective α-closures: Cnα
{o,o′},{A}(o, o′) and Cnα

{o,o′},{R}(o, o′)
(abbreviated into Cnα(A) and Cnα(R)). In this case, true positives are the corre-
spondences that are consequences of both alignments, and the usual definitions of
true and false positives and negatives are extended to alignment consequences.

Definition 9.11 (Ideal semantic precision and recall) Given a reference alignment
R, the ideal semantic precision of some alignment A is

Pideal(A,R)= |Cnα(R)∩Cnα(A)|
|Cnα(A)|

and the ideal semantic recall is

Rideal(A,R)= |Cnα(R)∩Cnα(A)|
|Cnα(R)|

This ideal way of dealing with semantic precision and recall can be applied to any
language with a semantics. It is not restricted to alignments and as soon as the notion
of consequence is defined, it can be applied. However, it has a major drawback:
both numerator and divisor may be infinite, yielding an undefined result. Even with
finite ontologies, this can come from the expressiveness of the entity language. If
c ≤ (atmost np′), then for any n′ ≥ n, c ≤ (atmost n′p′) is an α-consequence.

So, semantic precision and recall were proposed, which avoid this problem:

Definition 9.12 (Semantic precision and recall) Given a reference alignment R, the
semantic precision of some alignment A is

Psem(A,R)= |A∩Cnα(R)|
|A|

and the semantic recall is

Rsem(A,R)= |Cnα(A)∩R|
|R|

Both values are defined when the alignments are finite. Moreover, the measures
can be computed if there exists a complete and correct prover for the languages be-
cause there is always a finite set of assertions to check, i.e., Cnα(A) ∩ R = {μ ∈
R;A |= μ}. It is still possible to artificially improve precision of this last version,
by adding all consequences to A, so adaptations have been provided (David and
Euzenat 2008). This measure has been implemented in (Fleischhacker and Stucken-
schmidt 2010) and in the Alignment API (Sect. 10.3.6).
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Examples of measures introduced so far are given in Table 9.4. From Table 9.4,
the precision of Alignment A3 has become 1. showing the correctness of the align-
ment (all its correspondences are entailed by the reference alignment).

Table 9.4 Generalised precision and recall results on the alignments of Fig. 9.2 (best results are
in bold).

ω reference nearmiss farone noncomplete

(R,R) (R,A1) (R,A2) (R,A3)

P R P R P R P R

standard 1.00 1.00 0.33 0.33 0.33 0.33 0.00 0.00

weighted 1.00 1.00 0.30 0.30 0.27 0.27 0.00 0.00

symmetric 1.00 1.00 0.50 0.50 0.33 0.33 0.33 0.33

effort-based 1.00 1.00 0.53 0.53 0.33 0.33 0.33 0.33

oriented 1.00 1.00 0.66 0.50 0.33 0.33 0.50 0.50

semantic 1.00 1.00 0.33 0.33 0.33 0.33 1.00 0.00

9.3.3 Sampling and Relative Precision and Recall

It may happen that a reference alignment is not available, in particular because the
population to consider, i.e., QL(o) × QL′(o′) × Θ , is far too large to assess pre-
cisely. In this case, a reference alignment is usually built on a subset A0 of this
population.

In order to do this, one must first select a sample on which to compute the
measures (this is called sampling). Then this sample has to be evaluated by asses-
sors.

There are typically three techniques for sampling:

− simple sampling selects a fully random subset of the population,
− stratified sampling considers that the population is divided into subsets and ran-

dom sampling is applied to each of these subsets (measures can then be weighted
by the respective sizes of these subsets),

− clustered sampling considers that the population is clustered into subpopulations,
each representative of the whole population, and then several such clusters are
selected.

In random sampling, the probability of obtaining correct correspondences are usu-
ally low and this requires to select a still large space. In ontology matching, sam-
pling may also be achieved by first sampling the ontologies and taking the whole
correspondence space between ontology samples. (van Hage 2007) studied the var-
ious methods of sampling and assessing alignments and proposed using stratified
sampling for precision and clustered sampling for recall.
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An alternative strategy, called pooling, consists of selecting samples from among
the correspondences returned by the matchers to evaluate. A sample is then obtained
and used as a subset of the correspondence space. It may be obtained by merging to-
gether all correspondences returned by each system or a randomly selected number
of correspondences from each system.

Once the sample A0 has been determined it has to be evaluated, i.e., to be de-
cided which correspondences are correct. This sample alignment is then evaluated
by experts for correctness. This provides a partial reference alignment R0 ⊆A0. It is
advised to obtain several evaluations from several assessors. Indeed, from one per-
son to another, the reference alignment may vary a lot (Tordai et al. 2011). It is thus
useful to retain the consensus between assessors, either by voting or by reaching an
agreement.

Once a reference alignment is available, it is possible to define relative precision
and recall.

Definition 9.13 (Relative precision and recall) Given a partial reference alignment
R0 on a sample alignment A0, the relative precision of some alignment A is

P 0(A,R0)= P
(
A∩A0,R0)= |A∩R0|

|A∩A0|
and relative recall is

R0(A,R0)=R
(
A∩A0,R0)= |A∩R0|

|R0|
We call these two measures relative because they are relative to the sample that

has been extracted. These are not anymore absolute measures.
Recall is expected to be higher than actual recall because it is based only on

correspondences that at least one system returned, leaving aside those that no system
were able to return.

Another related measure is residual recall or recall + (Euzenat et al. 2007a),
which consists of determining an alignment B from a baseline algorithm and mea-
suring recall only on correspondences not in this alignment. This measure concen-
trates on the hardest part of matching.

Definition 9.14 (Residual recall) Given a reference alignment R and a set of cor-
respondences B ⊆ R considered as easy, the residual recall of some alignment A is
given by

RB(A,R)=R(A,R \B)= |A∩R \B|
|R \B|

A relative version of residual recall would consist of taking the intersection of all
the alignments to evaluate as B .
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9.3.4 Performance Measures

Performance measures assess the resources consumed for matching two ontologies.
They may be used when the algorithms are 100 % compliant or balanced against
compliance (Ehrig and Staab 2004). We mention some of these criteria below.

Unlike compliance measures, performance measures depend on the processing
environment and the underlying ontology management system. Thus, it is difficult
to obtain objective evaluations. It is important that compared algorithms are run
under the same conditions.

Speed

Speed is measured by the amount of time taken by the algorithms for performing
their matching tasks. It should be measured in the same conditions, i.e., same pro-
cessor, same memory consumption, for all the systems. Other measures may involve
limited resources. If user interaction is required, one has to ensure that only the pro-
cessing time of the matching algorithm is measured.

Network

Besides speed, some systems may use network connectivity in order to achieve
matching, typically for accessing external ontologies (see Sect. 7.3) or alignments.
The network comsumption may be measured or limited in terms of bandwidth or
throughput.

Memory

The amount of memory used for performing the matching task is another perfor-
mance measure. Due to the dependency with underlying systems, it could also make
sense to measure only the extra memory required in addition to that of the ontology
management system, but it still remains highly dependent.

Scalability

There are two possibilities for measuring scalability, at least in terms of speed and
memory requirements. Firstly, it can be assessed by a theoretical study. Secondly,
it can be assessed by evaluation campaigns with quantified tests of increasing com-
plexity. From the results, the relationship between the complexity of the test and the
required amount of resources can be represented graphically and the mathematical
relationship can be approximated.
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9.3.5 User-Related Measures

So far, the measures have been machine focussed. In some cases, algorithms or
applications require some kind of user interaction. This can range from users using
the alignment results to concrete user input during the matching process. In this
case, it is even more difficult to obtain an objective evaluation. Below we discuss
measures which involve users in the evaluation loop.

Level of User Input Effort

If algorithms require user intervention, this intervention may be measured in terms
of some elementary information users provide to the system, e.g., the number of
correspondences. When comparing systems which require different input or no input
from users, it is necessary to consider a standard for elementary information to be
measured. This is not an easy task.

Oracle-Based Measures

It is possible to organise the evaluation of matchers requiring user input by allowing
matchers to query at any time an oracle for the relation between two entities. When
a reference alignment is available, the oracle can be easily simulated: the protocol
would constrain matchers to providing alignments before and after oracle queries,
so that it would be possible to compute measure@k, which stands for any of the
standard measures (Sect. 9.3.1) and such that k is the number of queries to the
oracle (Paulheim et al. 2013).

Such a protocol would have the advantage of being independent from the use
of the input for anchoring, disambiguating (Sect. 7.8.1), debugging (Sect. 7.8.2), or
tuning (Sect. 7.6) matchers.

General Subjective Satisfaction

From a use case point of view it makes sense to directly measure user satisfaction.
As this is a subjective measure, it cannot be assessed easily. Extensive preparations
have to be made to ensure a valid evaluation. Almost all of the objective measures
mentioned so far have a subjective counterpart. Possible measurements include

− input effort,
− speed,
− resource consumption, e.g., memory,
− output exactness, related to precision,
− output completeness, related to recall, and
− understandability of results, e.g., explanations.

Due to its subjective nature numerical ranges as evaluation results are less appropri-
ate than qualitative values, such as very good, good, or satisfactory.
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9.4 Application-Specific Evaluation

So far evaluation has been considered in general. However, the evaluation could
also be considered in the context of a particular application or a particular kind of
applications. Application-specific evaluation is dedicated to find a suitable system
for a particular task. This is especially useful for application designers who need
to integrate a matching system and this complements the requirement satisfaction
analysis presented in Sect. 8.5.

There are two main complementary ways to design application-specific evalua-
tions: (i) using a specific test set and experiment design; (ii) interpreting the results
with an application-oriented bias. As a matter of fact, there are tasks which require
high recall, e.g., matching as a first step of an interactive merge process, and others
which require high precision, e.g., automatic matching for autonomously connect-
ing two web services.

We consider below these two possibilities, starting from the latter.

9.4.1 Aggregating Measures

(Ehrig 2007) provided an analysis of the different needs for evaluation depending
of the considered applications. We have applied this technique to the requirements
of Table 3.1 (p. 59). As a matter of fact, it can be rewritten with respect to the
measurements developed in this chapter. We used this technique to design Table 9.5.
This table is slightly more detailed than Table 3.1 because it uses three values instead
of two. Here ‘low’ corresponds to not relevant, ‘high’ corresponds to relevant and
‘medium’ corresponds to an intermediate position. Therefore, different application
profiles could be established to explicitly compare matching algorithms with respect
to certain tasks.

Table 9.5 Application requirements of Table 3.1 reinterpreted as measurement weights.

Application speed automatic precision recall

Ontology evolution (Sect. 1.1) medium low high high

Schema integration (Sect. 1.2) low low high high

Catalogue integration (Sect. 1.2) low low high high

Data integration (Sect. 1.2) low low high high

P2P information sharing (Sect. 1.4) high low medium medium

Web service composition (Sect. 1.5) high high high low

Multi agent communication (Sect. 1.6) high high high medium

Context matching in ambient computing
(Sect. 1.6)

high high high medium

Semantic web browsing (Sect. 1.7) high medium medium low

Query answering (Sect. 1.7) high medium high medium
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Such a table can be useful for aggregating the measures corresponding to each of
these aspects with different weights or to have an ordered way to interpret evaluation
results.

Different measures suit different evaluation goals. If we want to improve systems,
it is best to have as many indicators as possible. However, in order to single out
the best system, it is generally better to focus on the very relevant factors. This
can be achieved by only selecting the few very relevant factors, e.g., speed and
precision for query answering, or by aggregating measures in relation with their
relevance.

For aggregating measures depending on a particular application, its is possible
to use weights corresponding to the values of Table 9.5, and thus respecting the
importance of each factor. Weighted aggregation measures, such as those presented
in Sect. 7.4 (weighted sum, product or average), can be used.

F-measure is already an aggregation of precision and recall. It can be generalised
as a harmonic mean, for any number of measures. This requires us to assign every
measurement a weight, such that these weights sum to 1. Obviously, the weights
have to be chosen carefully depending on the goal.

Definition 9.15 (Weighted harmonic mean) Given a reference alignment R, a set
of measures (Mi)i∈I provided with a set of weights (wi)i∈I between 0 and 1, the
weighted harmonic mean of some alignment A is

W(A,R)=
∑

i∈I wi∑
i∈I

wi

Mi(A,R)

.

Example 9.16 (Weighted aggregation of evaluation measures) Consider that we
need to choose among two available systems S1 and S2, delivering A1 and A2,
for an application, such as schema integration, peer-to-peer system or query an-
swering. We apply weights corresponding to the criteria of Table 9.5. The weights
are high= 5, medium= 3 and low= 1. They are normalised (so as to sum to 1.) for
each kind of application. The performance of the systems with regard to the criteria
are given in the following table as well as the resulting harmonic means for each
pair system×application:

S1 S2
Speed .8 .5
Automatic 1. 1.
Precision .7 .9

Speed Automatic Precision Recall .8 .8

Schema integration .08 .08 .42 .42 .77 .81
Peer-to-peer system .42 .08 .25 .25 .79 .66
Query answering .31 .19 .31 .19 .80 .72
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Those who need a matching system for a peer-to-peer or query answering ap-
plication should choose system S1 (.79 and .80 are better than .66 and .72) and
those who want to use it for schema integration should use system S2 (.81 is bet-
ter than .77). The importance of speed in the two first applications outweights the
relatively lower precision.

9.4.2 Evaluation Setting

Application-specific evaluation can also be carried out by having a specific evalu-
ation setting. This is similar to the task-based evaluation used in ontology learning
(Porzel and Malaka 2004). It has the advantage of being more realistic than artificial
test beds and of providing very specific information, but the drawback is that it has
to be changed for each different application.

An application-specific evaluation has to start with a selection of the task corre-
sponding to the application, as described in Sect. 9.2.1. It is moreover useful to set
up experiments which do not stop at the delivery of alignments but carry on with
the particular task. This is especially true when there is a clear measure of success
of the overall task. Such a setting assists in focussing on the most useful issues for
the task. For instance, it may be the case that the gain in accuracy in one algorithm
over another is not useful for the task while the gain in speed of the latter really
matters. If no clear measure is available, then using a weighted aggregation measure
as suggested above would help.

An early attempt to introduce application-specific measures was made in the li-
brary test case (a variation of the cultural heritage case in Sect. 1.2) of OAEI 2008
(Isaac et al. 2008). The organisers had to evaluate ontology matching for the purpose
of reindexing the catalog of the Dutch national library, indexed by two different the-
sauri. The organisers only had a partial reference, obtained by pooling the results
given by participants and asking librarians to compare these results.

In addition to assessing this theoretical precision and recall, they assessed the
quality of the alignments by using them in reindexing. A proportion of the books
was annotated by both thesauri, so it was possible to use the alignments to transform
the annotations in one of the thesauri and to compare the result with the actual
annotations (with precision and recall). Doing so assessed the alignments relative
to the real task on which they had to be applied, instead of absolutely: it ignored
correspondences which are never used and gave more importance to those which
were used often. The results were actually lower than the absolute precision and
recall.

However, the organisers did not stop there and asked actual librarians to evaluate
the transformed annotations. This allowed for computing new precision and recall
values which this time were still not as high as the theoretical precision and recall,
but far above the previous ones. Indeed, even if the transformed annotations were
not those of the corpus, they were not necessarily incorrect. This scenario and others
are presented in (Isaac et al. 2009).
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Nevertheless, it is extremely difficult to determine the evaluation value of the
matching process independently. The effects of other components of the overall
application have to be carefully filtered out.

9.5 Summary

As noted before, it is very difficult to know a priori the quality to expect from a
matching system. For that purpose, evaluation of matching systems must be per-
formed. The evaluation must apply to all aspects of these systems: their availability,
their capacity to provide accurate alignments in a desirable time, etc.

At least two difficulties arise when evaluating matching systems. Matching tasks
are so different that a system can perform very well on some data and not that
well on some other. It is thus necessary that evaluation data sets be as different as
possible and that results are kept separate so that someone with a particular task can
choose a system that performs adequately on this task. The second difficulty is the
choice of evaluation criteria. As mentioned in Sect. 9.3.2, precision and recall are
not always appropriate for ontology matching and must be improved to account for
the semantics of ontologies.

Over several years, the Ontology Alignment Evaluation Initiative (Sect. 9.1.3)
has become the reference evaluation exercise for ontology matching. It provides
quality benchmark suites that system designers can use for training their systems and
organises evaluation campaigns for comparing systems. The main purpose of OAEI
is to improve the quality of ontology matching algorithms by continuous comparison
with other new methods. This seems to have been successful (Euzenat et al. 2011).

Once a matcher has been evaluated and selected, it has to be put to work. This
is presented in the following chapters, discussing how alignments can be handled
and represented (Chap. 10), how users can be involved in the matching process
(Chap. 11), and how resulting alignments can be processed (Chap. 12).



Part IV
Representing, Explaining, and Processing

Alignments



Chapter 10
Frameworks and Formats: Representing
Alignments

Once matching has been performed, the resulting alignments are usually used in
a wider context than a matching system itself. Several proposals have been made
for representing the alignments and exchanging them among tools. This chapter
presents some frameworks and formats for doing so. In particular, we address the
following aspects:

− Formats and languages that enable the syntactic expression and the manipulation
of alignments and that can be used for exchanging alignments across applications
(Sect. 10.1).

− Metadata that helps communicate and share correspondences and alignments by
qualifying them better for further reuse (Sect. 10.2).

− Frameworks that provide a wider set of operations for manipulating alignments.
These frameworks and languages are usually not concerned with the way align-
ments are found. They, at best, define a match operation which generates align-
ments. However, they allow plugging in matching methods whose alignments
can be manipulated (Sect. 10.3).

We consider these alignment representations independently from their usage,
which will be presented in Chap. 12. However, there is a strong relation between
them.

10.1 Alignment Formats

Ontology alignments are sets of relationships between ontology entities. Align-
ments can be expressed in various languages. For instance, the two relations = and
≤ may be expressed in OWL (Sect. 10.1.2) through owl:equivalentClass and
rdfs:subClassOf, but they can also be expressed in SKOS (Sect. 10.1.7) through
skos:exactMatch and skos:broaderMatch. Other applications may mandate
a different form like views in databases, mediators in web services frameworks or
even merged ontologies. The advantage of these latter representations is that they
can be processed.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_10,
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However, application-specific output is not particularly interoperable. It is not
easy to transform a database view into OWL axioms or SKOS statements into ODE-
Dialect (Corcho and Gómez-Pérez 2007). Indeed, when an alignment is expressed
in OWL, it is only possible to ‘merge’ two OWL ontologies; it cannot easily be
used to transform queries. Moreover, such formats are not easy to share and retrieve
(Sect. 3.8) nor to manipulate (see Sect. 3.7), e.g., for merging the results of several
matchers, if they do not use a format that supports such manipulations.

As Chap. 8 indicates, many matching systems deliver alignments. Applications
could use this property for replacing a matcher by another one or combining several
of them. Unfortunately, the alignment is very often output as a mere list of pairs,
HTML table or similarity matrix. We consider here what could be a proper format
in order for these systems to interoperate.

Hence, in order to avoid early commitment to a particular type of usage, it is
preferred to keep the alignments in a declarative language. Such a language al-
lows for manipulating and composing alignments as well as for generating the re-
quired representation (OWL, SKOS and others) when necessary. Using a neutral
and declarative representation provides the opportunity to distribute and share align-
ments among applications. This is why, though in the remainder of this section we
consider how to represent alignments in different formats and languages, elsewhere
in this book, only ‘alignments’ are considered.

We briefly present various formats that have been proposed so far for express-
ing relations between ontologies. We mostly compare these formats on the basis of
their syntax. An earlier deeper analysis of some of these in terms of semantics and
expressiveness is provided in (Serafini et al. 2005; Zimmermann and Euzenat 2006).

For the purpose of a uniform comparison of these formats, we use an example
that extends the one of Fig. 2.9. It expresses that

− a Science book in the left-hand side ontology corresponds to an Essay whose
subject is an instance of Science in the right-hand side ontology,

− a Pocket book in the left-hand side ontology corresponds to a Volume whose size

is less than 14 in the right-hand side ontology,
− a Book which has politics as a topic in the left-hand side ontology corresponds to a

Politics essay in the right-hand side ontology, and
− a Writer in the left-hand side ontology is someone who has authored a volume in

the right-hand side ontology.

We will consider that the first ontology is identified by the XML &onto1; en-
tity or the http://book.ontologymatching.org/example/culture-shop.owl URL and the sec-
ond ontology is identified by the XML &onto2; entity standing for the http://book.

ontologymatching.org/example/library.owl URL.
Three of these extra correspondences are displayed in Fig. 10.1. When translated

into first-order logic, these can be represented as follows:

∀x, Pocket(x)≡ Volume(x)∧ size(x, y)∧ y ≤ 14

∀x, Science(x)≡ Essay(x)∧ (∀y, subject(x, y)⇒ Science(y))

http://book.ontologymatching.org/example/culture-shop.owl
http://book.ontologymatching.org/example/library.owl
http://book.ontologymatching.org/example/library.owl
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∀x, Book(x)∧ topic(x,politics)≡ Politics(x)

∀x, Writer(x) ⇐ ∃y, author(y, x)

Fig. 10.1 Three correspondences that can be expressed in an elaborate alignment format.

Let us discuss the main formats available for expressing such alignments.

10.1.1 MAFRA Semantic Bridge Ontology (SBO)

MAFRA (Pinto da Silva 2004; Mädche et al. 2002) stands for MApping FRAme-
work1 (see also Sect. 10.3.4). It is a system for extracting mappings from ontologies
and executing them as data transformation from one ontology to another one. The
system was first designed to work with the DAML+OIL language, an ancestor of
OWL.

MAFRA does not define a real exchange format for ontology alignment. Rather,
it provides an ontology, called the Semantic Bridge Ontology. The instantiation of
this ontology is an ontology mapping document. The serialisation of this format has
not been described in detail in documents so we freely use our own transcription.

The main concepts in this ontology are SemanticBridges and Services. A Seman-

ticBridge is tied to the Services that are able to implement the bridge as a data trans-
formation. A Service can be thought of as a function: f : Argn −→ Argm that maps
tuples of arguments into tuples of arguments. It can be identified by a URI, for
instance. The arguments are typed and can be ontology concepts, property paths,
literals or arrays of these.

SemanticBridges, which in turn can be ConceptBridges or PropertyBridges, express
a relation between two sets of entities by composing elementary services that are
applied to them. For instance, a SemanticBridge between two ontologies can map
those Volumes with size larger than 14 to Pocket books in the following way:

1This is also the name of a city in Portugal featuring a rich palace.
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ConceptBridge: Volume2Pocket
x: <o2#Volume>; o2:size >= 14 -> <o1#Pocket>

ConceptBridge: Book2Politics
x: <o1#Book>; o1:topic == ’politics’ -> <o2#Politics>

Entities to be mapped are identified within the ontology (instances) through a
path. Paths serve the dual purposes (i) of navigating within the ontology structure
and (ii) of providing the context for further characterising the concerned entities. In
this context, paths play exactly the same role as in Xpath (Clark and DeRose 1999).
They are further enriched with conditions. In the example above, <o2#Volume>;
o2:size >= 14 is a path with condition that the final step size has a value inferior
to 14.

An ontology mapping document satisfying the semantic bridge ontology is a
collection of such bridges plus information on the concerned ontologies, as well as
constraints: for example, the exclusivity conditions can be used for expressing that
an entity cannot be mapped by more than one bridge rule.

The semantic bridge ontology provides a framework and a format for expressing
alignments. This format is used as output from ontology matchers and input for data
transformations.

The format provided by the Semantic Bridge Ontology is not very clear since
the language is described in UML. This is a minor problem that could be solved by
exposing some RDF/XML format (a previous version of the framework had been
described as a DAML ontology (Mädche et al. 2002)). Moreover, this format is a
relatively complex language that is tied to the MAFRA architecture (Sect. 10.3.4).
It does not separate the declarative aspect of relations from the more operational as-
pects of services: relations are described with regard to services able to implement
them. The services can be arbitrary small, such as string concatenation, or large,
such as implementing a full alignment by a program. On the one hand, this guaran-
tees that these alignments can be used: SBO-documents can readily be used as data
translation. On the other hand, this does not favour the use of these alignments in
other ways, for instance, for merging ontologies or mediating queries.

10.1.2 OWL

OWL (Sect. 2.2) can be considered as a language for expressing correspondences
between ontologies. As a matter of fact, the equivalentClass and equivalentProperty

primitives have been introduced for relating elements in ontologies describing the
same domain. This use has been documented by the W3C best practices working
group (Uschold 2005). Moreover, these primitives are only shorthands for other
primitives, e.g., subClassOf, subPropertyOf, which already relate entities. For exam-
ple, the following OWL ontology fragment
<owl:Property rdf:about="&onto1;#author">

<owl:equivalentProperty rdf:resource="&onto2;#author"/>
</owl:Property>

<owl:Class rdf:about="&onto1;#Book">
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<owl:equivalentClass rdf:resource="&onto2;#Volume"/>
</owl:Class>

<owl:Class rdf:about="&onto2;#title">
<owl:subClass ="&onto1;#name"/>

</owl:Class>

can be seen as an alignment expressing the equivalence of properties author and
author, the equivalence of classes Book and Volume and the coverage of property title

in the second ontology by name in the first one. Moreover, any ontology, as soon as
it involves entities from different ontologies, expresses alignments. For instance, the
following OWL ontology fragment
<owl:Class rdf:ID="&onto1;#Science">

<owl:equivalentClass>
<owl:Class>

<owl:subClassOf rdf:resource="&onto2;#Essay"/>
<owl:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&onto2;#subject"/>
<owl:allValuesFrom rdf:resource="&onto2;#Science"/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:ID="&onto2;#Writer">

<owl:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&onto1;#hasWritten"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

expresses that a Science book in the first ontology is equivalent to an Essay whose
subject is an instance of the Science class in the second one and that those who have
written at least one thing in the first ontology are Writer in the second one.

Not surprisingly, the OWL language can be used as an alignment expression
language. However, using it this way has some drawbacks:

1. It forces the use of a particular ontology language: OWL. It is still possible to
relate in this way ontologies that are expressed in other languages without bene-
fiting from the construction of complex terms. However, the alignment will not
benefit from the content of the ontologies themselves.

2. It mixes correspondences and definitions. This is a problem for the clarity of
alignments as well as for lightweight applications which do not want to interpret
the OWL language.

3. It is interpreted only in the framework of a global interpretation of one OWL the-
ory (see Sect. 2.5.3). It is difficult to use this expression for only importing data
expressed under one ontology into another one because this application requires
sorting out definitions from correspondences.

4. It cannot express data transformation.

Other languages have been designed for overcoming these problems. For exam-
ple, SKOS solves the first problem, but introduces its own language, SWRL solves
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the second problem and C-OWL attempts to solve the third problem. These lan-
guages are presented hereafter.

10.1.3 Contextualized OWL (C-OWL)

C-OWL is an extension of OWL to express mappings between heterogeneous on-
tologies (Bouquet et al. 2004b). The new constructs in C-OWL, with respect to
OWL, are called bridge rules, and they allow the expression of relations between
classes, relations and individuals interpreted in heterogeneous domains.

Bridge rules are oriented correspondences, from a source ontology o to a target
ontology o′. They use five relations: more general (≥), more specific (≤), equivalent
(=), disjoint (⊥) and overlap (�). These relations are always applied to named enti-
ties. Bridge rules are always interpreted from the standpoint of the target ontology.
They express how the target ontology translates the source ontology in itself.

Bridge rules are expressed separately from the ontologies they refer to. The ex-
amples considered here are given below in C-OWL XML syntax:

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY cowl "http://www.itc.it/cowl#" >
<!ENTITY onto1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY onto2 "http://book.ontologymatching.org/example/library.owl" >

]>
<rdf:RDF

xmlns ="&cowl;"
xmlns:cowl ="&cowl;"
xmlns:owl ="&owl;"
xmlns:rdf ="&rdf;"
>

<cowl:Mapping>
<cowl:sourceOntology>

<owl:Ontology rdf:about="&onto1;"/>
</cowl:sourceOntology>
<cowl:targetOntology>

<owl:Ontology rdf:about="&onto2;"/>
</cowl:targetOntology>
<cowl:bridgeRule>

<cowl:Into>
<cowl:source>

<owl:Class rdf:about="&onto1;#Book"/>
</cowl:source>
<cowl:target>

<owl:Class rdf:about="&onto2;#Volume"/>
</cowl:target>

</cowl:Into>
</cowl:bridgeRule>
<cowl:bridgeRule>

<cowl:Onto>
<cowl:source>

<owl:Class rdf:about="&onto1;#name"/>
</cowl:source>
<cowl:target>

<owl:Class rdf:about="&onto2;#title"/>
</cowl:target>

</cowl:Onto>
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</cowl:bridgeRule>
<cowl:bridgeRule>

<cowl:Equivalent>
<cowl:source>

<owl:Class rdf:about="&onto1;#author"/>
</cowl:source>
<cowl:target>

<owl:Class rdf:about="&onto2;#author"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>
<cowl:bridgeRule>

</cowl:Mapping>
</rdf:RDF>

The C-OWL proposal can express relatively simple alignments: no constructed
classes are expressed, only named classes are used. The more expressive part resides
in the relations used by the mapping. These alignments have a clear semantics, how-
ever it is given from a particular standpoint: that of the target ontology. C-OWL is
based on the OWL language but relatively independent from this language which is
confined at expressing entities (the alignment part being specific).

10.1.4 SWRL and RIF

It is sometimes not enough to be able to express entity definitions; sometimes ex-
pressing rules is a more convenient expression mean. Moreover, rules can bring
more expressiveness. SWRL (Semantic Web Rule Language) (Horrocks et al. 2004)
is a rule language for the semantic web. It extends OWL with an explicit notion of
rule that is interpreted as first order Horn clauses. These rules can be understood as
correspondences between ontologies, especially when elements from the head and
the body are from different ontologies. These correspondences are oriented as in
C-OWL.

SWRL mixes the vocabulary from RuleML for exchanging rules with the OWL
vocabulary for expressing knowledge. It defines a rule (ruleml:imp) with a body
(ruleml:body) and head (ruleml:head) parts.

<ruleml:imp>
<ruleml:_body>

<swrlx:classAtom>
<owlx:Class owlx:name="&onto1;#Book" />
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="&onto1;#topic">

<ruleml:var>p</ruleml:var>
<owlx:DataValue owlx:datatype="&xsd;#string">politics</owlx:DataValue>

</swrlx:datavaluedPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom swrlx:property="&onto2;#Politics">
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
</ruleml:_head>

</ruleml:imp>
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<ruleml:imp>
<ruleml:_body>

<swrlx:classAtom>
<owlx:Class owlx:name="&onto2;#Volume" />
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="&onto2;#size">

<ruleml:var>p</ruleml:var>
<ruleml:var>q</ruleml:var>

</swrlx:datavaluedPropertyAtom>
<swrlx:builtinAtom swrlx:builtin="&swrlb;#greaterThanOrEqual">

<owlx:DataValue owlx:datatype="&xsd;#int">14</owlx:DataValue>
<ruleml:var>q</ruleml:var>

</swrlx:builtinAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom swrlx:property="&onto1;#Pocket">
<ruleml:var>p</ruleml:var>

</swrlx:classAtom>
</ruleml:_head>

</ruleml:imp>

The first rule expresses that a Book in the first ontology with politics as a value of
its topic attribute is a Politics book in the second ontology. The second rule expresses
that Volumes in the second ontology whose size is less than 14 are Pocket books in
the first ontology.

The introduction of variables within constructs of the OWL language provides
more expressiveness to the language. In particular, it allows the expression of what
was called role-value maps in description logics or feature path equations in feature
algebras (Smolka 1992). Of course, all the constructions available in OWL are us-
able in SWRL as well. SWRL also provides a set of built-in predicates on various
data types provided by XML Schema as well as operators on collections, such as
count.

SWRL rules can be used for expressing the correspondences between ontologies.
These correspondences are expressed between formulas and interpreted as Horn
clauses. They have the advantage over genuine OWL of being well identified as
rules and are easier to manipulate as an alignment format than OWL, which is also
used to express ontologies.

As in the OWL case, these rules have the drawback of forcing the use of OWL
and are interpreted as merging ontologies. Again, the expression of a rule, such as
the one above, freezes the use that can be made: the rule will help in considering
some Books of the first ontology as Politics books in the second ontology. However,
the rules work as a set of logical rules, not rewrite rules, so they can be used for
merging, but not transforming ontologies.

The two examples above can be expressed in the presentation syntax of the Rule
Interchange Format (RIF) (Boley and Kifer 2010):
Document(

Prefix(rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#> )
Prefix(onto1 <http://book.ontologymatching.org/example/culture-shop.owl#>)
Prefix(onto2 <http://book.ontologymatching.org/example/library.owl#>)

Group (
Forall ?x (
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rdf:type( ?x onto2:Politics ) :-
And( rdf:type( ?x onto1:Book ) onto1:topic( ?x "politics" ) )

Forall ?x (
rdf:type( ?x onto1:Pocket ) :-

And( rdf:type( ?x onto2:Volume )
onto2:size( ?x ?s )
External( pred:numeric-lower-than( ?s, 14 ) )

)
)

10.1.5 Alignment Format

The Alignment format (Euzenat 2004) is simpler than most of the alignment repre-
sentations presented here. It aims at being producible by most matching tools, yet
preserving the capability to handle complex alignment definitions.

The alignment description is an envelope in which the correspondences are
grouped. It expresses metadata about alignments (Sect. 10.2). Alignments are made
of:

References to matched ontologies;
A set of correspondences which expresses the relation holding between entities of

the first ontology and entities of the second ontology;
Level used for characterising the type of correspondence (see next);
Arity (default 1:1) (denoted by 1 for injective and total, ? for injective, + for total

and * for none, with each sign concerning one mapping and its converse): ?:?,
?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1, +:*, *:+, *:* (see also
Sect. 2.5.2). These assertions could be provided as input (or constraint) for a
matching algorithm or as a result by the same algorithm.

The Alignment format can be extended by new metadata tags2 which may apply
to both alignments or correspondences. Metadata are represented as key-value pairs
whose keys are URIs for faster retrieval and whose values are limited to strings.
They are preserved through the serialisation of alignments in RDF.

Support for correspondences follows Definition 2.10. They are expressed by:

entity1: the first matched entity;
entity2: the second matched entity;
relation: the relation holding between the two entities. It is not restricted to the

equivalence relation, but can be more sophisticated, e.g., subsumption, incom-
patibility, or even some fuzzy relation. The default relation is equivalence.

strength: the confidence that the correspondence under consideration holds. The
measure should belong to an ordered set Ξ including a maximum element �
and a minimum element ⊥; for instance, a float value between 0 and 1. The
default strength is �.

2Metadata identifiers are registered at http://alignapi.gforge.inria.fr/labels.html.

http://alignapi.gforge.inria.fr/labels.html
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id: an identifier for the correspondence.

A full example of the level 0 Alignment format in RDF is as follows:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY onto1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY onto2 "http://book.ontologymatching.org/example/library.owl" >
]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<time>7</time>
<method>fr.inrialpes.exmo.align.impl.method.StringDistAlignment</method>
<onto1>

<Ontology rdf:about="&onto1;">
<location>file:examples/rdf/onto1.owl</location>

</Ontology>
</onto1>
<onto2>

<Ontology rdf:about="&onto2;">
<location>file:examples/rdf/onto2.owl</location>

</Ontology>
</onto2>
<map>

<Cell>
<entity1 rdf:resource=’&onto1;#Book’/>
<entity2 rdf:resource=’&onto2;#Volume’/>
<relation>&lt;</relation>
<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&onto1;#name’/>
<entity2 rdf:resource=’&onto2;#title’/>
<relation>></relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>

</Alignment>
</rdf:RDF>

It describes a many-to-many level 0 alignment between two bibliographic on-
tologies. It contains two correspondences in which Book in the first ontology is less
general than Volume in the second one and name in the first ontology is more general
than title in the second one. These correspondences use the less and more general
relations and a confidence measure .64 in the former case and 1. in the latter.

The Alignment format has been designed for offering a common format to differ-
ent needs. Depending on the expressiveness of the matched entities, it offers several
alignment levels which correspond to different options for expressing entities:

Level 0: These alignments relate entities identified by URIs. Any algorithm can
deal with such alignments. This first level of alignment has the advantage to not
depend on a particular language for expressing these entities. On this level, the
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matched entities may be classes, properties or individuals. However, they also
can be any kind of a complex term that is used by the target language as soon as
it is identified by a URI.

Level 1: These alignments replace pairs of entities by pairs of sets (or lists) of en-
tities. A level 1 correspondence is thus a slight refinement of level 0. It can be
easily parsed and is still language independent.

Level 2 (L): More general correspondence expressions may be useful. For instance,
(Masolo et al. 2003) provides bridges from an ontology of services to the cur-
rently existing semantic web service description languages in first order logic.
These kinds of correspondences can be expressed with level 2 alignments. These
are no longer language independent and require the knowledge of the language
used for parsing the format. In this case correspondences can be expressed be-
tween formulas, queries, etc. EDOAL (Sect. 10.1.6) is an expressive level 2
language.

The Alignment format has been given an OWL ontology and a DTD for vali-
dating it in RDF/XML. It can be manipulated through the Alignment API which is
presented next in Sect. 10.3.6. It has been used as the format for the OAEI evalua-
tion campaigns (Sect. 9.1.3) so many different tools are able to output it, e.g., oMap
(Sect. 8.3.4), FOAM (Sect. 10.3.7), OLA (Sect. 8.3.8), Falcon-AO (Sect. 8.3.9), and
HCONE (Sect. 8.1.19).

Finally, the Alignment format allows the expression of alignments without com-
mitment to a particular language. It is not targeted towards a particular use of the
alignments and offers generators for many other formats. However, in contrast to the
languages presented so far, this format does not offer much expressiveness. One of
its good features is its openness which allows the introduction of new relations and,
if necessary, new types of expressions while keeping the compatibility with poorly
expressive languages.

10.1.6 Expressive and Declarative Ontology Alignment Language
(EDOAL)

EDOAL (Expressive and Declarative Ontology Alignment Language) is a level 2
language for the Alignment API. It has been formerly known as the SEKT mapping
language (de Bruijn et al. 2004) or OMWG (Euzenat et al. 2007b). It is an expres-
sive language independent from any ontology language, even if it largely borrows
constraints provided in description logics or the OWL language. This independence
allows for the representation of alignments between heterogeneous and weak repre-
sentations, such as a thesaurus and a relational database. Thus, EDOAL has a middle
man position: it is independent from any particular language but expressive enough
for covering a large part of the other languages.

EDOAL extends the Alignment format in order to capture more precisely cor-
respondences between heterogeneous ontological entities. To achieve this, EDOAL
uses the following features (see Table 10.1):
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Construction of entities from other entities can be expressed through algebraic
operators. Constructing entities is one way to overcome the shallowness of some
ontologies.

Restrictions can be expressed on entities in order to narrow their scope. Narrowing
the scope of an entity makes it possible to more precisely align this entity with
the corresponding one in the other ontology.

Transformations of property values can be specified. Property values using differ-
ent encodings or units can be aligned using transformations. The current version
of EDOAL only supports a limited kind of transformations.

Table 10.1 EDOAL expression constructors.

Entity Constructors Restrictions

Class and, or, not domain, type, value, cardinality

Property and, or, not, compose domain, type, value

Relation and, or, not, compose inverse, symmetric,
reflexive, transitive

domain, codomain

Instance

The interpretation of the language follows the rules of a classical ontology language
(Sect. 2.2.2).

For instance, that an Autobiography whose size is less than 14 is the same thing as
a Pocket book whose topic is the creator can be expressed by:

<Cell rdf:about="pocketbook">
<entity1>
<edoal:Class>
<edoal:and rdf:parseType="Collection">
<edoal:Class rdf:about="&o;Pocket"/>
<edoal:AttributeValueRestriction>
<edoal:onAttribute>
<edoal:Property rdf:about="&o;creator"/>

</edoal:onAttribute>
<edoal:comparator rdf:resource="&edoal;equals"/>
<edoal:value>
<edoal:Property rdf:about="&o;topic"/>

</edoal:value>
</edoal:AttributeValueRestriction>

</edoal:and>
</edoal:Class>

</entity1>
<entity2>
<edoal:Class>
<edoal:and rdf:parseType="Collection">
<edoal:Class rdf:about="&o’;Autobiography"/>
<edoal:AttributeValueRestriction>
<edoal:onAttribute>
<edoal:Property rdf:about="&o’;size"/>

</edoal:onAttribute>
<edoal:comparator rdf:resource="&edoal;less-than"/>
<edoal:value>

<edoal:Literal edoal:type="&xsd;integer" edoal:string="14" />
</edoal:value>
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</edoal:AttributeValueRestriction>
</edoal:and>
</edoal:Class>

</entity2>
<measure rdf:datatype=’&xsd;float’>1.</measure>
<relation>=</relation>
</Cell>

It can also be expressed that in the context of a Book, the creator is the author:

<Cell rdf:about="pocketbook">
<entity1>
<edoal:Relation>
<edoal:and rdf:parseType="Collection">
<edoal:Class rdf:about="&o’;creator"/>
<edoal:DomainRestriction>
<edoal:class rdf:about="&o;Book"/>
</edoal:DomainRestriction>

</edoal:and>
</edoal:Relation>

</entity1>
<entity2><edoal:Relation rdf:about="&o’;author"/></entity2>
<measure rdf:datatype=’&xsd;float’>1.</measure>
<relation>=</relation>
</Cell>

Moreover, EDOAL is also able to express transformations between entities,
e.g., unit transformations or any type of defined function. For that purpose, corre-
spondences may contain transformation elements, and EDOAL allows for defining
variables used to denote parts of the matched entities in transformations. For in-
stance, to the previous example could be added a transformation meaning that the
foaf:name of the creator is the concatenation of the vcard:firstname, vcard:middleinitial

and vcard:lastname of the author:

<edoal:transformation>
<edoal:Transformation edoal:direction="o-">

<edoal:entity1>
<edoal:Property rdf:about="&foaf;name">

</edoal:entity1>
<edoal:entity2>

<edoal:Apply edoal:operator="&edoal;concat">
<edoal:arguments rdf:parseType="Collection">

<edoal:Property rdf:about="vcard:firstname" />
<edoal:Literal edoal:type="&xsd;string" edoal:string=" " />
<edoal:Property rdf:about="vcard:middleinitial" />
<edoal:Literal edoal:string=". " />
<edoal:Property rdf:about="vcard:lastname" />

</edoal:arguments>
</edoal:Apply>

</edoal:entity2>
</edoal:Transformation>

</edoal:transformation>

This type of information is very useful at the instance level, i.e., when one wants
to interlink (Sect. 12.4) or integrate data. (Sect. 12.3). In addition, EDOAL allows
for representing correspondence patterns (see Sect. 6.1.4). It is supported by the
Alignment API through providing an API for manipulating EDOAL alignments,
parsers, and renderers in RDF, OWL, and SPARQL.
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10.1.7 SKOS

SKOS (Miles and Bechhofer 2009) stands for Simple Knowledge Organisation Sys-
tem. The SKOS core vocabulary is an RDF Schema aiming at expressing relation-
ships between lightweight ontologies, e.g., folksonomies or thesauri.

The SKOS mapping vocabulary offers further properties for linking concepts of
different SKOS thesauri.

Concept and Relation Descriptions

SKOS allows the identification of concepts in lightweight ontologies through the
skos:Concept class. It provides various ways of presenting the concept with labels
in several languages and alternate labels and symbols. It also provides the opportu-
nity to add various notes and informal definitions to the concept. In the example
below, Book is a concept with some information about it, such as the way it is named
in different languages and its definition (similar to glosses in WordNet).
<skos:Concept rdf:about="&onto1;#Book">

<skos:prefLabel>Book</skos:prefLabel>
<skos:altLabel xml:lang="fr">Livre</skos:altLabel>
<skos:definition>A book is a set of sheets of papers bound together so that
the content printed on them can be consulted in sequence.</skos:definition>
<skos:editorialNote>This is not an official definition</skos:editorialNote>
<skos:broader rdf:resource="&onto1;#Product"/>
<skos:narrower rdf:resource="&onto1;#Pocket"/>

<skos:Concept/>

SKOS also provides relationships that express relations between SKOS concepts.
For instance, a term used in a thesaurus may be broader than another. Relations be-
tween concepts assert the relative inclusion of concepts as broader or narrower terms
as well as other informal relations. The above example displays the Book concept
that is narrower than Volume but broader than Critics. It is also related to Work.

Mapping Vocabulary

In addition, SKOS defines a mapping vocabulary which aims at expressing relation-
ships across thesauri. It is thus closer to an alignment vocabulary. It is based on the
properties presented in Table 10.2.

Table 10.2 SKOS mapping properties.

property subPropertyOf domain range inverse property

broaderMatch broader concept concept narrowerMatch

relatedMatch related concept concept relatedMatch symmetric

closeMatch concept concept closeMatch symmetric

exactMatch closeMatch concept concept exactMatch symmetric, transitive
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The following example expresses that the Book concept in ontology onto1 is nar-
rower than Volume but broader than Critics in onto2. It is also related to Work.

<skos:Concept rdf:about="&onto1;#Book">
<skos:broaderMatch rdf:resource="&onto2;#Volume"/>
<skos:narrowerMatch rdf:resource="&onto2;#Critics"/>
<skos:relatedMatch rdf:resource="&onto2;#Work"/>

<skos:Concept/>

SKOS has the advantage of being a lightweight vocabulary defining from the
ground a rich collection of relations between entities. Since it uses URIs for referring
to objects it is fully integrated in the semantic web architecture and is not committed
to a particular language. In fact, one of the main advantage of SKOS is that it lifts
any kind of organised description into an easily usable set of classes. The relation
part has the advantage of being very general but the drawback is that it lacks formal
semantics. However, more semantics on these terms may be introduced by using the
OWL vocabulary.

Like other formats which do not separate the ontologies from the correspon-
dences, SKOS, in its most convenient form, mixes the highest power of RDF
Schema and the expression of the alignments. This type of extensibility, through
RDF Schema, prevents any non RDF Schema understanding application from fully
grasping the SKOS content.

10.1.8 Comparison of Existing Formats

The formats we have considered so far may be globally compared (see Table 10.3).
For that purpose, a set of criteria is applied to these different formats:

Web compatibility is the capacity of the format to be manipulated on the web.
This involves its possible expression in XML, RDF and/or RDF/XML, as well
as the possibility to identify entities by URIs. This should, in principle, enable
the extensibility of the format by introducing new properties as well as the refer-
encing of particular correspondences individually. This aspect is covered by the
RDF/XML and URI criteria of Table 10.3.

Language independence is the ability to express alignments between entities de-
scribed in different languages. This is often related to the use of URIs. In fact,
language independence is mostly related to simplicity. This aspect is covered by
the Language and Model criteria of Table 10.3.

Simplicity is the capacity to be dealt with in a simple form by simple tools. In
particular, for example, requiring inference for correctly manipulating the align-
ment or requiring that the format covers an important part of some ontology
representation language is not a sign of simplicity. A well structured format
should help achieve this goal. This aspect is inverse to expressiveness.

Expressiveness is the capacity of the format to express complex alignments. This
means that alignments are not restricted to matching entities identified by URIs
but can create new entities. The constructions for expressing alignments can be
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arbitrary complex. In fact, it can be more complex than the knowledge expressed
in the ontologies. This aspect is covered by the Relations, Terms, Type restric-
tions, Cardinality, Variables and Built-in criteria of Table 10.3.

Extendibility is the capacity to extend the format with specific purpose informa-
tion in such a way that the tools that use this format are not disturbed by the
extensions. Most of the systems presented here exhibit one kind of extendibility
tied to the use of RDF which allows any new relation and object to be added.
This aspect is covered by the ‘+’ signs in Table 10.3.

Purpose independence is a consequence of various factors expressed. We mention
the intended use of each of the formats. It is clear, for instance, that a format
designed for data integration, with very precise selection constraints, will rather
be difficult to re-use in transforming ontologies. This aspect is covered by the
Target application criterion of Table 10.3.

Executability is the capacity to be directly usable in mediators. This means that
there are tools available for directly interpreting the format as a program pro-
cessing knowledge. Executability is rather opposed to language independence.
This aspect is covered by the Execution criterion of Table 10.3.

Table 10.3 provides the values of all the formats presented so far for each crite-
rion.

Table 10.3 Summary of characteristics of the presented formats. + means that the system can be
extended; Transf stands for transformation. The possible relations for the formats are subclass (sc),
subproperty (sp), implication between formulas (imp). The terms concerned by the alignments can
be classes (C), properties (P) or individuals (I).

Format OWL SBO C-OWL SWRL Alignment EDOAL SKOS

Target app. Merging Data transf. Data int. Data int. Generic Generic Merging

Language OWL UML OWL OWL + RDFS

Model OWL OWL+ OWL

Execution Logical Transf Logical Logical Logical Alg.

RDF/XML
√ √ √ √ √ √

URI
√ √ √ √ √ √

Measures
√ √

Relations sc/sp sc/sp imp sc/sp+ sc/sp/. . . sc/sp

Terms C/P/I C/P/I C/P/I C/P/I URI C/P/I C/P

Type rest
√ √ √ √ √

Cardinality
√ √ √

Variables
√

Built-in
√+ √ + +

The difference between these formats lies in the continuum between: (i) very
general languages that are easy to understand but which are unable to express com-
plex alignments, e.g., SKOS, level 0 Alignment format, and (ii) very expressive
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languages whose semantics dictates their use and which require deep understand-
ing of the language, e.g., OWL, SWRL, C-OWL, MAFRA. EDOAL stands in the
middle of this continuum.

While most of the matching algorithms are only able to express the first kind of
alignments, both kinds of languages are useful. Most of the expressive formats have
a surface heterogeneity due to the languages on which they are based, e.g., UML,
OWL, WSML. However, they have very similar features for referring to ontology
constructs, such as classes, properties, using logical formula constructors, such as
conjunctions, implications, quantifiers, or using data types and collections of built-
in operators. Finally, it is surprising that there is not more heterogeneity in these
expressive languages given that complexity is a factor of the language used for ex-
pressing the ontologies, the language used for expressing the related entities, the
semantics given to alignments and the language used for expressing relations.

As a summary, there is no universal format for expressing alignments. The choice
of a format depends on the characteristics of the application. We think that there are
two factors which can influence this choice: (i) the expressiveness required for the
alignments, and (ii) the need to exchange with other applications, especially if they
involve different ontology languages.

Formats express the content of alignments. In order to be easily retrieved, align-
ments may be described through metadata. Principles of these metadata are now
presented.

10.2 Alignment Metadata

When an alignment has to be communicated to other parties, it can be annotated
so that it will be easier to understand it. Annotations of alignments, or alignment
metadata, record useful information for retrieving alignments (see Sect. 3.3) or for
explaining them (see Sect. 11.3). Annotations can be carried by alignments or by
correspondences individually.

Example 10.1 (Alignment metadata) Here is a sample of metadata associated with
an alignment (using the Alignment format tags and externally declared tags such as
Dublin core):

dc:date 2009/10/23
align:method fr.inrialpes.exmo.align.impl.methods.StringDistAlignment

align:time 421

omwg:purpose Query mediation
dc:creator John Doe

and correspondence annotations can be:

align:measure .7768
align:note ‘manually validated’
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Although any type of annotation may be defined, there are at least three important
categories of metadata.

10.2.1 Identification Metadata

Identification metadata describes characteristics of the alignment, such as

− the aligned ontologies,
− the language in which the ontologies are expressed,
− the kind of alignment it is (1:1 or *:*, for instance),
− the initial alignment from which an alignment is derived, if any,
− the application context,
− the properties satisfied by the correspondences (and their proof, if necessary),
− the certificate from an issuing source.

Identification metadata is important for retrieving alignments.

10.2.2 Provenance Metadata

Provenance metadata records how the alignment has been obtained, for instance:

− the algorithm or operation that provided it (or whether it has been provided man-
ually), in case of matchers, it is useful to know the exact version,

− the parameters passed to the generating algorithms,
− the external knowledge sources that may have been used, e.g., lexicons or on-

tologies,
− the dependency across correspondences,
− the date when the correspondences were created,
− the user who performed the matching operation,
− external references.

This information is already very precious and helps applications in selecting the
most appropriate alignments or in explaining alignments. It is thus necessary that
ontology matchers be able to generate these metadata. Some useful information like
the algorithm used for computing it, the time it took, or the source alignments and
the date of matching can generally be recorded automatically.

Figure 10.2 shows the ontology metadata vocabulary (Hartmann et al. 2005) ex-
tension to alignments. It includes classes for describing the matching strategy as
well as properties satisfied by alignments and their proofs.

Among provenance metadata, justifications are very useful for explaining align-
ments (see Sect. 11.3). Each correspondence can be assigned one or several justifi-
cations that support or infirm the correspondence. We call them justified correspon-
dences. For instance, the justified correspondence:

〈e, e′,≤〉 : justification: I (e)⊆ I (e′)
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Fig. 10.2 UML characterisation of alignment metadata.

expresses that the correspondence 〈e, e′,≤〉 is thought to hold because ‘I (e)⊆ I (e′)’
is verified. Similarly:

〈e, e′,=〉 : justification: DPLL entailed

expresses that the correspondence 〈e, e′,=〉 is thought to hold because it has been
proved by the Davis–Putnam–Longemann–Loveland (DPLL) procedure (Davis and
Putnam 1960; Davis et al. 1962).

Justifications may be more complex. For instance, the second justification may
involve a full proof of the correspondence and the axioms involved in that proof.
This justification information can be found directly within the correspondences
or provided on-demand by the matchers to the system requiring explanation (see
Sect. 7.4.3).

Matching systems typically combine multiple matchers (see Chap. 7). The final
alignment is usually a result of synthesis, abstraction, deduction, and some other
manipulations of their results. Thus, users may want to see a trace of the performed
manipulations. We refer to them as process traces. Some examples of this kind of
information include
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− a trace of rules or strategies applied,
− support for alternative paths leading to a single conclusion,
− support for accessing the implicit information that can be made explicit from any

particular reasoning path.

Such traces may be expressed in the vocabulary provided in Fig. 10.2. Users may
also want to understand why a particular correspondence was not discovered, or
why a discovered correspondence was ranked in a particular place, thereby being
included in or excluded from the final alignment.

Finally, alignments may rely on external sources of background knowledge.
These sources must be clearly identified not simply by naming them but also by
identifying which version of a source is used.

10.2.3 Qualification Metadata

Qualification metadata asserts judgements on the alignments or correspondences,
such as

− general comments,
− discussions and user comments,
− the confidence in each correspondence,
− the limitations of the use of the alignment,
− the arguments in favour of or against a correspondence (Laera et al. 2007).

Qualification is useful when users publicly share alignments (Noy et al. 2008) as
it allows them to annotate alignments with opinions about them and optionally use
social networking techniques for collectively improving alignments (see Sect. 11.2).
It can also be used by agents for arguing about alignments.

We now consider frameworks taking advantage of some explicit representation of
alignments to offer alignment creation and manipulation. Usually such frameworks
are open to the addition of new matchers.

10.3 Alignment Frameworks

The matching operation is typically only one of the steps towards the ultimate goal
of ontology integration or web services composition, for instance. There exist in-
frastructures which use alignments as one of their components.

Platforms for integrating matchers and alignment manipulation operations are
relatively new. However, they constitute a promising perspective to knowledge en-
gineers and application developers. We can distinguish two types of software in
alignment management: (i) the infrastructure middleware, and (ii) the support envi-
ronments that provide application-specific access to alignments. The two levels may
be kept clearly separated (Euzenat 2005) or mixed in a single system (Noy et al.
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2008; Mork et al. 2008). We discuss here the latter, the former being addressed in
Sect. 12.7. The goal of support environments is to enable users to perform high-level
tasks which involve generating, manipulating, composing and applying alignments
within the same environment. As in Chap. 8, in this section we did not enforce the
terminology of Sect. 2.4 but kept it as used by system designers.

10.3.1 Model Management

Model management (Bernstein et al. 2000; Madhavan et al. 2002; Melnik 2004)
aims at providing a metadata manipulation infrastructure in order to reduce the
amount of programming required to build metadata driven applications. It has been
promoted in databases for dealing with data integration in a generic way. It offers
a high-level view of the operations applied to databases and their relations. Model
management deals with models which can be related by mappings. A model is an in-
formation structure, such as XML schema, relational database schema, UML model.
Similarly, mappings are oriented alignments from one model into another. Techni-
cally, a key idea of generic model management is to solve metadata intensive tasks
at a high level of abstraction using a concise script. It provides an algebra to manip-
ulate models and mappings. It is generic in the sense that a single implementation
should be applicable to the majority of data models and scenarios, e.g., data transla-
tion, data integration. However, it is primarily targeting databases. In (Melnik et al.
2005), the following operators are defined:

− Match(m,m′) which returns the mapping a between models m and m′;
− Compose(a, a′) which composes mappings a and a′ into a new one a′′, given that

the range of a′ is the domain of a;
− Confluence(a, a′) which merges alignments by union of nonconflicting corre-

spondences, provided as a and a′ that have the same domain and range;
− Merge(a,m,m′) which merges two models m and m′ according to mapping a;
− Extract(a,m) which extracts the portion of model m which is involved in the

mapping a;
− Diff(a,m) which extracts the portion of model m which is not involved in the

mapping a.

A mapping in this context is a function from m to m′. (Melnik et al. 2005)
also provides axioms governing these operations. For instance, the merge opera-
tion between two models m′ and m′′ through a mapping a, returns a new model
m= Domain(a′) ∪ Domain(a′′) and a pair of surjective mappings a′ and a′′ from m

to m′ and m′′ respectively, such that a = Compose(Invert(a′), a′′).
A typical example of model management script is as follows:

A1 := Match( O1, O2 );
A2 := Match( O2, O3 );
O4 := Diff( O1, A1 );
A3 := Compose( A1, A2 );
O5 := Merge( Extract( O1, A1), O3, A3 );
O6 := Merge( O4, O5, ∅ );
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The above example operates with three ontologies. It merges the first one and
the last one on the basis of the composition of their alignment with the interme-
diate one. Finally, it adds the part of the first one that was not brought in the first
merge.

There are some model management systems available. In particular, Rondo
is a programming platform implementing generic model management (Melnik
et al. 2003a, 2003b). It is a standalone program with no editing functions. It
is based on conceptual structures which constitute the main Rondo abstrac-
tions:

Models such as relational schemas, XML schemas, are internally represented as
directed labelled graphs, in which nodes denote model elements, e.g., relations
and attributes. Each such element is identified by an object identifier (OID).

Morphisms are binary relations over two, possibly overlapping, sets of OIDs.
A morphism is typically used to represent a mapping between different kinds
of models. Morphisms can always be inverted and composed.

Selectors are sets of node identifiers from a single or multiple models. These are
denoted by S. A selector can be viewed as a relation with a single attribute,
S(V :OID), where V is a unique key.

Rondo offers operators for generating the alignments, composing them and ap-
plying them as data transformations. They are implemented upon these conceptual
structures. Match is implemented in Rondo by using the Similarity flooding algo-
rithm (Sect. 6.2.1).

Another system, called Moda, is described in (Melnik et al. 2005) in which corre-
spondences are expressed as logical formulas. This system is more expressive than
Rondo. Other model management systems include GeRoMe (Sect. 8.1.30), Model-
Gen (Atzeni et al. 2005, 2006) and MISM (Atzeni et al. 2009).

10.3.2 COMA++ (University of Leipzig)

COMA++ (Do and Rahm 2002; Do 2005) is a schema matching infrastructure built
on top of COMA (Sect. 8.1.12). It provides an extensible library of matching al-
gorithms, a framework for combining obtained results, and a platform for evaluat-
ing the effectiveness of the different matchers. COMA++ enables importing, storing
and editing schemas (or models). It also allows various operations on the alignments
among which compose, merge and compare. Finally, alignments can be applied to
schemas for transforming or merging them.

Contrary to Rondo (Sect. 10.3.1), the matching operation is not described as
atomic but rather described as a workflow that can be graphically edited and pro-
cessed. Users can control the execution of the workflow in a stepwise manner
and dynamically change execution parameters. The possibility of performing itera-
tions in the matching process assumes interaction with users who approve obtained
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Fig. 10.3 COMA++ architecture (adapted from (Do 2005)).

matches and mismatches to gradually refine and improve the accuracy of the align-
ment (see Fig. 10.3). The matching operation is performed by the Execution engine
based on the settings provided by the Match customiser, including matchers to be
used and match strategies.

Data structures are defined in a homogeneous proprietary format. The Schema
pool provides various functions to import and export schemas and ontologies
and save them to and from the internal repository. Similarly, the Mapping pool
provides functions to manipulate mappings. COMA++ can also export and im-
port the matching workflows as executable scripts (similar to those manipulated
in Rondo).

Finally, according to (Do 2005), there are other tools built on top of COMA++.
For example, the CMC system provides a new weighting strategy to automati-
cally combine multiple matchers (Tu and Yu 2005), while the work of (Dragut and
Lawrence 2004) has adapted COMA to compute correspondences between schemas
by performing a composition of the correspondences between individual schemas
and a reference ontology. COMA++ was also integrated with an automatic target-
driven merging system, thereby allowing for the semi-automatic generation of align-
ments to be further used for merging taxonomies from source to target as imple-
mented in ATOM (Raunich and Rahm 2011).
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10.3.3 GOMMA (University of Leipzig)

GOMMA is an infrastructure for Generic Ontology Matching and mapping MAn-
agement targeting the evolution of life science ontologies and mappings (Kirsten
et al. 2011). It is made up of three levels:

− repository, which is responsible for data management, such as handling versions
of ontologies and mappings;

− functional components, operating over data, such as match, diff and evolution;
− tools, built on top of the previous levels, such as Ontology Matcher, used to find

mappings, complex ontology diff (COntoDiff), used to detect basic and complex
changes between different ontology versions, or ontology evolution explorer
(OnEx), used to explore and visualise the changes.

The matching approach was inspired by that of COMA++ (Sect. 10.3.2).
GOMMA also supports parallel execution of matchers on multiple computing nodes
or CPU cores as well as ontology partitioning (Sect. 7.1.1) to handle large-scale on-
tologies.

10.3.4 MAFRA (Instituto Politecnico do Porto and University
of Karlsruhe)

MAFRA (MApping FRAmework, already mentioned for its format in Sect. 10.1.1)
is an interactive, incremental and dynamic framework for mapping distributed on-
tologies (Pinto da Silva 2004; Mädche et al. 2002). The framework consists of
horizontal and vertical dimensions. The horizontal dimension covers mapping pro-
cesses. It is organised according to the following components:

− Lift and Normalisation. This module handles syntactic, structural, and language
heterogeneity. In particular, the lifting process includes translation of input on-
tologies into an internal knowledge representation formalism, which is RDF
Schema. Normalisation (Sect. 5.2), in turn, includes (i) tokenisation of entities,
(ii) elimination of stop words, and (iii) expansion of acronyms.

− Similarity. This module computes similarities between ontology entities by ex-
ploiting a combination of multiple matchers. First, lexical similarity between
each entity from the source ontology and all entities from the target ontology is
determined based on WordNet and altered Resnik measure (Sect. 5.2.2). Second,
a property similarity is computed. This measures similarity between concepts
based on how similar the properties they are involved in are. Finally, bottom-up
and top-down similarities are computed. For example, bottom-up matchers take
as input the property (dis)similarity and propagate it from lower parts of the on-
tology to the upper concepts, thus yielding an overall view of similarity between
ontologies.
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− Semantic Bridging. Based on the previously determined similarities, correspon-
dences (bridges) between the entities of the source and target ontologies are es-
tablished. Bridges, in turn, can be executed for the data translation task. The
internals of bridges are discussed in detail in Sect. 10.1.1.

− Execution. The actual processing of bridges is performed in the execution mod-
ule. This module translates instances from the source ontology to the target on-
tology. This translation can either be performed off-line, i.e., one time transfor-
mation, or on-line, i.e., dynamically, thus taking into account ‘fresh’ data, if there
are.

− Post-processing. This module is in charge of the analysis and improvement of the
transformation results, for instance, by recognising that two instances represent
the same real-world object.

Components of the vertical dimension interact with horizontal modules during
the whole mapping process. There are four vertical components. The Evolution
module, in a user-assisted way, synchronises bridges obtained with the Semantic
Bridging module according to the changes in the source and target ontologies. The
Cooperative Consensus Building module helps users to select the correct mappings,
when multiple mapping alternatives exist. The Domain Constraints and Background
Knowledge module stores common and domain-specific knowledge, e.g., WordNet,
precompiled domain thesauri, which are used to facilitate the similarity compu-
tation. Finally, a graphical user interface assists users in performing the mapping
process with a desired quality.

10.3.5 The Protégé Prompt Suite (Stanford University)

Protégé is an ontology edition environment which offers design-time support for
matching. In particular it features Prompt (Noy and Musen 2003), an environment
that provides some matching methods and alignment visualisation. It is an inter-
active framework for comparing, matching, merging, maintaining versions, and
translating between different knowledge representation formalisms (Noy and Musen
2003; Noy 2004b). The main tools of the suite include an ontology matching tool,
called Anchor-Prompt (Sect. 8.1.9), an ontology-versioning tool, called PromptDiff,
an interactive ontology merging tool, called iPrompt (Sect. 11.4.5; formerly known
as Prompt), and a tool for factoring out semantically complete subontologies, called
PromptFactor.

Prompt is implemented as an extension to the Protégé ontology editing environ-
ment. Thus, the Protégé browser provides overall capabilities for managing multiple
ontologies. Prompt and Protégé are based on a frame-based knowledge model. Three
types of frames are distinguished, namely classes, slots (properties) and instances.
Because alignments are expressed in an ontology, they can be stored and shared
through the Protégé server mode used in BioPortal (Sect. 12.7.1).

Below, we discuss only PromptDiff because Anchor-Prompt (Sect. 8.1.9) has
been presented as a system and the interactive part of Prompt, iPrompt (Sect. 11.4.5)
is presented in the user-interaction part.
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PromptDiff (Noy and Musen 2002b) compares ontology versions and identifies
the changes. This operation may be viewed as computing a Diff in model manage-
ment (Sect. 10.3.1). PromptDiff produces a structural diff between two versions
based on heuristics. It borrows many of them from iPrompt in order to identify
what has changed from one version of an ontology to another. These heuristics in-
clude various techniques such as analysis and comparison of concept names, slots
attached to concepts. The PromptDiff approach has two parts: (i) an extensible set
of heuristic matchers; and (ii) a fixed point algorithm which combines the results of
the matchers until they produce no more changes in the diff.

10.3.6 Alignment API and Implementation (INRIA)

A Java API (David et al. 2011) is available for manipulating alignments in the Align-
ment format and EDOAL. It defines a set of interfaces and a set of functions that
they can perform.

Classes

The Alignment API is essentially made of four interfaces:

OntologyNetwork describes a network of ontologies through a set of ontologies and
a set of alignments between them.

Alignment describes a particular alignment. It contains a specification of the align-
ment and a list of cells.

Cell describes a particular correspondence between entities.
Relation does not mandate any particular feature.

A full API to EDOAL for manipulating the EDOAL expressions has been provided
with version 4.0.

To these interfaces implementing the Alignment format, are added a couple of
other interfaces:

AlignmentProcess extends the Alignment interface by providing an align method. So
this interface is used for implementing matching algorithms (Alignment can
be used for representing and manipulating alignments independently of algo-
rithms).

Evaluator describes the comparison of two alignments (the first one could serve as
a reference). Each implemented measure must provide the eval method.

RendererVisitor provides a convenient way, using the visitor pattern, to traverse
alignments.

An additional AlignmentException class specifies the kind of exceptions that are
raised by alignment algorithms and can be used by alignment implementations.
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Functions

The Alignment API provides support for manipulating alignments. As in (Bechhofer
et al. 2003), these functions are separated from their implementation. It offers the
following functions:

Parsing and serialising an alignment from a file in RDF/XML (AlignmentParser.

read(), Alignment.write());
Computing an alignment, with input alignment (Alignment.align(Alignment, Proper-

ties));
Thresholding an alignment with threshold as argument (Alignment.cut(double));
Hardening an alignment by considering that all correspondences whose strength

is strictly greater than the argument are converted to �, while the others are
converted to ⊥ (Alignment.harden(double));

Comparing one alignment with another (Evaluator.eval(Properties)) and serialising
the result (Evaluator.write());

Outputting alignments in a particular format, e.g., SWRL, OWL, XSLT, RDF,
SPARQL, Silk LSL (Alignment.render(visitor)).

Matching and evaluation algorithms accept parameters. The parameters can be
various weights used by some algorithms, some intermediate thresholds or the tol-
erance of some iterative algorithms. There is no restriction on the kind of parameters
to be used.

The API implementation comes with:

− a complete and functional base implementation of the API;
− a command-line interface for running most of the API facilities;
− a library of sample matchers (not suitable for real work);
− a library of renderers (for RDF, XSLT, SWRL, OWL, C-OWL, SPARQL, SKOS,

HTML);
− a library of evaluators implementing most of the measures of Sect. 9.3.1 as well

as plotters like precision/recall curves or ROC curves;
− a library of wrappers for several ontology APIs (OWL-API, Jena, or SKOS)

called Ontowrap.

The Alignment API also supports a server so that it is possible to store and share
alignments on the web (Sect. 12.7.2). The Alignment API has been implemented
in Java. This implementation has been used for various purposes: on-line alignment
(Zhdanova and Shvaiko 2006) and Evaluation tool in the Ontology Alignment Eval-
uation Initiative (Sect. 9.1.3). In addition, many extensions use it for implementing
matching algorithms, such as oMap (Sect. 8.3.4), CIDER (Sect. 8.1.35), and OLA
(Sect. 8.3.8).
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10.3.7 FOAM (University of Karlsruhe)

FOAM (Ehrig 2007) is a general tool for processing similarity-based ontology
matching. It follows a general process which is presented in Fig. 10.4. It is made
of the following steps:

Feature engineering selects the features of the ontologies that will be used for
comparing the entities;

Search step selection selects the pairs of elements from both ontologies that will
be compared;

Similarity computation computes the similarity between the selected pairs using
the selected features;

Similarity aggregation combines the similarities obtained as the result of the pre-
vious step for each pair of entities;

Interpretation extracts an alignment from the computed similarity;
Iteration iterates this process, if necessary, taking advantage of the current compu-

tation.

Fig. 10.4 FOAM architecture (adapted from (Ehrig 2007)).

The FOAM framework bundles several algorithms and strategies developed
by its authors. Within this framework, matching systems such as NOM, QOM
(Sect. 8.3.3), and APFEL (Sect. 8.4.1) have been cast. More systems can be in-
tegrated simply by changing any of the modules above. The global behaviour of
the system can be parameterised through different scenarios, e.g., data integration,
ontology merging, ontology evolution, query rewriting and reasoning, which offer
default parameters adapted to these tasks.

FOAM itself is based on the KAON2 (Oberle et al. 2004) suite of tools and
accepts ontologies in the OWL-DLP fragment. It offers a web-based interface. It is
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also available as a Protégé plug-in. Finally, it offers translation tools from and to the
Alignment format (Sect. 10.1.5) and other formats.

10.3.8 Harmony (The MITRE Corporation)

Harmony (Mork et al. 2008; Smith et al. 2009) is a schema integration workbench
in which multiple tools share a common RDF-based knowledge repository—called
an integration blackboard. It evolved into a collaborative effort, called open infor-
mation integration, OpenII, which assembles a suite of open-source tools for in-
formation integration, e.g., matching, mediated schema creation and data exchange
(Seligman et al. 2010; Smith et al. 2011).

It aims at facilitating the interoperation of research prototypes for matching that
discover alignments with commercial matching tools that help produce instance
transformations. The approach is based on a task model, which includes thirteen
integration tasks that can be grouped into five phases as follows:

− schema preparation, i.e., identifying and preparing source and target schemas
to be matched (this includes gathering available documentation about these
schemas);

− schema matching, i.e., producing a set of correspondences;
− schema mapping, i.e., producing a set of explicit logical mappings (this includes

developing domain, attribute, entity transformations, determining object iden-
tity, creating logical, e.g., LAV, mappings, verifying mappings against target
schema);

− instance integration, corresponding to the execution of the generated transforma-
tion, i.e., linking instance elements and cleaning data, including reconciliation of
remaining discrepancies;

− system implementation and deployment of the result.

The system handles XML and entity–relationship schemas. It combines various
matching algorithms with a graphical user interface for manipulating the identified
correspondences.

The confidence scores are shown graphically as colour-coded lines for inspection
by users. The graphic user interface supports a variety of filters, e.g., thresholds for
confidence scores, and whether a correspondence is human-established or machine-
suggested, to help integration engineers focus attention on the desired correspon-
dences. Finally, the iterative refinement of an alignment is supported through user
feedback that accepts or rejects correspondences or marks fragments of schemas as
completely addressed.

The workbench includes Schemr, a schema search engine that helps users dis-
cover and visualise relevant schemas in information integration tasks through shar-
ing and reuse (Chen et al. 2011).
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10.3.9 The NeOn Toolkit Alignment Plug-in

The NeOn Toolkit for ontology management features run-time and design-time on-
tology alignment support. It is based on the Alignment API (Sect. 10.3.6) and server
(Sect. 12.7.2). The alignment plug-in (Euzenat and Le Duc 2012) allows for auto-
matically computing and managing ontology alignments. More precisely, it offers
the following functions:

− Retrieving alignments between ontologies or those available on the server,
− Matching ontologies,
− Triming alignments by applying thresholds to existing alignments,
− Rendering alignments in a particular format,
− Uploading and storing alignments permanently on the server.

The NeOn Toolkit Alignment plug-in works in two modes: an off-line mode in
which users can work locally on the alignments and an on-line mode in which it is
connected to an Alignment server. Users can run the matchers which are embedded
in the toolkit against ontologies in the NeOn Toolkit and manipulate alignments
which are in the local environment.

The on-line mode connects the NeOn Toolkit to an Alignment server to share
ontologies and to apply the same operations as above on alignments stored on the
server. Of course, alignments can move back and forth between the server and the
local environment.

Both on-line and off-line modes provide the functions of the Alignment API:
retrieving alignments, matching ontologies, trimming alignments under various
thresholds, storing them in permanent stores, and rendering them in numerous out-
put formats. These operations support the whole alignment life cycle (Fig. 3.2,
p. 58).

10.4 Summary

When considering ontology matching, one must decide how the resulting alignment
will be used and delivered as well as how it will be produced. In particular, align-
ment formats allow for exchanging alignments among tools in well documented
formats. They guarantee the openness of the result and everyone can take advantage
of this result.

Moreover, the use of the alignment may raise constraints against the alignment to
be used. As a consequence, matching systems should be able to qualify alignments
as much as possible. This is what alignment metadata offers.

Some frameworks offer more than just a format, such as the ability to manipu-
late alignments and sometimes to apply them to data. The drawback of these envi-
ronments, with the exception of the Alignment API, is that they cannot be easily
embedded within other applications.

The choice to be made is dependent on the matching purpose of the matching
tool. If its goal is to establish alignments that will be used in unknown and multiple
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contexts, then choosing a format as neutral as possible is certainly the solution. If
the matching result is used for processing some already known data, following a
precise process, then a framework allowing this manipulation can be used. Finally,
if the matching algorithm is to be integrated in a user driven environment, then an
ontology and alignment editing tool is a good choice.

The two next chapters develop these themes by considering first user involvement
in the matching process (Chap. 11) and then by discussing how alignments can be
processed in applications (Chap. 12).



Chapter 11
User Involvement

This chapter considers how ontology matching techniques and human users in-
teract from a technical perspective (rather than from organisational or social ones
(von Hippel 2005)). This may occur because some functions of matching, such
as finding anchors, are partially or completely carried out by individual users
(Sect. 11.1) or sets of users (Sect. 11.2). The ability to explain alignments to users is
also an important factor in the success of user involvement (Sect. 11.3). Finally, spe-
cial attention is paid to tools for communicating with users and, more particularly,
to alignment visualisers and editors (Sect. 11.4).

11.1 Individual Matching

The availability of users must be taken into account when designing the architecture
of a matching system. This was one of the requirements from some applications
mentioned in Chap. 1 and an important factor in the choice of a matcher as indi-
cated in Chap. 3. There are at least three areas in which users may be involved in a
matching solution (see Fig. 11.1):

− by providing initial alignments to the system (before matching),
− by configuring (which includes strategy and parameter selection) and tuning the

system, and
− by providing feedback to matchers (during or after the automatic matching pro-

cess) in order for them to adapt their results.

These three aspects are considered next. One of the differences between them is
that, in the case of providing input, the system acts as a master that prompts users,
while in the other two cases, both the user and the system may decide to act. On the
one hand, the first and the third areas may be viewed as coarse-grained interactions
and a matcher is viewed as a black box. On the other hand, the second area represents
fine-grained interactions and a matcher is no longer viewed as a black box, since its
internals have to be understood in order to meaningfully configure and tune it.

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_11,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 11.1 General framework for individual user involvement. Users may provide a seed align-
ment A, which consists of some expected correspondences. Users also provide matcher configu-
rations and may also tune matchers, by specifying method parameters and strategies used. Finally,
users can provide feedback on resulting alignments which can be used by matchers, either to com-
pute from a new seed alignment or to learn from user reaction.

11.1.1 Providing Input

This is the user task to provide input to matching systems. This obviously covers
providing the ontologies to be matched.

More difficult is choosing the system parameters, which always depend on the
method. Some algorithms may provide advice based on a priori analysis of data, but
these techniques are specific to the matchers themselves.

Another important input that users can provide is an initial alignment which may
be used as anchor by a global matching method. An initial alignment will constrain
the matching system to produce an alignment complying with the initial alignment.
This is an opportunity for users to control the system behaviour.

11.1.2 Manual Matcher Composition

We distinguish three ways to compose matchers:

Built-in composition corresponds to most of the systems presented in Chap. 8: the
methods are composed according to the principles presented in Sect. 7.2. This
composition is part of the algorithm and is applied to any data set given to the
system.

Opportunistic composition corresponds to a system, that chooses the next method
to run with respect to the input data and/or currently achieved results. Systems
like Falcon-AO (Sect. 8.3.9), H-Match (Sect. 8.1.7) or RiMOM (Sect. 8.3.10)
feature a limited implementation of this by choosing dynamically to use a par-
ticular matcher or not.

User-driven composition can consider the previous two options and is often used
in environments where users can apply many different methods following
their needs, such as Rondo (Sect. 10.3.1), COMA++ (Sect. 10.3.2), or Prompt
(Sect. 10.3.5).
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For instance, Fig. 11.2 shows the graphic user interface of COMA++ with a dia-
log for configuring its matching strategy for the two schemas under consideration.
In turn, Fig. 11.3 shows that of AMC (Sect. 8.4.9), which provides visual support
for designing matching processes, specifying parameters of their components (a),
iterating the process (b), inspecting (c) and visualising (d) the intermediate results.

Fig. 11.2 Graphic user interface of COMA++ (Aumüller et al. 2005).

As another example, a system that may involve users in the dynamic assembly of
matchers as follows. An interface could provide a library of basic matchers, filters
and aggregators, as presented in Sect. 7.2, that users can assemble through graphic
interaction. Then, the output of these methods could be materialised so that users
can inspect them. Inspection can involve actually applying the resulting alignment
for existing data in order to see the effects. Users may also dynamically change
the parameters and quickly see the effects of these changes on the data. Finally it
should be possible to save the designed architecture in order to use it in different
applications.

11.1.3 Relevance Feedback

User feedback for each alignment or each specific correspondence found by a
matcher may be used for improving the results. This may be achieved by adapting
the local matcher parameters, such as

− matcher weights (Sect. 7.4.1),
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Fig. 11.3 Matching process designer of AMC (Peukert et al. 2011).

− thresholds used for filtering the results (Sect. 7.7), and
− aggregation parameters (Sect. 7.4).

Usually, systems compute a distance between the feedback and the result provided
by the system. This is called the error. The computation of the error depends directly
on the kind of feedback which is provided: users discarding unwanted correspon-
dences, adding new correspondences or modifying the proposed correspondences.

Once the error is computed, the system has to select the parameter values that
would minimise this error. This can sometimes be done directly: for instance, when
the only parameter to set is a threshold, the system can directly compute a thresh-
old that will provide the minimal error. However, very often such a method does
not exist and it is necessary to use an indirect method that estimates the error re-
duction given some parameter value changes and searches for the best combination.
Most of the methods presented in Sect. 7.6 may be used for this task. This kind
of algorithm is used, for instance, in APFEL (Sect. 8.4.1). In turn, it is possible to
implement a negative feedback method in which users tell if a correspondence is in-
correct (Pachêco et al. 2011). This then affects the confidence in the correspondence
(which is set to 0) and in future runs this will also affect the final confidence of cor-
respondences across similar entities (by aggregating the confidences of all similar
matches). (Lambrix and Kaliyaperumal 2013) proposed a session-based framework,
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in which correspondences are delivered for user validation before the final alignment
has been computed; this is particularly relevant for large-scale ontologies, since val-
idating a large alignment at once is infeasible. Hence, correspondences can be par-
tially validated and this process can be resumed later. Relevance feedback may also
be used to improve alignments (Sect. 7.8). This is the case if the choice of the diag-
nosis to apply in debugging is delegated to users (Sect. 7.8.2).

A more active approach may be used in query-based applications. It asks users
for a partial alignment with respect to terms involved in their queries This can be
achieved relatively easily by displaying the query and the target ontologies. Users
who want to see their queries answered may show more willingness to help the
system in this specific way, which can be viewed as an application of the ‘pay-as-
you-go’ principle (Sarma et al. 2008).

We call ‘implicit matching’ serendipitously contributing to improve available
alignments, i.e., users provide information about alignments by doing another task
that matters to them without consciously dealing with alignments. Some systems
use query logs to enhance match candidate generation (Sects. 8.1.36 and 8.3.18).
Preliminary experiments for evaluating the characteristics of doing matching tasks
embedded within user daily work have been run (Conroy et al. 2009). Users were
asked to perform simple sessions of matching related to their interests and were re-
warded (giving them interesting news feeds). The conclusion of the experiment is
that as long as the task remains within user interests, it is bearable, and it would be
better accepted if accomplished in the context of a relevant task. Such resulting local
and partial alignments could be recorded as a special type of alignment that can be
further reused when these alignments are necessary. A system could collect many of
these alignment fragments, provided by many users over time, and the aggregation
of many such partial alignments will eventually provide high-quality alignments
between ontologies. Even when partial, such alignments may be sufficient for an-
swering a large proportion of queries. Hence, local query alignment is a promising
way to obtain alignments from users without asking them for a full alignment.

11.2 Collective Matching

Besides involving a single user at a time, mostly in a synchronous fashion, matching
may also be a collective effort in which several users are involved (see Fig. 11.4).
This would leverage the network effect. Indeed, if it is too cumbersome for one
person to come up with a correct alignment between several pairs of ontologies, this
can be more easily resolved by many people together, because (i) each person has
to do a very small amount of work, (ii) each person can improve on what has been
done by others, and (iii) errors remain in minority.

Collective approaches to matching, since they involve multiple parties in the pro-
cess, allow for negotiating or correcting mismatches and mistakes collaboratively.
Some steps in this direction have already been taken within the consensus building
sessions of the Ontology Matching workshops (Caracciolo et al. 2008). This has
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Fig. 11.4 General framework for collective matching. In complement to the individual actions
(Fig. 11.1), multiple users, belonging to different communities of interest, e.g., biology, chemistry,
illustrated by ellipses, may also comment and discuss correspondences which will influence the
matcher behaviour.

also been considered in the field of multiagent systems where raw alignments are
refined by agent negotiation (Sect. 7.4.3). We describe below several proposals for
achieving collective matching among human users.

11.2.1 Community-Driven Ontology Matching

Community-driven ontology matching extends the notion of ontology matching by
allowing a community of people to share alignments over the web, reuse them as
well as argue about them by using annotations. Early experiments have been re-
ported in (Zhdanova and Shvaiko 2006). Technically this requires, among other
things, extending correspondences with metadata (Sect. 10.2) covering the corre-
spondence author name, the application domain, and his or her trust value in a com-
munity.

The OntoMediate project (Correndo et al. 2008) proposed a system offering stor-
age for ontologies and alignments, social interaction and collaboration. To that ex-
tent, the system allows users to annotate and vote in favour of or against proposed
correspondences. All this social information is logged in the system in order to be
exploited if necessary, for instance, to explain the arguments (see Sect. 11.3).

(Dewaraja 2010) reports an 18 question survey among 32 ontology matching
users highlighting the needs for user support to matching. The resulting CLONTY
system proposed a game, where two players are presented synchronously with the
same pair of concepts. They independently assign possible relationships (equiva-
lence, disjointness, hypernym, hyponym) to the pair of concepts. They gain points



11.2 Collective Matching 359

if they reach an agreement on the relationship, which will be the output of the game.
The process is supported by a web-based interface providing information and con-
text about the two concepts. The game ends when ten concept pairs have been con-
sidered. Games with a purpose, engaging distributed groups of users, have been
explored in the context of ontology matching as well, e.g., SpotTheLink (Thaler
et al. 2011).

11.2.2 Crowdsourcing Ontology Matching

(McCann et al. 2008) proposed an application of mechanical turk to enlist the mul-
titude of users in a community to help matching schemas by asking them simple
questions, e.g., is monthly-fee-rate of type DATE?, and then learning from the answers
to improve matching accuracy, e.g., in case of a positive answer to the preceding
question above by using a specific date matcher. On the one hand, the questions
should be relatively easy for users to answer and, on the other hand, they must af-
fect substantially the matching accuracy. In this vein, three types of questions were
used for three different purposes: (i) to verify intermediate predictions of the system,
(ii) to learn domain integrity constraints, and (iii) to verify final match candidates.
Users were classified into trusted and untrusted, based on their answers to a set of
(evaluation) questions with answers known in advance. The answers from trusted
users were further combined using a voting scheme. Ultimately, two user participa-
tion schemes were analysed: a standard volunteering scheme and a scheme in which
users had to ‘pay’ by answering first several questions in order to use a desired ser-
vice.

CrowdMap is an approach to acquire class correspondences through microtask
crowdsourcing (Sarasua et al. 2012). It decomposes the matching problem into a
set of smaller subproblems or microtasks, and publishes these on a crowdsourcing
platform which submits them to on-line workers. They are expected to have neither
specific domain skills, nor additional motivation for such tasks, other than a mon-
etary reward, e.g., one to five cents. Each task may be carried out by several such
workers and, based on the retrieved answers, the resulting alignment is computed,
for instance by majority voting (Sect. 7.4.2). CrowdMap takes as input candidate
correspondences, which are verified to improve their accuracy. The generated mi-
crotasks are of two types: (i) validation, in which the crowd is asked to specify if
the displayed correspondence is correct, and (ii) identification, in which the crowd
is asked to identify a particular relation, e.g., subsumption, between the classes at
hand. These types of microtasks are presented through two specific user interfaces,
e.g., in the first case it shows two classes under consideration together with the sup-
porting contextual information, e.g., definitions, and poses a question if one concept
is the same as another concept, which requires a yes/no answer. Verification ques-
tions (with correct answers known in advance) were used to reduce spam answers.

Collective matching requires alignment sharing. These systems identified the
need for several capabilities, such as storage for the created alignments, recording
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of the arguments and votes, and notification to entities and alignments of interest.
Alignment services (Sect. 12.7) usually support sharing alignments or correspon-
dences and their metadata. Some of them offer annotation editing and discussion
lists as support for collaborative matching. Besides technology, the success of so-
cial and collaborative matching techniques will largely depend on the creation of a
critical mass of users that actually use them, similarly to what happens to any type
of data on the web.

11.3 Explaining Alignments

Matching systems produce alignments that may not be intuitively obvious to human
users. In order for users to trust the alignments, and thus use them, they need infor-
mation about them, e.g., they need access to the sources that were used to determine
semantic correspondences between ontology entities. Explanations are also useful
when matching large applications with thousands of entities, e.g., business product
classifications, such as UNSPSC and eCl@ss. In such cases, automatic matching so-
lutions will find many plausible correspondences, and hence user input is required
for cleaning up the alignment. Finally, explanations can also be viewed and applied
as argumentation schemas for negotiating alignments between agents.

There are only a few matching systems able to provide explanations for their
results (Shvaiko et al. 2005; Dhamankar et al. 2004; Trojahn et al. 2011), though
development of this topic may take advantage of progress in other areas, such as
OWL justifications (Horridge et al. 2011, 2012). The solutions proposed so far focus
on default explanations, explaining basic matchers, explaining the matching process,
and negotiating alignments by argumentation.

In this section, we describe how a matching system can explain its answers, thus
making the matching result mode intelligible. We first present the information re-
quired for providing explanations of matching and alignments (Sect. 10.2.2). Then,
we discuss approaches to explanations of matching by examples of existing systems
(Sect. 11.3.1). Details of these approaches are provided in the remainder, including
default explanations (Sect. 11.3.2), explaining the basic matchers (Sect. 11.3.3), and
explaining the matching process (Sect. 11.3.4).

11.3.1 Explanation Approaches

The goal of explanations is to take advantage of information about alignments, and
in particular metadata (Sect. 10.2), for rendering the matching process intelligible
to users. A key issue is to represent explanations in a simple and clear way (Léger
et al. 2005).

In fact, while knowledge provenance and process traces may be enough for ex-
perts when they attempt to understand why a correspondence was returned, usually
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they are inadequate for ordinary users. Thus, raw justifications have to be trans-
formed into an understandable explanation for each of the correspondences, e.g., by
showing general reasons for an incorrect match together with an example illustrating
the reason, such as in mSeer (Sect. 8.4.5). Techniques are required for transforming
raw justifications and rewriting them into abstractions that produce the foundation
for what is presented to users. Presentation support also needs to be provided for
users to better understand explanations. Human users will need help in asking ques-
tions and obtaining answers of a manageable size. Additionally, agents may even
need some control over requests, such as the ability to break large process traces
into appropriate size portions. Requirements for process presentation may include
(McGuinness and Pinheiro da Silva 2004):

− methods for breaking up process traces into manageable pieces,
− methods for pruning process traces and explanations to help users find relevant

information,
− methods for explanation navigation, including the ability to ask follow-up ques-

tions,
− methods for obtaining alternative justifications for answers,
− different presentation formats, e.g., natural language, graphs, and associated

translation techniques,
− methods for obtaining justifications for conflicting answers,
− abstraction techniques.

There are several approaches to provide explanations of matching results. We
describe below three such approaches. There are, however, few work on the topic
in the literature and even fewer implemented systems. So, this chapter more specifi-
cally describes the explanation approaches as implemented in two systems, namely
S-Match (Sect. 8.1.18) and iMAP (Sect. 8.2.6).

The Proof Presentation Approach

Semantic matchers usually produce formal proofs of their inferences as the basis
for a correspondence. They can thus benefit from work developed for displaying
and explaining proofs.

For instance, S-Match (Shvaiko et al. 2005) has been extended to use the Infer-
ence Web infrastructure as well as the Proof Markup Language (McGuinness and
Pinheiro da Silva 2003; Pinheiro da Silva et al. 2006). Thus, meaningful fragments
of S-Match proofs can be loaded on demand. Users can browse an entire proof or
they can restrict their view and refer only to specific, relevant parts of proofs. The
proof elements are also connected to information about basic matchers that gener-
ated the hypotheses.
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The Strategic Flow Approach

Many matchers are composed of other matchers and have to decide in favour of
some particular results over others. This composition and decision flow can be
recorded in a dependency graph and used for providing explanation to users.

For instance, iMAP (Dhamankar et al. 2004) records dependencies at a very pre-
cise level (correspondence per correspondence) and can provide users with justifi-
cations for (i) existing correspondences, (ii) absent correspondences, and (iii) corre-
spondence ranking. It provides explanations by extracting in the dependency graph
the part that has an influence on the choice of a correspondence and generates an
explanation in English from this extracted subgraph.

The Argumentation Approach

The argumentation approach considers the justifications or arguments in favour or
against specific correspondences (Sect. 7.4.3). Argumentation theories can deter-
mine, from a set of arguments, the correspondences which will be considered to
hold and those which will not.

Argumentation can be applied to justify matching results to users on the basis of
arguments and counter-arguments or to negotiate the correspondences that should be
in an alignment. So far, this approach has mainly been applied to agents negotiating
alignments (Laera et al. 2006) rather than for explaining them.

The argumentative approach is different from the proof presentation approach,
because it does not follow the formal proof of the correspondences. It is also more
suitable when no such a proof exists.

11.3.2 A Default Explanation

A default explanation of alignments should be a short, natural language, high-level
explanation without any technical details. It is designed to be intuitive and under-
standable by ordinary users.

The S-Match Example

We concentrate on class matching and motivate the problem by the simple catalogue
matching example shown in Fig. 11.5. Assume that an agent wants to exchange
or to search for documents with another agent. The documents of both agents are
stored in catalogues according to class hierarchies o and o′, respectively. S-Match
takes as input these hierarchies, decomposes the tree matching problem into a set of
node matching problems, which are, in turn, translated into a propositional validity
problem that can then be efficiently resolved using a sound and complete SAT solver
(Sect. 6.5.1).
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Fig. 11.5 Simple catalogue matching problem.

From the example in Fig. 11.5, trying to prove that the node with label Europe in
o (denoted by Europe) is equivalent to the node with label Pictures in o′ (denoted by
Pictures’), requires constructing the following formula (see Sect. 6.5.1 for details of
formula construction):

(
(Images≡ Pictures’)∧ (Europe≡ Europe’)

)

︸ ︷︷ ︸
Axioms

⇒

(
(Images∧ Europe)︸ ︷︷ ︸

Contextc

≡ (Europe’∧ Pictures’)︸ ︷︷ ︸
Contextc′

)

In this example, the negated formula is unsatisfiable, thus the equivalence relation
holds between the nodes under consideration.

Assume that agent o′ is interested in knowing why S-Match suggested a set of
documents stored under the node with label Europe in o as the result to the query—
‘find European pictures’. A default explanation is presented in Fig. 11.6. To simplify
the presentation, whenever it is clear from the context to which classification a label
under consideration belongs to, we do not tag it with the prime symbol (’).

Fig. 11.6 S-Match explanation in English.

From the explanation in Fig. 11.6, users may learn that Images in o and Pictures in
o′ can be interchanged, in the context of the query. Users may also learn that Europe

in o denotes the same concept as Europe in o′. Therefore, they can conclude that
Images of Europe means the same thing as European Pictures.
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The iMAP Example

iMAP (Sect. 8.2.6) differs substantially from S-Match. It is based on a combination
of constraint- and instance-based basic matchers. Once the matcher has produced
candidate correspondences, a similarity estimator computes, for each candidate, its
similarity score. Finally, by applying the match selector, the best matches are re-
turned as the final alignment.

Consider how iMAP explains why pname = last-name is ranked higher than
concat(first-name, last-name). Figure 11.7 shows the explanation as produced by
iMAP (Dhamankar et al. 2004).

Fig. 11.7 iMAP explanation in English.

At the matcher level, concat(first-name, last-name) was ranked higher than the ele-
ment with label last-name. It also clearly shows that things went wrong at the simi-
larity estimator level. The naive Bayes evaluator still ranked matches correctly, but
the name-based evaluator flipped the ranking, which was the cause of the ranking
mistake.

The last line of the explanation also confirmed the above conclusion, since it
states that the name-based evaluator has the greatest influence on the top five match
candidates for pname. Thus, the main reason for the incorrect ranking for pname

appears to be that the name-based evaluator has too much influence. This explana-
tion would allow users to tune the system, possibly by reducing the weight of the
name-based evaluator in the score combination step.

Users may not be satisfied with this level of explanations. Let us therefore discuss
how they can investigate the details of the matching process by exploiting more
detailed explanations, which are discussed in the forthcoming sections.

An Argumentation Example

Following Example 7.18 of Sect. 7.4.3, consensus alignment can also be achieved by
a dialogue between agents during which they exchange arguments. Such a dialogue
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is presented below. Agent C starts the dialogue by asserting alignment A between
the two ontologies o and o′ (the agent C is committed to support the alignment A

and each correspondence it contains). A possible dialogue between C and P is as
follows:

// Agent C is committed to support the alignment
C−assert( :content A :reply-with 1 )→ P

// Agent P asks to justify the correspondence γ1

(P does not have counter-a rgument)
C ←question( :content γ1 :reply-with 2 )−P

// Agent C justifies the correspondence γ1 with the arguments a1 and a2

C−support( :content a1, a2 %+ γ1 :in-reply-to 2 )→ P

// Agent P asks to justify the correspondence γ3 (P is ready to justify the opposite)
C ←challenge( :content γ3 :reply-with 3 )−P

// Agent C justifies the correspondence γ3 with the arguments a3 and a4

C−support( :content a3, a4 %+ γ3 :in-reply-to 3 )→ P

// Agent P contests the correspondence γ3 with the counter-arguments a5 and a6

C ←contest( :content a5, a6 %− γ3 :in-reply-to 3 )−P

// Agent C retracts the correspondence γ3

C−retract( :content γ3 :in-reply-to 3 )→ P

This results in the selection of the alignment A′ = {γ1, γ2}.
In this dialogue, one of the agents may be a human user. The system knowing the

user preferences can provide more adapted arguments.

11.3.3 Explaining Basic Matchers

Explaining basic matchers requires only to formulate the justification information.
This is illustrated through S-Match.

Assume that an agent wants to see the sources of background knowledge used in
order to determine a correspondence. For example, which applications, publications,
other sources, have been used to determine that Images is equivalent to Pictures.
Figure 11.8 presents the source metadata for the default explanation of Fig. 11.6.

In this case, both (all) the ground sentences used in the S-Match proof came from
WordNet. Using WordNet, S-Match learnt that the first sense of the word Pictures is
synonym to the second sense of the word Images. Therefore, S-Match can conclude
that these two words are equivalent words in the context of the answer (Sect. 5.2.2).
The meta-information about WordNet is also presented in Fig. 11.8 as sources of
the ground axioms. Further examples of explanations include providing meta infor-
mation about the S-Match library of element-level matchers, i.e., those which are
based not only on WordNet, or the order in which matchers are used. This use of
metadata is not restricted to S-Match and can be applied to any resource used in
matching.
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Fig. 11.8 S-Match source metadata information.

11.3.4 Explaining the Matching Process

S-Match and iMAP follow different matching strategies. iMAP follows a learning-
based solution, while S-Match reduces the matching problem to a propositional va-
lidity problem. Let us discuss how they explain the matching process.

Dependency Graphs

Explanations of alignments in the iMAP system are based on the idea of a depen-
dency graph, which traces the matchers, memorising relevant slices of the graph
used to determine a particular correspondence. Finally, exploiting the dependency
graph, explanations are presented to users as shown in Fig. 11.7.

The dependency graph is constructed during the matching process. It records the
flow of matches, data and assumptions into and out of system components. The
nodes of the graph are schema attributes, assumptions made by system components,
candidate correspondences, etc. Two nodes in the graph are connected by a directed
edge if one of them is the successor of the other in the decision process. Edges
are labelled with the name of the system component that was responsible for the
decision.

Figure 11.9 shows a dependency graph fragment that records the creation and
flow for the correspondence month-posted = monthly-fee-rate. The preprocessor finds
that both month-posted and monthly-fee-rate have values between 1 and 12 and hence
makes the assumptions that they represent months. The date matcher takes these
assumptions and generates month-posted = monthly-fee-rate as a candidate correspon-
dence. This candidate is then scored by the name-based evaluator and the naive
Bayes evaluator. The scores are merged by a combining module to produce a single
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Fig. 11.9 Dependency graph as generated by iMAP (Dhamankar et al. 2004).

score. The match selector acts upon the several alignment candidates generated to
produce the final list of alignments. Here, for the target attribute list-price, the selec-
tor reduces the rank of the candidate correspondence price ∗ (1 + monthly-fee-rate)

since it discovers that monthly-fee-rate maps to month-posted.
In each case, the system synthesises an explanation in English for users. To pro-

vide explanations, iMAP selects the relevant slices of dependency graph that record
the creation and processing of a particular correspondence. For example, the slice
for month-posted = monthly-fee-rate is the portion of the graph where the nodes par-
ticipated in the process of creating that correspondence.

Explaining Logical Reasoning

A complex explanation may be required if users are not familiar with or do not
trust the inference engine(s) embedded in a matching system. As the web starts to
rely more on information manipulations, instead of simply information retrieval,
explanations of embedded manipulations or inference engines become more impor-
tant. In the current version of S-Match, a propositional satisfiability engine is used
(Sect. 8.1.18), more precisely, this is the Davis–Putnam–Longemann–Loveland pro-
cedure (Davis and Putnam 1960; Davis et al. 1962) as implemented in JSAT/SAT4J
(Le Berre and Parrain 2010).

The task of a SAT solver is to find an assignment ν of Boolean values {�,⊥}
for atoms of a propositional formula ϕ such that ϕ evaluates to �. ϕ is satisfiable
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if and only if |= ν(ϕ) for some ν. If there is no such an assignment, ϕ is unsat-
isfiable. A literal is a propositional atom or its negation. A clause is a disjunction
of one or more literals. ϕ is said to be in conjunctive normal form if and only if it
is a conjunction of disjunctions of literals. The basic DPLL procedure recursively
implements three rules: unit resolution, pure literal and split. We only consider the
unit resolution rule to simplify the presentation.

Let l be a literal and ϕ a propositional formula in conjunctive normal form.
A clause is called a unit clause if and only if it has exactly one unassigned literal.
Unit resolution is an application of resolution to a unit clause.

unit resolution : ϕ ∧ {l}
ϕ[l | �]

Consider the propositional formula standing for the problem of testing if the
concept with label Europe in o is less general than the concept with label Pictures

in o′ in Fig. 11.5. The propositional formula encoding the above stated matching
problem is as follows:

(
(Images≡ Pictures)∧ (Europe≡ Europe)

) ⇒
(
(Images∧ Europe) ⇒ (Europe∧ Pictures)

)

Its intuitive reading is ‘Assuming that Images and Pictures denote the same concept,
is there any situation such that the concept Images of Europe is less general than the
concept European Pictures?’. The proof of the fact that this is not the case is shown
in Fig. 11.10. Since the DPLL procedure of JSAT/SAT4J only handles conjunctive

Fig. 11.10 A graphical explanation of the unit clause rule.
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normal form formulas, in Fig. 11.10, we show the conjunctive normal form of the
above formula.

From the explanation in Fig. 11.10, users may learn that the proof of the fact that
the concept labelled Europe in o is less general than the concept labelled Pictures

in o′ requires 4 steps and at each proof step (excepting the first one, which is a
problem statement) the unit resolution rule is applied. Moreover, users may learn
the assumptions that are made by JSAT/SAT4J. For example, at the second step, the
DPLL procedure assigns the truth value to all instances of the atom Europe, therefore
making an assumption that there is a model where what an agent says about Europe
is always true. According to the unit resolution rule, the atom Europe should be
deleted from the input sentence. Thus it does not appear in the sentence of Step 2.

The explanation of Fig. 11.10 represents some technical details (only the less
generality test) of the default explanation in Fig. 11.6. This type of explanations is
the most verbose. It assumes that, even if the graphical representation of a decision
tree is quite intuitive, users have some background knowledge in logics and SAT.
However, if they do not, they have a possibility to learn it by following the publi-
cations mentioned in the source metadata information of the DPLL (see Sect. 10.2)
unit resolution rule and JSAT, by clicking the DPLL unit clause elimination and the
JSAT-The Java SATisfiability Library buttons, respectively.

By using explanations, a matching system can provide users with meaningful
prompts and suggestions on further steps towards the production of a desired result.
Having understood the alignments returned by systems, users can deliberately edit
them manually, thereby providing feedback to the system. Besides explanations,
matching systems should provide facilities for users to explore paths not followed
by the system. These systems should enable users to re-launch the matching process
with different parameters in an intermediate state.

11.4 Alignment Editors and Visualisers

The minimal requirement for interacting with users is to present them the objects on
which they have to work, i.e., alignments. Once an alignment has been discovered,
it should be presented and, if necessary, explained, such that users can interpret it
and give feedback on it. Presenting and manipulating alignments under the formats
provided in Sect. 10.1 may not be acceptable for many users. Hence, alignment ed-
itors and visualisers should offer human users the opportunity to be involved in the
matching process. Below, we enumerate requirements for alignment editors and vi-
sualisers which draw on individual (Sect. 11.1) and collective (Sect. 11.2) matching
as well as on alignment explanations (Sect. 11.3):

− It should be possible to have an overview of an alignment, such that users can
understand which fragments of ontologies match and which do not. This should
allow for focussing on specific areas of interest to be further examined.

− It should be possible to search, browse, zoom on specific correspondences as
well as filter and sort them, based on different aspects, such as confidence values
or their status, e.g., automatically generated, approved by a human user.



370 11 User Involvement

− For each generated correspondence, it should be possible to request an explana-
tion (at different levels of detail) for why it was generated.

− Users should have visual facilities allowing them to accept, reject, create, update,
delete, and postpone for later revision the correspondences under consideration.

− In a collaborative setting, when multiple users work on alignments, they should
have immediate opportunity to comment, annotate or vote on the correspon-
dences under consideration.

− In a crowdsourcing setting, it should be possible to assign fragments of ontolo-
gies to be outsourced to communities of interest as well as to load the respective
(even partial) results once these become available.

− Systems should be able to influence the search for the desired alignment on
various levels via unified interfaces, e.g., by suggesting sources of background
knowledge to use, by supporting adequate matcher configuration and tuning, or
through critique visualisation of intermediate results, thus stimulating users to
become active and conscious in their choices. Ideally, each design-time function
should be available from an alignment editor.

We describe a few systems for presenting and sometimes editing alignments.
They sometimes offer interesting features, besides the mere representation of on-
tologies and alignments.

In general, such tools typically provide line- or list-based representation of align-
ments and tree and/or graph-based representation of ontologies. Colors are often
used to represent different types of correspondences. Interaction is typically syn-
chronised between ontologies and alignments. Most of the software developed for
editing alignments are rather design tools. Such systems provide a convenient dis-
play of the currently edited alignments and the opportunity to discard, modify or
add correspondences. Since ontologies and alignments may be very large, it is chal-
lenging to offer intuitive alignment editing support.

We present below editors and visualisers by first considering standalone software
specifically dedicated to alignments, before considering software integrated within
ontology management environments.

11.4.1 WSMT (DERI, University of Innsbruck)

The Web Service Modeling Toolkit (WSMT) (Kerrigan et al. 2007) is an integrated
development environment (IDE) for semantic web services with ontology engineer-
ing capabilities. WSMT provides a set of tools for manually creating, editing and
storing ontology alignments. WSMT and the ontology engineer work together in an
iterative process. This involves cycles consisting of suggestions from the tool side
and validation or creation of correspondences from user side. It offers a set of meth-
ods that assist ontology engineers in their work, such as different graphical perspec-
tives over the ontologies, suggestions of the most related entities from the source
and the target ontology, and guidance throughout the matching process (Mocan and
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Cimpian 2007). Specifically, the suggestion algorithm implements a weighted aver-
age of the lexical and structural similarity factors, called eligibility factor. Pairs of
entities with the eligibility factor higher than a threshold are retained as suggestions.
Design-time graphical instruments support a formal model for alignment creation.
Through this model the explicit links between graphical elements and correspon-
dences are captured, and thus, the complexity of the underlying logical languages
is hidden. Users provide graphic input, which is then translated into a logical for-
malism to be executed in run-time data mediation. WSMT is based on the idea that
particular graphical visualisations, called perspectives, of ontologies to be matched
or switching between combinations of perspectives can facilitate discovery of cer-
tain types of correspondences. Several types of perspectives were introduced. For
example, the partOf perspective is the most common one and is used to focus on
correspondences between concepts and attributes; while the instanceOf perspective
focusses on instances and can be used to create conditional correspondences, e.g., by
restricting the allowed values for the source or the target attributes. Graphically only
one nesting level is displayed in order to facilitate guidance through the matching
process.

11.4.2 Muse (University of California, University of Toronto)

Muse (Mapping Understanding and deSign by Example) is a mapping design wiz-
ard that uses data examples to assist integration engineers in designing mappings of
a desired specification (Alexe et al. 2008a). The intuition behind it is that integra-
tion engineers usually understand better their data than alignments. The algorithms
behind Muse build on two particular aspects of mapping design: (i) specification
of the desired grouping semantics for sets of data, (ii) disambiguation of candidate
correspondences possessing several alternative interpretations, namely when there
is more than one way to obtain an atomic target schema element. The background
idea of these algorithms is to infer the desired semantics based on the yes/no an-
swers provided by users to a series of automatically generated questions exploiting
small examples, possibly familiar to the database users. This should help in exem-
plifying to users (with familiar data examples) the nuances of how small changes
to a correspondence change its semantics. Muse is also able to identify cases when
a source instance is insufficient for illustrating all design alternatives, and hence,
artificial examples are generated to illustrate these alternatives.

11.4.3 iMerge (Duisbourg University)

The iMerge editor (El Jerroudi and Ziegler 2008) has been developed for displaying
matching results in the context of merging biomedical ontologies. It offers a clas-
sical tree view of the ontologies to be merged, but introduces an interesting matrix
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view of the alignment, where the matrix dimensions are the two ontologies. The
interface allows for folding and unfolding the ontologies, and thus, for concentrat-
ing on particular areas of the ontologies. It also offers a colour representation of
confidence measures (see Fig. 11.11).

Fig. 11.11 iMerge interface presenting alignments. The ontologies are displayed as unfoldable
trees, which unveil correspondences displayed in different colours depending on their status and
confidence (that are displayed when the mouse hovers on a node).

11.4.4 Chimaera (Stanford University)

Chimaera is a browser-based environment for editing, merging and testing (diagnos-
ing) large ontologies (McGuinness et al. 2000). Users are provided with a graphical
user interface (the Ontolingua ontology editor) for editing taxonomies and prop-
erties. The interface contains spring-loaded menus with about seventy commands,
e.g., merge classes. There are also various diagnosis commands which provide sup-
port for tests and changes, e.g., tests for redundant superclasses, slot values or type
mismatch. Matching in the system is performed as one of the subtasks of a merge op-
eration. Chimaera searches for merging candidates as pairs of matching terms, with
terminological resources such as term names, term definitions, possible acronym
and expanded forms, names that appear as suffixes of other names. It generates
name resolution lists that help users in the merging task by suggesting terms which
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are candidates to be merged or to have taxonomic relationships not yet included in
the merged ontology. The suggested candidates can be names of classes or slots.
These names to be resolved are presented through the menu of items, showing the
current one, with the possibility to delete it or to move to the previous or the next
item. The result is output in OWL descriptions similar to those presented in the
OWL format (Sect. 10.1). Chimaera also suggests taxonomy areas that are candi-
dates for reorganisation. These edit points are identified by heuristics, e.g., looking
for classes that have direct subclasses from more than one ontology.

11.4.5 iPrompt (Stanford University)

iPrompt (Noy and Musen 2000) is an interactive interface to the Protégé Prompt
Suite (Sect. 10.3.5) integrated in the Protégé ontology edition environment. It takes
as input two ontologies and leads users towards one merged ontology as output.
First, iPrompt creates an initial set of matches based on lexical similarity between
class names. Here any name-based technique (Sect. 5.2) may be used. Then, it pro-
ceeds through the following cycle:

− Users choose an operation to perform from the iPrompt suggestion list. Some
examples of operations are: merge classes, slots, instances, perform a shallow
(deep) copy of a class.

− iPrompt performs the operation chosen at the previous step. It also identifies
inconsistencies, e.g., name conflicts, redundancy in the class hierarchy, that the
operation introduced, as well as possible strategies to resolve them. Finally, it
generates a list of suggestions (concerning the next actions) for users.

Some techniques, such as rearranging lists of suggestions, are used in order to keep
users focussed on the most important aspects of the given state of the process, thus
converging on a desired merged ontology efficiently.

11.4.6 AlViz (Vienna University of Technology, Norwegian
University of Science and Technology)

AlViz is a multiview Protégé plug-in for visual ontology matching (Lanzenberger
and Sampson 2006). It provides traditional J-Trees views as well as the small world
graphs view (van Ham and van Wijk 2004) for representing ontologies. In the first
visualisation type, trees have roots and expandable indented node hierarchies. How-
ever, with large ontologies, this view does not provide adequate overview function-
ality. The second visualisation type, small world graphs, represents an abstraction
of an ontology graph via clusters. Specifically, graph nodes are clustered according
to the selected (through sliders) level of detail, thereby offering detail-and-overview
functionality (see Fig. 11.12).
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Fig. 11.12 AlViz: visualisation of ontologies with different matching entities (Lanzenberger and
Sampson 2006).

In this modality, nodes represent ontology entities connected through relations,
such as is-a, part-of, which can be filtered. The size of the nodes depends on the
number of clustered concepts. The approach scales up to ontologies with thousands
of nodes. Six categories of correspondence relations are supported, corresponding
to different colours. In particular: equality (entities shown in red), syntactic equality
(entities shown in orange), broader- or narrower-than (entities shown in blue-violet,
respectively), similar (entities shown in green), different (entities shown in yellow).
Clusters of nodes inherit the colour of the underlying nodes. Thus, users can appre-
hend similar entities, dissimilar entities, etc. The system supports zooming as well
as selecting and highlighting. For example, when an entity in one ontology is se-
lected, the matched nodes in the other ontology are highlighted, thereby providing a
synchronised navigation. The FOAM system (Sect. 10.3.7) was reused to generate
candidate correspondences visualised in AlViz. Users can revisit them visually by
assigning the desired type to a relation, thereby approving or rejecting them.

11.4.7 CogZ (University of Victoria)

CogZ (cognitive support and visualization for human-guided mapping systems) is a
realisation of a cognitive support framework that aims at reducing the cognitive load
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on users in ontology matching (Falconer and Storey 2007; Falconer et al. 2009). It
was implemented as a plug-in for the Prompt suite (Sect. 10.3.5). The framework fo-
cusses on the relationship between users and matching tools. It approaches, beyond
handling various matching algorithms implemented in Prompt, such issues as assist-
ing users in remembering what correspondences they have looked at and executed,
understanding results of an automatic matching algorithm, revising previously made
decisions or making temporary decisions on correspondences.

CogZ supports incremental search and filtering of the ontologies to be matched as
well as of the generated correspondences, thereby reducing the matching scope. This
helps users focus on the desired fragments of the ontologies and hide distracting in-
formation from the screen. Ontology entities may have annotations added as super-
scripts to their labels, namely, the letter c means that the respective correspondences
were discovered automatically, while the letter m means that these entities were
validated and matched. When an ontology term is selected, its correspondences are
highlighted, while all the other correspondences become semitransparent. Finally,
CogZ provides ‘fisheye’ zoom that keeps at normal font size the selected entities
from two ontologies, while other concepts are shown in progressively smaller fonts
depending on their relevance to the selected entities.

11.5 Summary

Ontology matching can be performed by programs which cannot accept any user
input. But it may also be performed in cooperation with users, especially when au-
tomatic solutions do not achieve desired results. This happens either through interac-
tive matching sessions or through indirect feedback provided by using the produced
alignments.

Articulating user interaction within the various ontology matching architectures
discussed before is not an easy task. It requires research in its own right on designing
the type of interaction that can occur, e.g., matcher initialisation, solicitations from
matchers or post hoc judgement. It demands appropriate user interfaces for display-
ing matching results and offering intuitive action means. This observation is relevant
for both design-time and run-time matching, in order to design interaction schemes
which are burdenless to users. At design time, interaction should be both natural and
complete; at run time, it should be hidden in the user task. Beyond a simple display,
systems must offer (on demand, with different levels of detail) explanation facilities
enabling users to fully understand matching results.

Moreover, collaborative participation of several people in the matching task has
been investigated in the past few years. This is a natural trend that will certainly
be reinforced and will require more support for both: systems stimulating users and
users helping each other.

Such a system-user collaboration may be extended to the actual use of alignments
in operational tasks, which are the object of the next chapter.



Chapter 12
Processing Alignments

In this book, we have taken a two-step view on reducing semantic heterogeneity:
(i) matching of entities to determine alignment and (ii) processing the alignment
according to application needs. In the previous chapters, we have discussed various
themes related to the first step. In this chapter, in turn, we present how the alignments
can be specifically used by applications, thus focussing on the alignment processing
step.

Since this book is devoted to ontology matching, our goal is not to present a com-
plete panorama of the different uses of alignments. This would require another book.
Rather, we present the broad classes of alignment use and the tools for implement-
ing these usages. Meanwhile, most of the commercially available ontology integra-
tion tools focus on automation of alignment processing, by opposition to matching.
They are very often specialised in a particular segment of the matching space. Al-
tova MapForce and Stylus Studio XSLT Mapper are specialised in XML integra-
tion. They integrate data from XML sources as well as databases or other structured
sources. Microsoft BizTalk Schema Mapper targets business process and informa-
tion integration, using the proprietary BizTalk language. Semafora SemanticIntegra-
tor offers ontology-based integration of data coming from databases or ontologies.
There are unfortunately no scholar references describing these systems in depth and
URLs change so often that we refer the reader to ontologymatching.org for accurate
and up to date information. Similarly, instance matchers, like Silk (Sect. 12.4.2), can
be considered as tools processing alignments for generating links.

The matching operation itself is largely not automated within these tools, though
they facilitate manual matching by visualising input ontologies (XML, database, flat
files formats, etc.) and the correspondences between them. However, they have im-
proved over the past years and have started including approximate terminological
matching. Once the correspondences have been established it is possible to spec-
ify, for instance, some data translation operations over the correspondences such as
adding, multiplying, and dividing field values in the source document and storing
the result in a field in the target document.

We discuss below a minimal set of operations that can be performed from
alignments, including ontology merging (Sect. 12.1), ontology transformation
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(Sect. 12.2), data translation (Sect. 12.3), data interlinking (Sect. 12.4), mediation
(Sect. 12.5), and reasoning (Sect. 12.6). They are presented as operators in the style
of model management (Sect. 10.3.1). We conclude this chapter with issues related
to alignment management (Euzenat et al. 2008a). In particular, available services
for storing and sharing alignments are presented (Sect. 12.7), and the problem of
updating alignments along with their evolution is discussed (Sect. 12.8).

12.1 Ontology Merging

Ontology merging is a first natural use of ontology matching. As depicted in
Fig. 12.1, it consists of obtaining a new ontology o′′ from two matched ontolo-
gies o and o′ so that the matched entities in o and o′ are related as prescribed by the
alignment. If o, o′ and Merge(o, o′,A) are expressed in the same language, merging
can be presented as the following operator:

Merge(o, o′,A)= o′′

The ideal property of a merge would be that

Merge(o, o′,A) |= o

Merge(o, o′,A) |= o′

Merge(o, o′,A) |= α(A)

if α(A) is the alignment expressed in the logical language of Merge(o, o′,A), and

o, o′, α(A) |= Merge(o, o′,A)

The former set of assertions means that the merge preserves the consequences of
both ontologies and of the relations expressed by the alignment under the reduced
semantics (Sect. 2.5.3). The latter assertion means that the merge does not entail
more consequences than specified by the semantics of alignments (Sect. 2.5.3). Of
course, this is not restricted to the union of the consequences of o, o′ and A.

Example 12.1 (Generating OWL axioms) With the same ontologies as in Fig. 10.1,
and the following correspondences:

id= isbn Book≤ Volume

It is possible to generate OWL axioms as follows:

o:id owl:equivalentProperty o’:isbn .
o:Book rdfs:subClassOf o’:Volume .

More generally it is possible to generate complex OWL axioms from EDOAL
alignments. For instance, the correspondence
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<Cell>
<entity1>

<edoal:AttributeOccurenceRestriction>
<edoal:onAttribute>
<edoal:Relation rdf:about="&onto1;#hasWritten"/>

</edoal:onAttribute>
<edoal:comparator rdf:resource="&edoal;equals"/>
<edoal:value>
<edoal:Literal edoal:type="&xsd;integer" edoal:string="1" />

</edoal:value>
</edoal:AttributeOccurenceRestriction>

</entity1>
<entity2><edoal:Class rdf:about="&onto2;#Writer"/></entity2>
<relation>></relation>
<measure rdf:datatype=’&xsd;float’>1.</measure>
</Cell>

can be rendered as the corresponding OWL axiom:

<owl:Class rdf:ID="&onto2;#Writer">
<owl:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&onto1;#hasWritten"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

Fig. 12.1 Ontology merging. From two matched ontologies o and o′, resulting in alignment A,
articulation axioms are generated. This creates a new ontology covering the matched ontologies.

When ontologies are expressed in the same language, merging often involves
putting the ontologies together and generating bridge or articulation axioms. Merg-
ing does not usually require a total alignment: those entities which have no corre-
sponding entities in the other ontology will remain unchanged in the merged ontol-
ogy. Ontology merging is especially used when it is necessary to carry out reasoning
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involving several ontologies (see Sect. 12.6). It is also used when editing ontologies
in order to create ontologies tailored for a particular application. In such a case, it
is most of the time followed by a phase of ontology reengineering, e.g., suppressing
unwanted parts from the obtained ontology.

Usage Examples Prompt (Sect. 10.3.5) and Rondo (Sect. 10.3.1) offer indepen-
dent operators for ontology merging. OntoMerge (Sect. 12.1.1) takes bridge rules
expressed in the predicate calculus and can merge ontologies in OWL. We discuss
it in more details below. The Alignment API (Sect. 10.3.6) can generate axioms in
OWL or SWRL for merging ontologies. Other systems are able to match ontolo-
gies and merge them directly: FCA-merge (Sect. 8.2.3), SKAT (Sect. 8.1.5), DIKE
(Sect. 8.1.4). OntoBuilder (Sect. 8.1.10) use ontology merging as an internal opera-
tion: the system creates an ontology that is mapped to query forms. This ontology is
merged with the global ontology so that queries can be directly answered from the
global ontology.

12.1.1 OntoMerge (Yale University and University of Oregon)

OntoMerge (Dou et al. 2005) is a system for ontology translation on the semantic
web. Ontology translation refers here to such tasks as (i) data set translation, i.e,
translating a set of facts expressed in one ontology to another, (ii) generating ontol-
ogy extensions, i.e, given two ontologies o and o′ and an extension (subontology) os

of the first one, build the corresponding extension o′s , and (iii) query answering from
multiple ontologies. The main idea of the approach is to perform ontology transla-
tion by ontology merging and automated reasoning. Input ontologies are translated
from a source knowledge representation formalism, e.g., OWL, to an internal repre-
sentation, which is Web-PDDL (McDermott and Dou 2002). Merging two ontolo-
gies is performed by taking the union of the axioms defining them. Bridge axioms
or bridge rules are then added to relate the terms in one ontology to the terms in
the other. Once the merged ontology is constructed, the ontology translation tasks
can be performed fully automatically by mechanised reasoning. In particular, infer-
ences are conducted either in a demand-driven (backward chaining) or data-driven
(forward chaining) way depending on the task, with the help of a first-order the-
orem prover, called OntoEngine. It is assumed that bridge rules are provided by
domain experts, or by other matching algorithms, which can discover and interpret
them with a clear semantics. Finally, OntoMerge supports bridge rules which can be
expressed using the full power of the predicate calculus.

12.2 Ontology Transformation

Ontology transformation, from an alignment A between two ontologies o and o′,
generates an ontology o′′ expressing the entities of o with respect to those of o′
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according to the correspondences in A. It can be denoted by the following operator:

Transform(o,A)= o′′

Contrary to merging, ontology transformation, and the operators to follow, are ori-
ented. This means that the operation has an identified source and target and from
an alignment it is possible to generate two different operations depending on source
and target.

Ontology transformation is not well supported by tools. It is useful when one
wants to express one ontology with regard to another one. This can be particularly
useful for connecting an ontology to a common upper-level ontology, for instance,
or local schemas to a global schema in data integration.

12.3 Data Translation

Data translation, presented in Fig. 12.2, translates instances from entities of ontol-
ogy o into instances of connected entities of matched ontology o′. This may be
expressed by the following operator:

Translate(d,A)= d ′

Data translation usually involves generating a transformation program from the
alignment.

Fig. 12.2 Data translation. From two matched ontologies o and o′, resulting in alignment A, a
translator is generated. This allows the translation of the instance data (d) of the first ontology into
instance data (d ′) for the second one.

This requires a total alignment if one wants to translate all the extensional infor-
mation. Partial alignments risk loosing instance information in the translation (this
can also be acceptable if one does not want to import all the instance information).
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Data translation is used for importing data under another ontology without im-
porting the ontology itself. This is typically what is performed by database views in
data integration (Sect. 1.2), in multiagent communication for translating messages
(Sect. 1.6.1), and in semantic web services for translating the flow of information in
mediators (Sect. 1.5).

Data translation may be achieved using the SPARQL CONSTRUCT primitive
(Euzenat et al. 2008c). From an alignment A, the process first generates a set of
SPARQL queries, which are applied to the data, and then generate RDF graphs.
Hence, the implemented mechanism is as follows:

Translate(d,A)= generateCONSTRUCTQueries(A)(d)= d ′

SPARQL-based data translation is dependent on the alignment language. The
first proposal is based on complex languages, such as EDOAL (Sect. 10.1.6), which
are able to express the subtleties of the alignment and, in particular, the dependency
between classes and properties and data transformations.

Example 12.2 (SPARQL CONSTRUCT generation from EDOAL correspondences)
The correspondence of Fig. 10.1, which expresses that a Pocket book in the left-hand
side ontology corresponds to a Volume, whose size is less than 14, in the right-hand
side ontology, expressed in EDOAL as in Sect. 10.1.6, can be transformed in the
following SPARQL query:

CONSTRUCT { ?x rdf:type o:Pocket . }
WHERE {

{ ?x rdf:type o’:Volume.
?x o’:size ?y. }

FILTER ( ?y <= 14 )
}

Such a query transforms all the Volumes of small size into Pocket books. Moreover, if
a transformation is attached to the correspondence for expressing size in centimeters
in height in inches, units can be converted in the same way. However, it is only possi-
ble to express the converse translation partially: all Pocket books can be transformed
into Volumes, but their size cannot be generally inferred (the transformation may be
seen as weakening).

This first approach has the advantage of using expressive alignments, which
can express very precise transformations. However, not all correspondences can be
transformed into CONSTRUCT queries. For instance, disjunctive concepts cannot
be inserted in the CONSTRUCT part.

Another proposal has been designed in the Mostro system (Rivero et al. 2011).
It only deals with simple alignments matching named classes and properties (level
0 alignments). In order to offer meaningful transformations, it first identifies kernels
for each correspondence. Kernels are groups of correspondences in the alignment
(level 0 alignments) and concepts in the ontologies which are tied together by (on-
tological) constraints. From each kernel it then generates a CONSTRUCT SPARQL
query by expressing the constraints as graph patterns.
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Example 12.3 (SPARQL CONSTRUCT generation from level 0 correspondence)
Consider simple correspondences expressing that:

topic= subject Pocket≤ Volume

on the same ontologies of Fig. 10.1. It is possible for the first correspondence to
cluster Pocket with topic and Volume with subject in a pattern that links them together,
and to generate the following query:

CONSTRUCT { ?x rdf:type o’:Volume . ?x o’:subject ?y . }
WHERE { ?x rdf:type o:Pocket. ?x o:topic ?y. }

The reverse query is not generally possible, since not all Volumes are Pocket books.
However, it will still be possible to generate:

CONSTRUCT { ?x o:topic ?y . }
WHERE { ?x o’:subject ?y . }

because it would still hold according to the second correspondence. In this case, it
is not possible to perform data transformations.

One issue with these approaches is the order of query applications. Some of these
queries may match several times the same entity and generate several assertions
concerning them. In general, if entities are identified by URIs, the only problem is
redundancy, but this still remains to be studied in depth.

Usage Examples Rondo (Sect. 10.3.1) provides tools for data translation. The
Alignment API (Sect. 10.3.6) can generate translations in XSLT, SPARQL CON-
STRUCT or C-OWL. Many tools developed for data integration can generate trans-
lators under the form of SQL queries. Drago (Sect. 12.6) can process alignments
expressed in C-OWL for transferring data from one ontology to another one. Some
of the tools reviewed in Chap. 8, provide their output as data translation or process
themselves the translation. These include Clio, ToMAS (Sect. 12.8.1), TransScm
(Sect. 8.1.3), MapOnto (Sect. 8.1.16) and sPLMap (Sect. 8.2.12). In addition, other
systems, such as Spicy are specialised in data translation from alignments. We dis-
cuss Clio and Spicy in more details below.

12.3.1 Clio (IBM Almaden and University of Toronto)

Clio is a system for managing and facilitating data transformation and integration
tasks within heterogeneous environments (Miller et al. 2000, 2001; Fagin et al.
2009). Clio handles relational and XML schemas. As a first step, the system trans-
forms input schemas into an internal representation, which is a nested relational
model. The Clio approach is focussed on making the alignment operational. It
is assumed that the matching step, namely, identification of the value correspon-
dences, is performed with the help of a schema matching component or manually.
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The built-in schema matching algorithm of Clio combines in a sequential man-
ner instance-based attribute classification via a variation of a naive Bayes classifier
(Sect. 7.5.1) and string matching between elements names, e.g., by using an edit
distance (Sect. 5.2.1). Then, taking the n-m value correspondences (the alignment)
together with constraints coming from the input schemas, Clio compiles these into
an internal query graph representation. In particular, an interpretation of the input
correspondences is given. Thus, a set of logical mappings with formal semantics is
produced. To this end, Clio also supports mapping composition (Fagin et al. 2005).
Finally, the query graph can be serialised into different query languages, e.g., SQL,
XSLT, and XQuery, thus enabling actual data to be moved from a source to a target,
or to answer queries. The system, besides trivial transformations, aims at discover-
ing complex ones, such as the generation of keys, references and join conditions.

Starting from the mappings provided by Clio or other declarative mapping spec-
ifications, such as of IBM Rational Data Architect, the Orchid system was designed
to convert such declarative schema mappings into data flow specifications of data
warehousing environments, such as ETL (Extract Transform Load) jobs, and vice
versa (Dessloch et al. 2008). It provided a common model into which both mappings
and ETL jobs can be transformed as its instances, which can be further optimised
and deployed into multiple target environments.

12.3.2 Spicy (University of Basilicata, ICAR-CNR)

Spicy (Bonifati et al. 2008), like its extensions +Spicy (Mecca et al. 2009) and
++Spicy (Marnette et al. 2011), is a system for generating data translation programs
in SQL or XQuery and for verifying their quality. The system takes as input a source
and target schema and an alignment made as a set of tuple-generating dependen-
cies. The alignment may be provided in a file, generated by a matcher or specified
through a graphical user interface. Spicy is able to generate transformations from
the alignment and to evaluate the quality of transformations in the presence of exist-
ing data populating both schemas. Specifically, candidate mappings are checked and
only those which represent better transformations of the source into the target are
selected. A query induced by a correspondence is run on a subset of the source, the
result of which is compared to the available target instance. This comparison helps
in identifying incorrect transformations originating from wrong correspondences as
well as in ranking (in order to reduce human intervention) the remaining match can-
didates to be suggested to users for inspection. The verification method compares
the structure and actual content of data sources, viewed as trees. Spicy uses elec-
trical circuits techniques to compare features, such as the topology and content of
tree structures, in order to obtain quickly a measure for their similarity. Features can
be aggregated through three alternative strategies: arithmetic mean, harmonic mean,
and Euclidean distance.
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12.4 Data Interlinking

Data interlinking aims at finding a set of links, mostly owl:sameAs statements,
between two RDF data sets. Data interlinking can be considered independently from
any ontology alignment (Ferrara et al. 2011b). However, it is sometimes possible to
process alignments as linking specifications (Scharffe and Euzenat 2011). This can
be expressed by the following operator:

Interlink(d, d ′,A)= L

in which an alignment A is used for generating a link set L between two data sources
d and d ′.

As in Sect. 12.3, it is possible to perform data interlinking by generating
SPARQL CONSTRUCT queries, through reusing similar techniques.

Example 12.4 (Data interlinking based on SPARQL CONSTRUCT) With the same
ontologies as in Fig. 10.1, and the correspondences

id= isbn Book≤ Volume

it is possible to generate the following SPARQL query:

CONSTRUCT { ?x owl:sameAs ?a . }
WHERE

{ ?x rdf:type o’:Volume.
?x o’:isbn ?i.
?a rdf:type o:Book .
?a o:id ?i . }

Such a query generates owl:sameAs links for instances of Volume and Book with
identical isbn and id. If correspondences are expressed in EDOAL with transfor-
mations between the property values, it is possible to take the transformations into
account in the query.

Usage Examples Several tools are dedicated to generating links either from align-
ments, such as KnoFuss, or from linking specifications, which can be considered as
alignments, such as Silk. We briefly present these below.

12.4.1 KnoFuss (The Open University)

KnoFuss (knowledge fusion) (Nikolov et al. 2008) aims at performing data-level
interlinking of OWL knowledge bases. It assumes that the data to be linked is struc-
tured according to the same ontology. It provides a method selection mechanism
to choose and configure individual matchers considering class hierarchies with the
goal of (i) coreference resolution, (ii) conflict detection, and (iii) inconsistency res-
olution. These tasks are executed in sequence.
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Each task is supported by a library of basic methods, and a generic workflow
selects, executes and combines them, based on method metadata. For instance, a
Jaro–Winkler (Sect. 5.2.1) label matcher is annotated as being appropriate for coref-
erencing with a default threshold of .87. However, based on the application context,
a different fine-tuned configuration might be applied. Technically, application con-
texts are organised hierarchically and specify method parameters for different cases,
e.g., publication matching or journal article matching. These values override the
default values, e.g., by applying the threshold of .93 instead of .87.

KnoFuss has been extended by performing ontology matching in order to im-
prove instance coreference resolution (Nikolov et al. 2009). It uses existing aux-
iliary instance-level links in order to enhance schema-level correspondences be-
tween classes, thus implementing context-based matching with linked data as back-
ground knowledge (Sect. 7.3). In particular, linked individuals are taken from differ-
ent repositories, such as YAGO or Musicbrainz. For each individual, its respective
classes in both ontologies are identified. Correspondences between classes are es-
tablished based on an overlap similarity coefficient to quantify the subset of shared
individuals, thereby distinguishing between strongly correlated classes and merely
non-disjoint ones (Sect. 5.4.2). This is an example of the loop, illustrated in Fig. 1.5
(p. 12), between data interlinking and ontology matching reinforcing each other.
The obtained alignment narrows down the search space by excluding from the com-
parison instances that are unlikely to be linked: this is a typical example of ontology
matching used as blocking (Sect. 7.1.1). When there are several correspondence al-
ternatives, the relation with a more generic class is preferred to that with a more
specific one, because this may lead to additional coreference resolution links.

12.4.2 Silk (Chemnitz University of Technology, Freie Universität
Berlin)

Silk (Volz et al. 2009) is a link discovery framework for the web of data. It generates
RDF links between data items based on user-provided link specifications expressed
using the Silk link specification language.

The Silk link discovery engine is responsible for the link discovery from a Silk
specification. A Silk specification first identifies the data sources (through SPARQL
endpoints or local files) and then contains interlink specifications. The Silk engine
operates in the following phases following the interlink specification structure:

Restricting (SourceDataset and TargetDataset) identifies the cluster of indi-
viduals to be compared (Sect. 7.1.1). It thus performs the blocking part of the
algorithm. These restrictions are implemented as simple SPARQL queries.

Comparison (LinkageRule) computes a similarity value for each pair of in-
stances. The data items are loaded into an internal cache. Then, for each pair
of data items a similarity value in [0 1] is computed, which is called link condi-
tion evaluation, and which stands for the confidence of the candidate link. The
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link condition evaluation comprises an extensible set of comparison methods the
results of which are combined using aggregation functions (Sect. 7.4).

Filtering (Filter) selects links in two steps. Initially, all the links with a con-
fidence lower than a user-defined threshold are discarded. Then, all links that
originate from the same subject are grouped together. It is possible to limit the
number of links per subject, thereby favouring the selection of links with higher
confidence.

Generating links (Outputs) outputs in a specific way (file, SPARQL endpoint)
the links that pass the filtering phase using the LinkType specified in the script,
e.g., owl:sameAs. Silk offers the possibility to use different thresholds to send
to different outputs, so separating the links with very high confidence from those
which must be checked by a user (Sect. 7.7.1).

The framework is offered in three variants: (i) Silk single machine, used to gen-
erate RDF links between two data sets on a single machine, (ii) Silk map-reduce,
used to scale to large data sets by using multiple machines, and (iii) Silk server,
used as an identity resolution or matching component. The Silk server is designed
to take as input a stream of RDF instances, to match their descriptions to a local
set of known instances, thereby discovering (missing) links between them. Incom-
ing instances which do not match a known instance are added to the local set of
instances continuously. It also provides a web interface that can be used to refine
links or fine-tune linking specifications. Finally, LinQuer (Hassanzadeh et al. 2009)
offers similar functions for relational databases with a less expressive language.

12.5 Mediation

In this section, we consider a mediator as an independent software component that is
introduced between two other components in order to help them interoperate. There
are many different forms of mediators, including some acting as brokers or dispatch-
ers. We concentrate here on query mediators which can perform two operations:

TransformQuery(q,A)= q ′

and

Translate(a′, Invert(A))= a

TransformQuery is a kind of ontology transformation which transforms a query ex-
pressed using ontology o into a query expressed with the corresponding entities
of a matched ontology o′. The Translate operation performs data translation on the
answer of the query, if necessary. This process is presented in Fig. 12.3.

Translating answers requires the possibility of inverting the alignments (Invert op-
erator). The generated functions should be compatible, otherwise the translated an-
swer may not be a valid answer to the initial query. Compatibility can be expressed
as follows:
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Fig. 12.3 Query mediation. From two matched ontologies o and o′, resulting in the alignment A,
a mediator is generated. This allows for transforming queries expressed with the entities of the first
ontology into a query using the corresponding entities of a matched ontology and the translation
back of the results from the second ontology to the first one.

∀e ∈ o, TransformQuery
(
TransformQuery(e,A), Invert(A)

)	 e

Here we use a subsumption relation (	), but it can be replaced by any suitable
relation ensuring that the answer is compatible. However, it is not always necessary
to translate answers, since they can be objects independent from the ontologies, e.g.,
picture files, strings.

Example 12.5 (SPARQL CONSTRUCT generation from the EDOAL correspon-
dence) Given the following query:
SELECT ?x ?i
FROM o
WHERE

{ ?x rdf:type o:Pocket .
?x o:id ?i .
?x o:topic "Politics" . }

with the alignment of Fig. 10.1 and the added correspondences:

id= isbn topic≤ subject

it is possible to transform this query as follows:
SELECT ?x ?i
FROM o’
WHERE {

{ ?x rdf:type o’:Volume .
?x o’:isbn ?i .
?x o’:size ?y .
?x o’:subject "Politics". }

FILTER ( ?y <= 14 )
}

A more efficient transformation is:
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SELECT ?x ?i
FROM o’
WHERE {

{ ?x rdf:type o’:Politics .
?x o’:isbn ?i .
?x o’:size ?y . }

FILTER ( ?y <= 14 )
}

but it needs recognising complex patterns.

It is relatively easy to generate correct query transformations by recognising sim-
ple patterns in queries. It is more difficult to be complete, i.e., to ensure that all the
patterns occurring in an alignment have been considered, due to the difficulty of
recognising complex patterns. Moreover, as for data translation, there is a problem
of confluence: since several correspondences may be used for transforming the same
triple, is the result independent from their application order? Part of the problem can
be solved by ordering correspondences along the nature of the matching elements
(Makris et al. 2010), but in the general case, the problem remains open.

Usage Examples Query mediation is mainly used in data integration (Sect. 1.2)
and peer-to-peer systems (Sect. 1.4). The Alignment API (Sect. 10.3.6) can behave
as a SPARQL query mediator from simple alignments by straightforwardly sub-
stituting URIs. Some systems directly generate mediators after matching, such as
Wise-Integrator (Sect. 8.3.6). When the mediator content is expressed as SQL view
definitions, many database systems can process them. In turn, (Correndo et al. 2010)
described SPARQL query rewriting with alignments expressed in a language where
atomic formulas, typically triples, can be transformed into compound formulas, typ-
ically graph patterns, with the addition of functional dependencies expressing how
to compute values of the latter from those of the former. This approach has been ex-
tended to deal with a subset of the EDOAL alignments. It also tackles the problem
of dereferencing URIs appearing in the initial query, because there may be several
URIs identifying the same individual. This is achieved by wrapping a dereferencing
service1 in functional dependencies. Similarly, (Makris et al. 2010) described a gen-
eration process for an expressive language (less expressive than EDOAL). It works
triple by triple and differs depending on whether the predicate in the triple is in the
RDF, RDFS or OWL vocabulary or not.

12.6 Reasoning

Reasoning consists of using alignments as rules for reasoning with the two matched
ontologies. Bridge axioms used for merging can also be viewed as such rules.

TransformAsRules(A)= o

1http://sameas.org.

http://sameas.org
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Here the set of rules is represented as an ontology o which must be written in an
ontology language supporting rules or the expression of bridge axioms.

Typically, any transformation of the alignments under a form suitable for reason-
ing, such as SWRL (Sect. 10.1.4) or OWL (Sect. 10.1.2) can be used by inference
engines for these languages, such as Pellet (Sirin et al. 2007) or HermiT (Motik
et al. 2009c). For instance, LogMap (Sect. 8.3.26) also offers similar facilities.

Usage Examples ALCOMO (Sect. 7.8.2), provides support for diagnosing and re-
pairing inconsistent or unsatisfiable aligned ontologies. It uses standard OWL rea-
soners for that purpose and takes the Alignment format (Sect. 10.1.5) as input. It
interprets the alignments with the reduced semantics (Sect. 2.5.3) and can only an-
swer inconsistency queries.

Drago (Serafini and Tamilin 2005) is a distributed reasoning system in which
each peer uses a collection of ontologies and oriented alignments, called mappings,
across ontologies of different peers. It interprets such a system as a C-OWL net-
work of ontologies following the DDL semantics (Sect. 2.5.3). The reasoner can an-
swer consistency and satisfiability queries at one peer. It can also answer entailment
queries over OWL axioms (not alignments). Reasoning is performed in a distributed
manner by adding to the Pellet reasoner a ‘bridge expansion rule’, which interprets
the mappings.

IDDL (Zimmermann and Le Duc 2008; Le Duc et al. 2010) interprets networks
of ontologies under the equalising semantics (Sect. 2.5.3). It accepts ontologies in
OWL and alignments in the Alignment format (Sect. 10.1.5). Reasoning can be lo-
cal, by using the reduced semantics, or distributed by using the OWLLink protocol.
Reasoning is performed by using any standard OWL reasoner.

12.7 Alignment Services and Repositories

There are several reasons why applications using ontology matching could benefit
from sharing matching techniques and results:

− Each application can benefit from more algorithms: many different applications
have comparable needs. It is thus appropriate to share the solutions to these prob-
lems. This is especially true as quality alignments are often quite difficult to pro-
vide.

− Each algorithm can be used in more applications: alignments can be used for
different purposes and must be expressed as such instead of as bridge axioms,
mediators or translation functions.

− Each individual alignment can be reused by different applications: there is no
magic algorithm for quickly providing a useful alignment. Once high quality
alignments have been established—either automatically or manually—it is very
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important to be able to store, share and reuse them, in order not to lose that
quality result.

For that purpose, it is useful to provide alignment services able to store, retrieve
and manipulate existing alignments as well as to generate new alignments on-the-
fly. Such services could be shared by applications using ontologies. They should
be seen as a directory or a service by web services, as an agent by agents, as a
library in ambient computing applications, etc. Alignment servers should provide
the following functions:

− a way to manipulate alignments, i.e., loading, inspecting and rendering them;
− the ability to store alignments persistently and retrieve them;
− communication over the network for delivering required alignments;
− a proper annotation in order for the clients to evaluate the opportunity to use one

of them or to start from them.

In addition they may provide:

− on-the-fly ontology matching: for automatically generating new alignments;
− alignment edition: for interactively updating alignments by adding or modifying

correspondences;
− ontology integration: for navigating within ontologies and inspecting them;
− alignment processing: for processing the alignments to translate queries or to

interlink data, for instance;
− alignment evaluation: for comparing different alignments using various methods.

These services can be used by applications as well as by the infrastructure itself.
They can be used at two different moments in applications:

at design time through invocation by design and engineering environments: they
can be integrated within development environments, where they will be loosely
coupled components, that may be asked for providing alignments and for ex-
ploiting these alignments (like the NeOn Toolkit through the NeOn Alignment
plug-in; Sect. 10.3.9).

at run time alignment servers can be invoked directly by the applications.

Such services require standardised support, such as the choice of an alignment
format (Sect. 10.1) or at least of a metadata format (Sect. 10.2).

Usage Examples There have been several proposals for providing matching sys-
tems and alignment stores that can be considered as servers (Euzenat 2005; Zh-
danova and Shvaiko 2006; d’Aquin and Lewen 2009), but they need a wider avail-
ability (to agents, services, etc.) and should reach a critical mass of users to really
be helpful. We briefly present three systems, which have been developed with this
perspective.
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12.7.1 BioPortal (Stanford University)

BioPortal2 is an open community-based repository of biomedical ontologies (Noy
et al. 2008), though its underlying technology is domain-independent. It was
built by using Protégé to store ontologies in various languages. It uses an on-
tology to store correspondences between named objects and associated meta-
data. All mappings are stored together since there is no notion of alignment.
With the help of a web-based user interface, users can interactively create 1:1
mappings between concepts, upload and download mappings created with other
tools, such as Prompt (Sect. 10.3.5), browse and discuss controversial map-
pings, and visualise them as well as their associated metadata, e.g., general com-
ments on the mapping, users who created or uploaded it, or its creation date
(Sect. 10.2). Finally, users can filter mappings based on different criteria, e.g., by
user name or by source ontology. Filtered mappings can be downloaded. Simi-
larly, applications can access filters and the filtered mappings through a web ser-
vice.

BioPortal provides access to the ontologies and the correspondences in an in-
tegrated way (to the point that correspondences may be considered as ontology
metadata (Noy et al. 2008)), allowing for more comprehensive explanations. It was
bootstrapped with more than 30 000 mappings from seven sources, such as FMA,
Mouse anatomy, NCI thesaurus, and Gene Ontology. These correspondences may
have been obtained manually or automatically. (Ghazvinian et al. 2009) extended
the BioPortal repository by creating more than four million concept mappings be-
tween 140 ontologies of BioPortal and 67 terminologies of UMLS (Sect. 2.1.2).
A simple matching method was used based on string similarity of preferred terms
and synonyms over normalised strings. Then, network analysis techniques were ap-
plied to identify hubs and clusters over the ontologies. Mappings were found useful
to guide newcomers to the field to its most representative ontologies, to identify ar-
eas that are insufficiently covered, or to identify ontologies that might be used as
background knowledge in specific matching tasks.

12.7.2 Alignment Server (INRIA)

The Alignment server,3 associated with the Alignment API (Sect. 10.3.6), has been
designed as a middleware server available for applications and web browsing. It
exposes most of the functions of the API. Alignments and their metadata persist in
a database and the server can be accessed from other tools and applications through
a versatile interface.

2http://bioportal.bioontology.org/.
3http://alignapi.gforge.inria.fr.

http://bioportal.bioontology.org/
http://alignapi.gforge.inria.fr
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Fig. 12.4 The Alignment
server is built on the
Alignment API that is placed
on top of a database
management system for
sharing alignments and is
wrapped around a simple
protocol. Each access method
is a plug-in that interacts with
the server through the
protocol. Currently, HTML,
agent and web service
plug-ins are available.

The Alignment server architecture is made of five layers (see Fig. 12.4):

The Alignment API which provides operations for manipulating alignments
(Sect. 10.3.6). This means that most of the Alignment API operations (match-
ing, rendering, trimming, etc.) are available from the server and that any class
implementing the API (matcher, renderer, evaluator) can extend the server.

A storage system which offers persistent storage and retrieval of alignments. It im-
plements only basic storage and run-time memory caching functions. The stor-
age is made through a DBMS interface and can be replaced by any database
management system as long as it is supported by JDBC.

A protocol manager which handles the server protocol. It accepts queries from
plug-in interfaces and uses the server resources for answering them.

Protocol drivers which accept incoming queries in a particular communication
system and invoke the protocol manager in order to answer them. Current wrap-
pers exist for HTTP, REST, SOAP, and FIPA ACL.

Directory drivers which allow for declaring the server and its content to service
directories. Currently, only Oyster support is available.

The Alignment server supports matching ontologies, manipulating, evaluating,
storing and sharing alignments as well as generating processors. It does not support
alignment edition.

12.7.3 CATCH (Vrije Universiteit Amsterdam)

A consortium of cultural heritage projects has investigated sharing thesauri and
alignments between thesauri under the CATCH vocabulary and alignment repos-
itory.4 In contrast to BioPortal, thesauri considered by CATCH are expressed in

4http://semanticweb.cs.vu.nl/amalgame/.

http://semanticweb.cs.vu.nl/amalgame/


394 12 Processing Alignments

SKOS and dedicated to cultural heritage (Sect. 1.2). Instead of using SKOS map-
pings, alignments are expressed in a variant of the Alignment format (Sect. 10.1.5),
in particular because this allows for embedding metadata about correspondences
(van der Meij et al. 2010). Access to the server is provided through SOAP and
a client. It allows for loading thesauri and alignments. Thesauri cannot be edited.
Alignments can be imported and matching methods can be plugged into the sys-
tem. Both thesauri and alignments are widely searchable by their content and meta-
data. The persistent repository of thesauri and alignments uses the Sesame RDF
database.5 It may use several repositories at once, making CATCH a server with
a distributed storage. It has been reported that the server hosted 15 alignments
amounting to nearly a million correspondences.

12.8 Alignment Evolution

Besides properly processing and storing, alignments have to be managed in order
to be ready when it is time for them to be used (Euzenat et al. 2008a). Manag-
ing alignments requires keeping them available in servers and making them evolve
if necessary. In the alignment life cycle of Fig. 3.1 (p. 57), evolution is featured
through dotted arrows. Usually, alignment evolution corresponds to the creation of
a new alignment, derived from an existing one. This evolution should be recorded
within the alignment metadata (Sect. 10.2) in addition to changes in the structure.
An alignment may also evolve due to being no longer useful, being superceded by
another one, or more generally, by the addition of further qualification to an align-
ment. Alignment evolution may also be triggered either by adding or by discarding
correspondences manually produced, or by better methods, since new information
is available. This is typically the case when more data populating an ontology helps
find new correspondences. In such cases, the application of a matching method with
the initial alignment as input should evolve the initial alignment.

There are other systematic cases of alignment evolution. As soon as ontologies
evolve, new alignments have to be produced following the evolution of the ontol-
ogy. This can be achieved by transforming the changes made to ontologies into an
alignment (from one ontology version to the next one), which can be composed with
the old alignment to obtain an updated alignment (see Fig. 12.5). As demonstrated
by this example, alignment management can rely on composition of alignments.

12.8.1 ToMAS (University of Toronto and IBM Almaden)

ToMAS (Toronto Mapping Adaptation System) is a system that automatically de-
tects and adapts mappings that have become invalid or inconsistent when schemas

5http://www.openrdf.org.

http://www.openrdf.org
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Fig. 12.5 Evolution of alignments (from (Euzenat et al. 2008a)). When an ontology o evolves into
a new version o1, it is necessary to update the instances of this ontology (d) and the alignment(s)
(A) it has with other ontologies (o′). To this extent, a new alignment (A′) between the two ver-
sions can be established and used for generating the necessary instance transformation (T ) and for
linking the ontologies o1 and o′ with a new alignment (A ·A′).

evolve Velegrakis et al. (2004a, 2004b). It is assumed that (i) matching has already
been performed, and (ii) correspondences have already been made operational, e.g.,
as mediators. Since in open environments, such as the web, schemas can evolve
without prior notice, some correspondences may become invalid. ToMAS aims at
handling such cases, thereby preserving mapping consistency. In particular, it de-
tects mappings affected by structural or constraint changes and it generates auto-
matically the necessary rewritings that are consistent with the updates that have
occurred. ToMAS handles relational and XML schemas. It takes two schemas and
a set of mappings between them as input. The system works in two phases. First,
mappings are analysed and turned into logically valid mappings. During the sec-
ond step, the result of the previous step is maintained through schema changes.
In particular, mappings are modified one by one independently, as appropriate for
each kind of change that may occur to the schemas. Three classes of (primitive)
schema changes are addressed: (i) operations that change the schema by adding
or removing constraints, (ii) modifications to the schema structure by adding or
removing elements, and (iii) modifications that reshape schema structure by mov-
ing, copying, or renaming elements. The final result of ToMAS is a set of adapted
mappings which are consistent with the structure and semantics of the evolved
schemas.

12.9 Summary

This chapter considered the issue of alignment processing in general. Alignments
may be used in different ways for merging, transforming, translating, linking, me-
diating, and reasoning. Each time, the application may have a fully different way to
process alignments.

Some matching systems process directly their results in one of these operations.
They do not go through the generation of an alignment. Unfortunately, they cannot
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be used for something else. Other systems generate an alignment in a declarative
format (Sect. 10.1). These can be exploited either by rendering the alignment into
another formation that can be exploited (as SWRL, OWL, C-OWL, Silk scripts,
SPARQL CONSTRUCT, SQL, etc.) or by being interpreted by processors, such as
mediators.

Useful alignments are such a scarce resource that storing them in an independent
format such as those presented in Chap. 10 is very important. This allows for sharing
and processing them in different ways independently form the applications. This
gives more freedom to application developers to choose the best suited algorithm
and to process alignments adequately. In turn, some environments are designed to
share and maintain alignments during their whole lifetime. They do not process
them but can update them when their exploitation environment requires this.
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Chapter 13
Conclusions

In this book, we have attempted at covering ontology matching in its diversity.
In particular, we have shown that many applications may need ontology match-
ing (Chap. 1) and that there are different forms of ontologies that may need to be
matched (Chap. 2). Based on reasonable methodological rules (Chap. 3), ontology
matching can take advantage of innumerable basic (Chap. 5) and advanced (Chap. 6)
techniques composed and supervised in diverse ways (Chap. 7). This has led to a
profusion of available systems (Chap. 8). The output of matching can be provided
according to different representations (Chap. 10) or executable forms (Chap. 12)
which may need to be communicated to users (Chap. 11).

We have provided a systematic view over the resources for helping users, re-
searchers and developers in selecting the system or technique most adapted to their
needs. This has been substantiated by identifying application needs (Chap. 1), by
classifying matching techniques (Chap. 4) and by proposing adapted methodologies
for approaching ontology matching problems (Chap. 3) and by evaluating matching
solutions (Chap. 9). This does not mean that, for any application need, the ideal
ontology matching solution is directly provided to readers. Techniques presented in
this book can be composed in so many ways that the solution space is open-ended
and is far from having thoroughly been explored. A lot of research remains to be car-
ried out to develop better solutions, but finding appropriate settings for applications
will still require work from users.

In the remainder of this chapter we overview some general trends in the ontology
matching field (Sect. 13.1). We present some promising research directions which
we believe worth and need further investigations (Sect. 13.2). These stem from all
parts of the book. We conclude with general remarks (Sect. 13.3).

13.1 A Brief Outlook of the Trends in the Field

In the past, the ontology matching problem has been addressed in several areas.
However, most often this happened in an isolated manner among: (i) database

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0_13,
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schemas in the world of information integration, (ii) XML schemas and catalogues
on the web, (iii) ontologies (axiomatised theories) in artificial intelligence, semantic
web, knowledge representation, and (iv) objects and entities in data mining. Techni-
cal issues these areas had encountered were rarely addressed from multidisciplinary
and cross-community viewpoints.

During the last decade the areas mentioned above have made substantial progress
in matching. However, they require other technologies and cross-fertilisation to con-
tinue their growth. This was one of the motivations behind this book and such an
initiative as the Ontology Matching web site,1 which aims at increasing awareness
of the existing matching efforts across the relevant communities and at facilitating
the cross-fertilisation between them.

Figure 13.1 shows (approximately) how many papers devoted to diverse aspects
of matching have been published at various conferences all over the world in recent
years.2

Fig. 13.1 Dynamics of publications devoted to ontology matching (in dark blue: the number of
papers from the Publications section of ontologymatching.org; in light green: the number of papers
cited in this book). * Value for 2011 is an estimation, since a complete information concerning a
year usually becomes stable only when several subsequent years pass (Color figure online).

In the future, we expect a stable level of work on matching (as blue bars of
Fig. 13.1 suggest) due to the constant interest in solutions for the semantic hetero-
geneity problem from both academia and industry. In turn, the green bars suggest
that we have considered in this book about 40 (the most salient in our view) papers
per year, since the year 2000.

1http://www.OntologyMatching.org.
2Source: www.OntologyMatching.org, Publications section. Accessed: 28.03.2013.

http://www.OntologyMatching.org
http://www.OntologyMatching.org
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13.2 Future Challenges

The first edition provided a selection of research challenges for ontology matching
based on the book organisation in chapters. Since then, we provided an in-depth
treatment of these challenges and their developments in (Shvaiko and Euzenat 2008,
2013).

If the design of matchers consists of only tuning further similarity measures or
issuing other combinations of matchers, progress may be incremental but no revo-
lution can be expected. Breakthroughs can come from either completely different
settings or classes of systems particularly adapted to specific applications. We can
expect such improvements from discovering background knowledge, for example,
from linked data, as it represents a large and continuously growing source of knowl-
edge. Another source of quality gains is expected from the working environment
in which matching is performed. Hence, involving users in matching or social and
collaborative matching may provide surprising results.

We briefly give an overview of such challenges in the rest of this section, includ-
ing

− large-scale and efficient matching (Sect. 13.2.1),
− matching with background knowledge (Sect. 13.2.2),
− matcher selection, combination and tuning (Sect. 13.2.3),
− user involvement (Sect. 13.2.4),
− social and collaborative matching (Sect. 13.2.5),
− uncertainty in ontology matching (Sect. 13.2.6),
− reasoning with alignments (Sect. 13.2.7),
− alignment management: infrastructure and support (Sect. 13.2.8).

Other open issues are the computation of expressive alignments, e.g., correspon-
dences across classes and properties (Sect. 10.1.6), or cross-lingual matching
(Sect. 5.2.2). We consider these issues as too specific with respect to the other chal-
lenges discussed.

13.2.1 Large-Scale and Efficient Matching

In (Shvaiko and Euzenat 2013), we focussed on large-scale matching evaluation, fol-
lowing some leading matching systems, such as LogMap (Sect. 8.3.26) or GOMMA
(Sect. 10.3.3), which are able to scale up. However, this is still not a general trend
yet. Thus, scaling and speeding up matching systems remains an issue (Sect. 7.1.1).

Besides quality, the efficiency of matchers is of prime importance in dynamic
applications, especially when users cannot wait long for the system to respond or
when memory is limited. Current ontology matchers are mostly design-time tools,
which are usually not optimised for limited resource consumption. The execution
time indicates efficiency properties of matchers. However, good execution time can
be achieved by using a large amount of main memory or bandwidth, compensat-
ing the other computational resources, such as CPU. Thus, usage of main memory
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should also be measured or improved. Moreover, we expect the need for matching
on handheld computers or smartphones in the near future. Overall, the challenge is
to come up with scalable ontology matching reference solutions.

13.2.2 Matching with Background Knowledge

One source of difficulty for matching is that ontologies are designed in a particular
context, with some background knowledge, which often does not become part of the
final ontology specification. Matching can be performed by discovering a common
context or background knowledge for the ontologies and using it to extract relations
between ontology entities. This context can take different forms, such as a set of
resources (web pages, pictures, etc.), that have been annotated with the concepts
from an ontology, which provides common anchors to the ontologies to be matched.
There remains a lot of experimentation to be conducted to better explore and under-
stand the settings discussed in Sect. 7.3. The difficulty is a matter of balance: adding
context, e.g., through linked data, provides new information, and hence, helps in in-
creasing recall, but this new information may also generate incorrect matches, hence
decreasing precision.

13.2.3 Matcher Selection, Combination and Tuning

Many matchers are now available. As OAEI campaigns indicate (Chap.9), there is
no single matcher that clearly dominates others. Often these perform well in some
cases and not so well in some other cases. For both design- and run-time matching,
it is necessary to be able to take advantage of the best configuration of matchers.
There is evidence from OAEI that matchers do not necessarily find the same correct
correspondences. Usually several competing matchers are applied to the same pair
of entities in order to increase evidence towards a potential match or mismatch. This
mandates solving several important problems: (i) selecting matchers and combining
them (Sect. 7.2, Sect. 7.4), and (ii) self-configuring or tuning matchers (Sect. 7.6).
On top of this, for dynamic applications it is necessary to perform matcher com-
bination and self-tuning at run time, and thus, the efficiency of the configuration
search strategies becomes critical. As the number of available matchers increases,
the problem of their selection will become more demanding, e.g., when the task will
be to handle more than 50 matchers within one system. Hence, one of the difficulties
is of balancing quality and speed of the devised solutions.

13.2.4 User Involvement

In traditional applications, the result of matching performed at design time is
screened by human users before being accepted. However, the overwhelming size of
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data may render this task difficult. In dynamic applications, users are generally not
ontology matching specialists who can be asked to inspect the alignments. Hence,
in both cases, user involvement becomes crucial. The challenge is to design ways
of involving users so that they can help the matching process without being lost in
the amount of results or design choices. At design time, interaction should be both
natural and complete; at run time, it should be hidden in user tasks.

In order for users to provide feedback to systems, they need to understand align-
ments (Sect. 11.3). It is often not sufficient that a matcher returns an alignment, for
users to understand it immediately. In order for matching systems to gain a wider
acceptance and to be trusted by users, it will be necessary that they provide explana-
tions, at different levels of details, of their results to users or to other programs that
exploit them. Generally, the key issue is to provide explanations to users in a simple
and clear way in order to facilitate informed decision making.

13.2.5 Social and Collaborative Matching

In an open environment like the web, social support has been key in solving hard
and large problems. This approach can also be applied to ontology matching, and
therefore, matching could be improved through social interaction (Sect. 11.2). This
may be achieved with people explicitly arguing about correspondences or by im-
plicitly voting each time a correspondence is used during an interaction. This calls
for algorithms able to rank a large amount of correspondences. The incompleteness
and inconsistency of alignments will have to be dealt with in a satisfactory way.
Other issues include understanding what tasks are relatively easy for humans, but
difficult for machines, how to individuate and deal with malicious users, and which
incentive schemes promise to facilitate user participation in establishing alignments
collaboratively.

13.2.6 Uncertainty in Ontology Matching

Ontology matching has to improve in dealing with imperfect information. Better
understanding the foundations of modelling uncertainty in ontology matching is
needed in order to improve detection of correspondences causing inconsistencies
or for better qualifying results obtained by exploiting alignments. In dynamic ap-
plications, it often occurs that there is no precise correspondence or that an identi-
fied correspondence is not specific enough. Hence, it is necessary to choose a good
enough one (with respect to application needs). For that purpose, alignments and
correspondences must be qualified with respect to their trustworthiness and prove-
nance (Sect. 10.2). In turn, this requires better formalising the link between ontology
matching tools and information systems that support this information.
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13.2.7 Reasoning with Alignments

The ultimate goal of matching ontologies is to use alignments. For this purpose,
alignments should be assigned a semantics and reasoning mechanisms should be
developed for this semantics. This may be used in two contexts: (i) when matching,
by using the semantics of ontologies and alignments for improving the result of
matching, and (ii) after matching, when exploiting the alignments.

The first context requires detecting if the alignment under construction is incon-
sistent and/or incomplete and restoring consistency and/or completeness if neces-
sary (Sect. 6.5 and Sect. 7.8.2). After matching, reasoning is necessary to know the
consequences on one ontology based on its relations with other ontologies. For both
purposes, reasoners are necessary to detect inconsistency and consequences. In that
respect, we need reasoners able to deal with aligned ontologies and networks of on-
tologies. The development of such reasoners will rely on the specific semantics of
these networks. Their implementations themselves may require that they work in a
distributed fashion, e.g., when data cannot be moved.

13.2.8 Alignment Management: Infrastructure and Support

Storing and sharing alignments, as well as collaborative matching, should be sup-
ported by adequate tools and infrastructure, especially in dynamic applications. The
challenge is to provide convenient and interoperable support, on which tools and
applications can rely in order to store and share alignments. This involves using
standard ways to communicate alignments and retrieve them. Hence, alignment
metadata and annotations should be properly taken into account (Sect. 10.2). The
challenge is to provide an alignment support infrastructure at the web scale, thereby
stimulating the rise of a web of alignments.

The constant evolution of data, through either dynamic data sources such as se-
mantic sensor networks or linked open data sources commands the parallel evo-
lution of alignments. This requires an infrastructure able to react to the evolution
of data and the respective models on a continuous basis. Reacting means adapting
alignments and correspondence confidences, automatic matching and debugging of
alignments (Sect. 12.8). Evolution of alignments will also trigger further evolution
of data and ontologies in a continuously interacting system.

13.3 Final Words

Most often we need to integrate together data sources that were not aiming at their
integration while being designed, thus, increasing the difficulty of the matching op-
eration. Even if a good progress has been made in the matching field, as such, ontol-
ogy matching may appear to be virtually impossible. Indeed, for finding the corre-
spondences between concepts, it is necessary to understand their meaning. Besides
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the general meaning ascribed by model-theoretic semantics, the ultimate meaning of
concepts is in the head of the people who developed those concepts and we cannot
program a computer to learn it.

However, the same remark leads to the conclusion that communication, even be-
tween people, is impossible. We know that human beings achieve communication;
they at least, succeed quite often in communicating and sometimes fail. Achieving
this communication can be viewed as a continuous task of negotiating the relations
between concepts, i.e., arguing about alignments, building new ones, questioning
them, etc. Therefore, matching ontologies is an on-going work and further substan-
tial progress in the field can be made by considering it in its dynamics.



Appendix A
Legends of Figures

We present below the three sets of notations that are used in the pictures of this
book.

Fig. A.1 Graphic representation of ontologies.
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Fig. A.2 Graphic representation of matching application building blocks.

Fig. A.3 Graphic representation of matching system building blocks.



Appendix B
Running Example

The following two ontologies correspond to those displayed in Fig. 2.7: culture-
shop.owl is the left-hand side ontology and library.owl is the right-hand side
one.

B.1 culture-shop.owl

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY foaf "http://xmlns.com/foaf/0.1/">
<!ENTITY ical "http://www.w3.org/2002/12/cal/ical#">]>

<rdf:RDF
xmlns="http://book.ontologymatching.org/example/culture-shop.owl#"
xml:base="http://book.ontologymatching.org/example/culture-shop.owl#"
xmlns:foaf ="&foaf;"
xmlns:ical ="&ical;"
xmlns:rdf ="&rdf;"
xmlns:xsd ="&xsd;"
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl;"
xmlns:dc ="&dc;">

<!-- ################### ONTOLOGY ################### -->

<owl:Ontology rdf:about="">
<dc:creator>Jérôme Euzenat</dc:creator>
<dc:contributor>Pavel Shvaiko</dc:contributor>
<dc:description>Fragments of a cultural product shop ontology

</dc:description>
<dc:date>2006/04/12</dc:date>
<rdfs:label>Culture shop ontology</rdfs:label>
<rdfs:comment>An example for the Ontology matching book.
This ontology fragments organises some cultural product
the way it could be organised for a cultural product
e-commerce site.</rdfs:comment>
<owl:versionInfo>
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$Id: culture-shop.owl,v 1.2 2007/03/15 21:05:21 cvs Exp $
</owl:versionInfo>

</owl:Ontology>

<!-- In OWL-DL all items must be declared -->
<owl:DatatypeProperty rdf:about="&dc;creator" />
<owl:DatatypeProperty rdf:about="&dc;contributor" />
<owl:DatatypeProperty rdf:about="&dc;description" />
<owl:DatatypeProperty rdf:about="&dc;date" />

<!-- ################### CLASSES ################### -->

<owl:Class rdf:ID="Product">
<rdfs:label xml:lang="en">item</rdfs:label>
<rdfs:label xml:lang="fr">Marchandise</rdfs:label>
<rdfs:comment xml:lang="en">The goods which are for sale at our site.

</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#price" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#name" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#creator" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#id" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#topic" />
<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="DVD">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">DVD</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="CD">
<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">CD</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Book">
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<rdfs:subClassOf rdf:resource="#Product" />
<rdfs:label xml:lang="en">book</rdfs:label>
<rdfs:comment xml:lang="en">A book.</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#publisher" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Science">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">science book</rdfs:label>
<rdfs:comment xml:lang="en"></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Textbook">
<rdfs:subClassOf rdf:resource="#Science" />
<rdfs:label xml:lang="en">science textbook</rdfs:label>
<rdfs:comment xml:lang="en">Science book for students.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Popular">
<rdfs:subClassOf rdf:resource="#Science" />
<rdfs:label xml:lang="en">popular science book</rdfs:label>
<rdfs:comment xml:lang="en">

Science book for a wide audience.</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Pocket">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">pocket book</rdfs:label>
<rdfs:comment xml:lang="en">

Paperback bound books of small size.</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Children">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:label xml:lang="en">children book</rdfs:label>
<rdfs:comment xml:lang="en">Books for children.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Person">
<rdfs:label xml:lang="en">person</rdfs:label>
<rdfs:comment xml:lang="en">

@@Developer: should link with FOAF some day</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Publisher">
<rdfs:label xml:lang="en">publisher</rdfs:label>
<rdfs:comment xml:lang="en">A book or music publisher.</rdfs:comment>

</owl:Class>

<!-- ################### PROPERTIES ################### -->

<owl:DatatypeProperty rdf:ID="price">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;integer" />
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<rdfs:label xml:lang="en">price</rdfs:label>
<rdfs:comment xml:lang="en">The list price of a particular item on
our site. Does not include taxes, shipping or rebates.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="firstname">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">firstname</rdfs:label>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="lastname">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">lastname</rdfs:label>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">name</rdfs:label>
<rdfs:comment xml:lang="en">The name identifying an item for the common
shoppers.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="topic">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">topic</rdfs:label>
<rdfs:comment xml:lang="en">Some (artistic or cultural) topic under which
the item could be classified from a customer standpoint.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="id">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="&xsd;anyURI" />
<rdfs:label xml:lang="en">id</rdfs:label>
<rdfs:comment xml:lang="en">The unique identifier of the item in our infor-
mation system. This is typically the isbn number for books, the
doi for electronic documents, etc.</rdfs:comment>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="creator">
<rdfs:domain rdf:resource="#Product"/>
<rdfs:range rdf:resource="#Person" />
<rdfs:label xml:lang="en">creator</rdfs:label>
<rdfs:comment xml:lang="en">The human creator of a product.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="author">
<rdfs:domain rdf:resource="#Book"/>
<rdfs:range rdf:resource="#Person" />
<rdfs:label xml:lang="en">author</rdfs:label>
<rdfs:comment xml:lang="en">The author of a book.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="publisher">
<rdfs:domain rdf:resource="#Book"/>
<rdfs:range rdf:resource="#Publisher" />
<rdfs:label xml:lang="en">publisher</rdfs:label>
<rdfs:comment xml:lang="en">The publisher of a book.</rdfs:comment>

</owl:ObjectProperty>

<!-- ################### INSTANCES ################### -->

<Popular rdf:about="#a674639524">
<rdfs:label>Bertrand Russell: My life</rdfs:label>
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<author>
<Person rdf:about="br">
<firstname>Bertrand</firstname>
<lastname>Russell</lastname>

</Person>
</author>
<publisher>

<Publisher rdf:about="http://www.routledge.co.uk"/>
</publisher>
<name>My life</name>
<id></id>
<price rdf:datatype="&xsd;integer">60</price>

</Popular>

<Book rdf:about="#a6746390923">
<rdf:type rdf:resource="#Pocket"/>
<rdfs:label>Albert Camus: La chute</rdfs:label>
<author>

<Person rdf:about="ac">
<firstname>Albert</firstname>
<lastname>Camus</lastname>

</Person>
</author>
<publisher>

<Publisher rdf:about="http://www.gallimard.fr"/>
</publisher>
<name>La chute</name>
<id>http://dx.doi.org/10.1002/prot.999</id>
<price rdf:datatype="&xsd;integer">9.95</price>

</Book>

</rdf:RDF>

B.2 library.owl

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY dc "http://purl.org/dc/elements/1.1/" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY foaf "http://xmlns.com/foaf/0.1/">
<!ENTITY ical "http://www.w3.org/2002/12/cal/ical#">]>

<rdf:RDF
xmlns="http://book.ontologymatching.org/example/library.owl#"
xml:base="http://book.ontologymatching.org/example/library.owl#"
xmlns:foaf ="&foaf;"
xmlns:ical ="&ical;"
xmlns:rdf ="&rdf;"
xmlns:xsd ="&xsd;"
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl;"
xmlns:dc ="&dc;">

<!-- ################### ONTOLOGY ################### -->

<owl:Ontology rdf:about="">
<dc:creator>Jérôme Euzenat</dc:creator>
<dc:contributor>Pavel Shvaiko</dc:contributor>
<dc:description>Fragments of a library ontology</dc:description>
<dc:date>2006/04/13</dc:date>
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<rdfs:label>Library ontology</rdfs:label>
<rdfs:comment>An example for the Ontology matching book. This ontology

fragment provide a first classification for books.</rdfs:comment>
<owl:versionInfo>

$Id: library.owl,v 1.3 2007/03/15 21:05:21 cvs Exp $
</owl:versionInfo>

</owl:Ontology>

<!-- In OWL-DL all items must be declared -->
<owl:DatatypeProperty rdf:about="&dc;creator" />
<owl:DatatypeProperty rdf:about="&dc;contributor" />
<owl:DatatypeProperty rdf:about="&dc;description" />
<owl:DatatypeProperty rdf:about="&dc;date" />

<!-- ################### CLASSES ################### -->

<owl:Class rdf:ID="Volume">
<rdfs:label xml:lang="en">volume</rdfs:label>
<rdfs:label xml:lang="fr">Volume</rdfs:label>
<rdfs:comment xml:lang="en">Books referenced in the library.</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#year" />
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#author" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#title" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isbn" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Essay">
<rdfs:subClassOf rdf:resource="#Volume" />
<rdfs:label xml:lang="en">essay</rdfs:label>
<rdfs:comment xml:lang="en">A book whose main interest reside in the topic

considered.</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#subject" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="LiteraryCritic">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">litterary critic</rdfs:label>
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<rdfs:comment xml:lang="en">An essay about Literature.</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Politics">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">political writings</rdfs:label>
<rdfs:comment xml:lang="en">An essay about politics.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Biography">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">biography</rdfs:label>
<rdfs:comment xml:lang="en">An essay about a person.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Autobiography">
<rdfs:subClassOf rdf:resource="#Essay" />
<rdfs:label xml:lang="en">autobiography</rdfs:label>
<rdfs:comment xml:lang="en">

A biography whose author is the subject.</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#subject" />
<owl:allValuesFrom rdf:resource="#Human" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Literature">
<rdfs:subClassOf rdf:resource="#Volume" />
<rdfs:label xml:lang="en">literature</rdfs:label>
<rdfs:comment xml:lang="en">A volume whose main interest reside in

the threatment of the topic.</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Novel">
<rdfs:subClassOf rdf:resource="#Literature" />
<rdfs:label xml:lang="en">novel</rdfs:label>
<rdfs:comment xml:lang="en">A narative text.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Poetry">
<rdfs:subClassOf rdf:resource="#Literature" />
<rdfs:label xml:lang="en">poetry</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Human">
<rdfs:label xml:lang="en">human</rdfs:label>
<rdfs:comment xml:lang="en">A Human being.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Writer">
<rdfs:subClassOf rdf:resource="#Human" />
<rdfs:label xml:lang="en">writer</rdfs:label>
<rdfs:comment xml:lang="en">Someone who authors books.</rdfs:comment>

</owl:Class>

<!-- ################### PROPERTIES ################### -->

<owl:DatatypeProperty rdf:ID="year">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;integer" />
<rdfs:label xml:lang="en">year</rdfs:label>
<rdfs:comment xml:lang="en">The year of first publication of this edition

of the volume.</rdfs:comment>
</owl:DatatypeProperty>
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<owl:DatatypeProperty rdf:ID="title">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">title</rdfs:label>
<rdfs:comment xml:lang="en">The title of a volume.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="isbn">
<rdfs:domain rdf:resource="#Volume" />
<rdfs:range rdf:resource="&xsd;integer" />
<rdfs:label xml:lang="en">year</rdfs:label>
<rdfs:comment xml:lang="en">

The International Standard Book Number of a volume.</rdfs:comment>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="author">
<rdfs:domain rdf:resource="#Volume"/>
<rdfs:range rdf:resource="#Writer" />
<rdfs:label xml:lang="en">author</rdfs:label>
<rdfs:comment xml:lang="en">The author of a volume.</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="subject">
<rdfs:domain rdf:resource="#Essay"/>
<rdfs:range rdf:resource="&owl;Thing" />
<rdfs:label xml:lang="en">subject</rdfs:label>
<rdfs:comment xml:lang="en">The subject of an essay.</rdfs:comment>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="&xsd;string" />
<rdfs:label xml:lang="en">name</rdfs:label>

</owl:DatatypeProperty>

<!-- ################### INSTANCES ################### -->

<owl:Thing rdf:about="#a674639524">
<rdf:type rdf:resource="#Autobiography"/>
<rdfs:label>"My life" by Bertrand Russell</rdfs:label>
<author>

<Writer rdf:about="#br">
<name>Bertrand Russell</name>

</Writer>
</author>
<isbn>0415189853</isbn>
<subject rdf:resource="#br"/>
<year rdf:datatype="&xsd;integer">1969</year>
<title>My life</title>

</owl:Thing>

<Novel rdf:about="#a6746390923">
<rdfs:label>"La chute" by Albert Camus</rdfs:label>
<author>

<Writer rdf:about="#ac">
<name>Albert Camus</name>

</Writer>
</author>
<isbn>2070360105</isbn>
<year rdf:datatype="&xsd;integer">1956</year>
<title>La chute</title>

</Novel>

</rdf:RDF>
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B.3 srcalign.rdf

The following alignment in the Alignment format (see Sect. 10.1.5) is that of
Fig. 2.9.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>

<Ontology rdf:about="&ont1;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto1>
<onto2>

<Ontology rdf:about="&ont2;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto2>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#name’/>
<entity2 rdf:resource=’&ont2;#title’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#id’/>
<entity2 rdf:resource=’&ont2;#isbn’/>
<measure rdf:datatype=’&xsd;float’>.9</measure>
<relation>&gt;</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#author’/>
<entity2 rdf:resource=’&ont2;#author’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Person’/>
<entity2 rdf:resource=’&ont2;#Human’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>
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</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Science’/>
<entity2 rdf:resource=’&ont2;#Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Book’/>
<entity2 rdf:resource=’&ont2;#Volume’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4 Alternative Alignments for Evaluation

Here are the alignments considered in Chap. 9.

B.4.1 refalign.rdf

This is the previous alignment involving only correspondences between classes. It
is considered as the reference alignment.
<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>

<Ontology rdf:about="&ont1;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto1>
<onto2>

<Ontology rdf:about="&ont2;">
<location>file:library.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>
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</formalism>
</Ontology>

</onto2>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Person’/>
<entity2 rdf:resource=’&ont2;#Human’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Science’/>
<entity2 rdf:resource=’&ont2;#Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Book’/>
<entity2 rdf:resource=’&ont2;#Volume’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4.2 nearmiss.rdf

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>

<Ontology rdf:about="&ont1;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto1>
<onto2>

<Ontology rdf:about="&ont2;"">
<location>file:library.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto2>
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<map>
<Cell>

<entity1 rdf:resource=’&ont1;#Product’/>
<entity2 rdf:resource=’&ont2;#Volume’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Science’/>
<entity2 rdf:resource=’&ont2;#Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Person’/>
<entity2 rdf:resource=’&ont2;#Writer’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4.3 farone.rdf

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2005/04/13)</method>
<onto1>

<Ontology rdf:about="&ont1;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto1>
<onto2>

<Ontology rdf:about="&ont2;">
<location>file:library.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto2>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Book’/>



B.4 Alternative Alignments for Evaluation 421

<entity2 rdf:resource=’&ont2;#Volume’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Pocket’/>
<entity2 rdf:resource=’&ont2;#Essay’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Children’/>
<entity2 rdf:resource=’&ont2;#Literature’/>
<measure rdf:datatype=’&xsd;float’>.8</measure>
<relation>&lt;</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

B.4.4 noncomplete.rdf

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY ont1 "http://book.ontologymatching.org/example/culture-shop.owl" >
<!ENTITY ont2 "http://book.ontologymatching.org/example/library.owl" >]>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xml:base=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’&xsd;’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<method>Manually generated (Jérôme Euzenat, 2013/02/07)</method>
<onto1>

<Ontology rdf:about="&ont1;">
<location>file:culture-shop.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto1>
<onto2>

<Ontology rdf:about="&ont2;">
<location>file:library.owl</location>
<formalism>
<Formalism name="OWL1.0" uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto2>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Person’/>
<entity2 rdf:resource=’&ont2;#Human’/>
<relation>&lt;</relation>
<measure rdf:datatype=’&xsd;float’>0.7</measure>
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</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Person’/>
<entity2 rdf:resource=’&ont2;#Writer’/>
<relation>></relation>
<measure rdf:datatype=’&xsd;float’>0.6</measure>

</Cell>
</map>
<map>

<Cell>
<entity1 rdf:resource=’&ont1;#Book’/>
<entity2 rdf:resource=’&ont2;#Volume’/>
<relation>&lt;</relation>
<measure rdf:datatype=’&xsd;float’>0.7</measure>

</Cell>
</map>

</Alignment>



Appendix C
Exercises

The following exercises cover only the technical sections of this book. They are
provided to help readers check their understanding of the presented concepts rather
than to make assignments to students. Notice that solutions do not represent opera-
tional systems; for example, the methodology should be applied to larger data sets.
They consist of applications of the presented concepts to a pair of ontologies; they
are expected not to be difficult. Due to lack of space, these exercises are applied
to small size ontologies. However, interested readers may use their own (larger)
ontologies instead. It is certainly worthwhile to use available tools for completing
these exercises.

C.1 Applications

C.1 (Application definition) Consider two university data sources dealing with
people. The first one is a database developed from the whole university management
standpoint, while the second one represents the standpoint of a particular research
laboratory. These data sources are managed by different departments and will con-
tinue to evolve independently; however, users would like to access them through a
unified interface. Obviously, this could be useful, e.g., for checking both lecture and
room availability from a single interface.

1. Provide an architecture for this application. For instance, by drawing diagrams
similar to those of Chap. 1.

2. What are the requirements to ontology matching in this application with regard
to Table 3.1?

C.2 The Matching Problem

C.2 (Ontology representation) Let o be a first data source to be integrated. o is
described in English as follows:

J. Euzenat, P. Shvaiko, Ontology Matching, DOI 10.1007/978-3-642-38721-0,
© Springer-Verlag Berlin Heidelberg 2013
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− People are divided among Students, Faculty and Staff. Faculty is further divided
depending on departments and subdepartments, e.g., Philosophy, Science.

− People are characterised by their firstname and lastname which are strings, id which
is a uri and birthdate which is a date.

− Students attend Courses which are taught by Faculty and Faculty people have an
Office as a room.

− Pr. Carla Cipolla is a visiting professor in Computer Science and Stefano Zucchini is
a PhD Student.

1. Provide a description for o as a folksonomy.
2. Provide a description for o as a directory.
3. Provide a description for o as an XML schema.
4. Provide a description for o as a relational database schema.
5. Provide a description for o as an entity–relationship schema (or UML diagram).
6. Provide a description for o as an ontology.

C.3 (Ontology semantics) Assume that the left-hand side ontology of Fig. C.1 is
denoted by o.

1. Express o in OWL.
2. Express o as a set of assertions, e.g., Staff	 People.
3. Provide its semantics.
4. Does o |= Philosophy	 People and why?
5. Does o |= teaches	 attends and why?

C.3 Classification

C.4 (Kinds of techniques) Consider the structure of ontologies o and o′ of Prob-
lem C.2, as illustrated in Fig. C.1. Describe which techniques can be used for match-
ing them (see Fig. 4.1) and explain the choices made.

C.4 Basic Techniques

C.5 (Name-based distance computation) Given the ontologies o and o′ of Prob-
lem C.1 as illustrated in Fig. C.1. Provide the tables (similar to those of Exam-
ple 5.14 or Example 5.26) for class matching with the following techniques:

1. String distances between all the labels occuring in Fig. C.1:

− substring similarity,
− 3-gram similarity,
− edit distance,
− Jaro–Winckler measure.
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Fig. C.1 Two ontologies to be matched.

2. Linguistic distances between all the labels by using the last version of WordNet:

− cosynonymy similarity,
− gloss overlap,
− Wu–Palmer similarity.

C.6 (Extensional distance computation) Consider the two ontologies o and o′ of
Problem C.1 as illustrated in Fig. C.1. Assume that the two following tables specify
data instances for o and o′, respectively.

Class firstname lastname id birthdate

Computer Science G. Cetriolo 445 04/07/1978
Biology P. Pomodoro 1678 01/08/1972
Computer Science C. Cipolla 1998 13/06/1977
Philosophy P. Carciofo 128 03/09/1982
Student C. Fragola 1664 12/12/1985
Biology A. Verdura 88 07/09/1981
Student S. Zucchini 1178 16/04/1987
Computer Science F. di Guava 23/02/1966
Staff C. Melocoton 178 14/01/1962
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Class name hiring date office

Assistant professor Giancarlo Cetriolo 2/9/2004 B45
Associate professor Paola Pomodoro 23/2/2002 B45
Visiting professor Carla Cipolla 4/12/2007 C17
Assistant professor Paolo Carciofo C18
Full professor Federico diGuava 7/7/1999 B12
Visiting professor Pierluiggi Pomodoro 4/12/2007 C18
PhDStudent Mario Staggioni 2/9/2006 B47
PhDStudent Stefano Zucchini 17/10/2005 B47
PhDStudent Domenica Melanzana 15/9/2006

1. Identify which extensional techniques can be used and why.
2. Design a distance for strings which can compare names with and without abbre-

viated first name.
3. Use the previous string distance for computing a similarity between instances.
4. Use the substring similarity between lastname and name for identifying in-

stances.
5. Starting with each of the previously computed measures, use the single linkage

measure on instances for comparing classes of the two ontologies.

C.5 Strategies

C.7 (Measure aggregation) Consider the distances between ontology entities in o

and o′ given by (i) edit distance computed on their names (see Problem C.5), and
(ii) the distance computed with the single linkage measure applied to the substring
distance (see Problem C.6).

1. Compute their aggregation with the max(x + y − 1,0) triangular norm.
2. Compute their aggregation with the weighted product, such that 2/3 is the weight

for the former distance and 1/3 is the weight for the latter one.
3. Compute their aggregation with the weighted sum such that 2/3 is the weight for

the former distance and 1/3 is the weight for the latter one.
4. Compute their aggregation with the ordered weighted average such that 2/3

is the weight for the higher distance and 1/3 is the weight for the lower
one.

C.8 (Thresholds) Assume that the similarity between entities of ontologies o and
o′ of Problem C.2 is expressed by the following similarity table:
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Staff .56 .65 .33 .64 .12 .11 .63 .22 .13
Professor .62 .36 .60 .40 .44 .32 .55 .21 .36
Assistant .40 .44 .58 .62 .46 .33 .43 .32 .22

PhDStudent .64 .92 .45 .60 .65 .52 .55 .33 .34
Room .12 .20 .20 .18 .10 .12 .09 .11 .62

Reference .23 .06 .18 .25 .26 .28 .22 .17 .23
Lecture .15 .16 .26 .23 .34 .12 .14 .20 .16

Provide the set of correspondences resulting from the application of a .6 thresh-
old, specifically:

1. with a hard threshold of .6,
2. with a delta threshold of .6,
3. with a proportional threshold of .6,
4. with a percentage threshold of .6.

C.9 (Alignment extraction) Consider the two ontologies o and o′ of Problem C.1 as
illustrated in Fig. C.1. Assume that the similarity between their entities is expressed
by the similarity table of Problem C.8.

1. Extract an alignment based on the similarity as a stable marriage;
2. Extract an alignment based on the similarity as a pairwise maximal matching;
3. Extract an alignment based on the similarity as the maximum weight graph

matching.

C.10 (Composing matchers) Consider the application described in Problem C.1.

1. Provide the architecture for a matching system suitable to match these ontologies
(use the answer identified to Problem C.4 for guiding your choice).

2. Compute the alignment with this architecture.

C.6 Evaluation of Matching Systems

C.11 (Precision and recall computation) Let R, as described in Fig. C.2, be the ref-
erence alignment between the two ontologies o and o′ of Problem C.1 as illustrated
in Fig. C.1. Consider the three alignments (A1, A2, A3) as follows:
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Fig. C.2 Reference alignment R between the ontologies of Fig. C.1. Correspondences are ex-
pressed by solid arrows. By default their relation is = and their confidence value is 1.0; otherwise,
these are mentioned near the arrows.

room= Room Office= office Staff= Staff

firstname≤ name Student≥ PhDStudent teaches = teaches (A1)

Faculty≥ Professor Office= Room room= office

People= Staff Course= Lecture teaches = teaches (A2)

Faculty= Full professor Student= PhDStudent Staff= Assistant

birthdate= hiringdate firstname = name teaching= teaching (A3)

1. Compute the precision of alignments A1, A2 and A3;
2. Compute the recall of alignments A1, A2 and A3;
3. Compute the F-measure of alignments A1, A2 and A3;
4. Compute the overall of alignments A1, A2 and A3;
5. Compute the Hamming distance between alignments A1, A2, A3 and R.

C.12 (Application specific evaluation) Let R, as described in Fig. C.2, be the ref-
erence alignment between the two ontologies o and o′ of Problem C.1, as illustrated
in Fig. C.1. Apply the aggregation technique based on weighted harmonic mean of
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Sect. 9.4.1 with the criterion identified for Problem C.1 on alignments A1, A2 and
A3 from Problem C.11.

C.7 Representing Alignments

C.13 (Representation generation) Consider R as described in Fig. C.2.

1. Express it in OWL;
2. Express it in C-OWL;
3. Express it in SWRL;
4. Express it in EDOAL;
5. Express it in SKOS;
6. Discuss the advantages and limitations of these formalisms.

C.8 Explaining Alignments

C.14 (Alignment explanation) Given the ontologies of Fig. C.2 and given the ar-
chitecture and a solution devised for Problem D.10:

1. Provide a process trace (see for example Fig. 11.9) for a correctly and an incor-
rectly identified correspondence, namely for a true positive, such as Student ≥
PhDStudent and for a false positive, such as Student= PhDStudent;

2. Provide an intuitive explanation, in natural language, for the above correspon-
dences, of why the correspondence under consideration has been correctly or
incorrectly identified.

C.9 Processing Alignments

C.15 (Merging ontologies) Let R be the alignment described in Fig. C.2.

1. Describe the merge between o and o′ according to R using the OWL import
capability;

2. Describe it as one integrated OWL ontology.

C.16 (Data translation) Assume that one wants to transform the data instances
from ontology o into instances of o′. Consider the data instances in the first table of
Problem C.6.

1. Provide their translation with regard to the reference alignment R described in
Fig. C.2.

2. Develop a program able to perform this translation.
3. How data interlinking could be used for improving on the situation? Provide an

effective way for doing this and its results.
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C.17 (Mediation) Assume that one wants that each of the sources of Problem C.1
can query the other one. It is thus necessary to transform queries and their answers.

1. Given the SPARQL query ‘SELECT ?room WHERE { ?x rdf:type o:Faculty. ?x
o:room ?room .}’ expressed with respect to ontology o, transform it into a query
expressed with regard to ontology o′, according to the reference alignment R

described in Fig. C.2.
2. Apply the transformed query to the data instances of the second table of Prob-

lem C.6.
3. Develop a mediator able to perform the query transformations and answer trans-

lation depending on the reference alignment R described in Fig. C.2.
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Solutions

We provide sketches of the solutions to the exercises of Appendix C. Most compu-
tations are made with the help of Alignment API (version 4.5). The book web site1

provides scripts and Java classes for using the Alignment API in order to solve some
of the questions.

D.1 Applications

Solution D.1 (Application definition) Considering the application presented in
Problem C.1,

1. A possible architecture for the application is provided by the following illustra-
tion:

2. The requirements of the application with respect to ontology matching could be
as follows:

1http://book.ontologymatching.org.
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− instances: YES, instances are available.
− run time: NO, matching can be performed at design time. However, since it

is said that the database keeps evolving, there is still some alignment mainte-
nance to be carried out.

− automatic: NO, automatic matching is not strictly required and it may be wise
to have results checked before putting them in production.

− correct: YES, the alignment must be correct. It would be particularly embar-
rassing, were it to provide incorrect information.

− complete: YES, the more complete the results, the better. However, having
incomplete matching is not critical: this means that some information will be
missing in the unified view.

− operation: the operation to be carried out is query mediation, because the
databases have to remain independent.

D.2 The Matching Problem

Solution D.2 (Ontology representation) Let o be a first data source to be integrated
as defined in Problem C.2.

1. A description for o as a folksonomy could be:

2. Below is a description for o as a directory:

3. Here is a description of o as an XML schema:
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<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="People">
<sequence>
<element name="firstname" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<element name="lastname" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<element name="birthdate" type="xsd:date" minOccurs="1" maxOccurs="1"/>
<element name="id" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>
<element name="type" type="xsd:string/>
</sequence>

</complexType>

<complexType name="Student">
<complexContent>
<extension base="People">

<sequence>
<element name="attends" type="Course"/>

</sequence>
</extension>
</complexContent>

</complexType>

<complexType name="Faculty">
<complexContent>
<extension base="People">

<sequence>
<element name="office" type="Room" maxOccurs="1"/>
<element name="department" type="Department" minOccurs="1"

maxOccurs="1"/>
<element name="teaches" type="Course"/>

</sequence>
</extension>
</complexContent>

</complexType>

<complexType name="Philosophy">
<complexContent>
<extension base="Faculty">
</extension>
</complexContent>

</complexType>

<complexType name="Science">
<complexContent>
<extension base="Faculty">
</extension>
</complexContent>

</complexType>

<complexType name="Course">
<sequence>

<element name="title" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<element name="room" type="Room" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

<complexType name="Departement">
<sequence>

<element name="name" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>

<complexType name="Room">
<sequence>

<element name="name" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</sequence>
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</complexType>

</schema>

The two instances would be described by the following XML file:

<?xml version="1.0" ?>

<Student>
<firstname>Stefano</firstname>
<lastname>Zucchini</lastname>
<birthdate>16/04/1987</birthdate>
<id>1178</id>
<type>PhD student</type>

</Student>

<Science>
<firstname>Carla</firstname>
<lastname>Cipolla</lastname>
<birthdate>13/06/1977</birthdate>
<id>1998</id>
<type>Visiting professor</type>
<departement>

<Department><name>Computer science</name></Department>
</department>

</Science>
</xml>

4. An SQL relational database schema corresponding to o could be:

CREATE TABLE People (
type VARCHAR(20),
department VARCHAR(40),
firstname VARCHAR(30),
lastname VARCHAR(30),
birthdate DATE,
id URI,
office INT,
PRIMARY KEY (firstname lastname birthdate id)

);

CREATE TABLE Department (
name VARCHAR(40),
PRIMARY KEY (name)

);

CREATE TABLE Room (
number INT,
PRIMARY KEY (number)

);

CREATE TABLE Course (
title VARCHAR(100),
id VARCHAR(10),
room INT,
PRIMARY KEY (id)

);

CREATE TABLE teaches (
course INT,
firstname VARCHAR(30),
lastname VARCHAR(30),
birthdate DATE,
id URI

);

CREATE TABLE attends (
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course INT,
firstname VARCHAR(30),
lastname VARCHAR(30),
birthdate DATE,
id URI

);

INSERT INTO People (firstname, lastname, birthdate, id, type, department)
VALUES (’Carla’, ’Cipolla’, ’13/06/1977’, 1998, ’Visiting professor’,

’Computer science’);

INSERT INTO People (firstname, lastname, birthdate, id, type)
VALUES (’Stefano’, ’Zucchini’, ’16/04/1987’, 1178, ’PhD student’);

5. Figure D.1 is a description for o as a UML class diagram. Instances do not appear
there.

Fig. D.1 Representation of o as a UML class diagram.

6. Figure D.2 provides a description of o as an ontology.

Solution D.3 (Ontology semantics) Assume that the left-hand side ontology of
Fig. C.1 is denoted by o.

1. o can be expressed in OWL as follows:

<owl:Class rdf:about="#People">
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#firstname"/>
<owl:allValuesFrom rdf:resources="xsd:string"/>

</owl:Restriction>
</rdf:subClassOf>
<rdfs:subClassOf
<owl:Restriction>
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Fig. D.2 Representation of o as an ontology.

<owl:onProperty rdf:resource="#lastname"/>
<owl:allValuesFrom rdf:resources="xsd:string"/>

</owl:Restriction>
</rdf:subClassOf>
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#id"/>
<owl:allValuesFrom rdf:resources="xsd:uri"/>

</owl:Restriction>
</rdf:subClassOf>
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#birthdate"/>
<owl:allValuesFrom rdf:resources="xsd:date"/>

</owl:Restriction>
</rdf:subClassOf>

</owl:Class>
<owl:Class rdf:about="#Student">

<rdfs:subClassOf rdf:resource="#People"/>
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#attends"/>
<owl:allValuesFrom rdf:resources="#Course"/>

</owl:Restriction>
</rdf:subClassOf>

</owl:Class>
<owl:Class rdf:about="#Faculty">

<rdfs:subClassOf rdf:resource="#People"/>
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>
<owl:allValuesFrom rdf:resources="#Course"/>

</owl:Restriction>
</rdf:subClassOf>
<rdfs:subClassOf
<owl:Restriction>

<owl:onProperty rdf:resource="#room"/>
<owl:allValuesFrom rdf:resources="#Office"/>

</owl:Restriction>
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</rdf:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Science">

<rdfs:subClassOf rdf:resource="#Faculty"/>
</owl:Class>
<owl:Class rdf:about="#Computer science">

<rdfs:subClassOf rdf:resource="#Science"/>
</owl:Class>
<owl:Class rdf:about="#Biology">

<rdfs:subClassOf rdf:resource="#Science"/>
</owl:Class>
<owl:Class rdf:about="#Philosophy">

<rdfs:subClassOf rdf:resource="#Faculty"/>
</owl:Class>
<owl:Class rdf:about="#Boxology">

<rdfs:subClassOf rdf:resource="#Faculty"/>
</owl:Class>
<owl:Class rdf:about="#Staff">

<rdfs:subClassOf rdf:resource="#People"/>
</owl:Class>
<owl:Student rdf:about="#Stefano Zucchini" />
<owl:Computer Science rdf:about="#Pr. Carla Cipolla" />

2. o can be expressed in the simplified description logic format as follows:

People	 ∀firstname.string People	 ∀lastname.string

People	 ∀id.uri People	 ∀birthdate.date

Student	 People Student	 ∀attends.Course

Faculty	 People

Faculty	 ∀teaches.Course Faculty	 ∀room.Office

Science	 Faculty Computer science	 Science

Biology	 Science Philosophy	 Faculty

Boxology	 Faculty Staff	 People

Stefano Zucchini ∈ Student Pr. Carla Cipolla ∈ Computer science

3. The models of o are those interpretations m over a domain D such that:

m(teaches)⊆D×D

m(attends)⊆D×D

m(People)⊆D

∩ {x ∈D; ∀y; 〈x, y〉 ∈m(firstname), y ∈ S}
∩ {x ∈D; ∀y; 〈x, y〉 ∈m(lastname), y ∈ S}
∩ {x ∈D; ∀y; 〈x, y〉 ∈m(id), y ∈U}
∩ {x ∈D; ∀y; 〈x, y〉 ∈m(birthdate), y ∈D}

m(Student)⊆m(People)
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∩ {x ∈D; ∀y; 〈x, y〉 ∈m(attends), y ∈m(Course)}
m(Faculty)⊆m(People)

∩ {x ∈D; ∀y; 〈x, y〉 ∈m(teaches), y ∈m(Course)}
∩ {x ∈D; ∀y; 〈x, y〉 ∈m(room), y ∈m(Office)}

m(Science)⊆m(Faculty)

m(Computer science)⊆m(Science)

m(Biology)⊆m(Science)

m(Philosophy)⊆m(Faculty)

m(Boxology)⊆m(Faculty)

m(Staff)⊆m(People)

m(Stefano Zucchini) ∈m(Student)

m(Pr. Carla Cipolla) ∈m(Computer science)

4. o |= Philosophy 	 People because for any model m of o, m(Philosophy) ⊆
m(Faculty) and m(Faculty)⊆m(People). Hence m(Philosophy)⊆m(People).

5. o �|= teaches	 attends because the interpretation I with one course c, one student
s and one faculty f such that I (People) = {s, t}, I (Course) = {c}, I (Student) =
{s}, I (Computer science) = I (Science) = I (Faculty) = {f }, I (Stefano Zucchini) =
s, I (Pr. Carla Cipolla) = f , I (attends) = {〈s, c〉}, and I (teaches) = {〈f, c〉}, all
other terms having an empty interpretation, is a model of the ontology and it
does not satisfy the assertion.

D.3 Classification

Solution D.4 (Kinds of techniques) We believe that all the techniques considered
in our classifications can be used:

− terminological: because the two ontologies are expressed in the same language.
However, the poor overlap between the two sets of terms can be the sign of a
poor overlap between the ontologies or require lexicon-based methods;

− structural: because there are constraints on properties, but we need anchors;
− extensional: because there are instances; this is invaluable, especially that they

can easily be linked;
− semantic: also needs anchors.

D.4 Basic Techniques

Solution D.5 (Name-based distance computation) Given the ontologies o and o′
of Problem C.1 as illustrated in Fig. C.1.
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1. Below are the distances or similarities, between all the class labels occurring in
Fig. C.1, obtained with the OntoSim library (version 2.1):2

− substring distance:
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Assistant 0.87 0.88 0.88 0.75 0.57 0.87 1.00 1.00 0.88 0.89 0.92
Reference 0.87 0.50 0.88 0.75 0.86 0.73 1.00 0.87 1.00 1.00 0.67

AssistantProfessor 0.92 0.92 0.92 0.84 0.74 0.83 0.92 0.92 0.92 0.86 0.94
VisitingProfessor 0.91 0.92 0.92 0.92 0.91 0.83 0.92 0.91 0.92 0.85 0.94

ResearchAssistant 0.83 0.92 0.92 0.83 0.73 0.91 1.00 0.91 0.92 0.93 0.94
TeachingAssistant 0.91 0.92 0.83 0.83 0.73 0.91 0.92 0.91 0.92 0.85 0.88

Professor 0.87 0.88 0.88 0.88 0.86 0.73 0.88 0.87 0.88 0.79 0.92
Room 0.80 1.00 1.00 1.00 1.00 0.80 0.83 0.80 0.82 0.86 0.79

PhDStudent 0.88 0.76 0.88 0.18 0.73 0.88 1.00 0.88 1.00 0.80 0.84
Lecture 0.69 0.86 0.86 0.71 0.83 0.85 0.87 0.69 0.86 0.88 0.91

FullProfessor 0.89 0.90 0.80 0.90 0.89 0.79 0.90 0.89 0.90 0.83 0.93
AssociateProfessor 0.92 0.84 0.92 0.92 0.91 0.83 0.92 0.92 0.92 0.86 0.88

Staff 0.82 0.83 0.83 0.67 0.00 0.64 1.00 1.00 1.00 0.87 0.90

− 3-gram distance:
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Assistant 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00
Reference 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80

AssistantProfessor 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
VisitingProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResearchAssistant 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00

Professor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Room 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PhDStudent 1.00 1.00 1.00 0.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lecture 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FullProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AssociateProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Staff 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

2http://ontosim.gforge.inria.fr.

http://ontosim.gforge.inria.fr
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There is not much in common between the trigrams of these labels: trigrams
are more effective on longer texts.

− edit distance:
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Assistant 0.89 0.78 0.89 0.67 0.67 0.89 1.00 1.00 0.89 0.90 0.87
Reference 0.78 0.56 0.89 0.78 1.00 0.67 1.00 0.78 1.00 1.00 0.60

AssistantProfessor 0.89 0.78 0.94 0.83 0.78 0.89 0.94 0.89 0.89 0.89 0.89
VisitingProfessor 0.88 0.82 1.00 0.82 0.82 0.88 0.94 0.88 0.88 0.88 0.94

ResearchAssistant 0.88 0.82 0.82 0.82 0.82 0.94 1.00 0.94 0.94 0.88 0.88
TeachingAssistant 0.88 0.88 0.82 0.82 0.82 0.94 0.94 0.94 0.94 0.82 0.88

Professor 0.78 0.89 1.00 0.89 0.89 0.78 0.89 0.78 0.89 0.80 0.87
Room 0.83 1.00 1.00 1.00 1.00 1.00 0.75 0.83 0.71 0.80 0.93

PhDStudent 0.90 0.80 0.90 0.30 0.80 0.90 1.00 0.80 1.00 0.80 0.80
Lecture 0.57 0.86 0.86 0.86 0.86 0.86 1.00 0.71 1.00 0.90 0.80

FullProfessor 0.85 0.92 0.92 0.92 0.92 0.85 0.92 0.85 0.85 0.85 0.93
AssociateProfessor 0.83 0.72 0.89 0.83 0.83 0.89 0.89 0.83 0.89 0.89 0.78

Staff 1.00 0.86 1.00 0.71 0.00 1.00 1.00 1.00 1.00 0.90 0.93

− Jaro–Winckler measure:
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Assistant 0.72 0.75 0.68 0.67 0.78 0.74 1.00 1.00 0.75 0.89 0.83
Reference 0.84 0.70 0.75 0.78 0.80 0.66 1.00 0.64 1.00 1.00 0.74

AssistantProfessor 0.74 0.80 0.71 0.73 0.80 0.76 1.00 1.00 0.76 0.81 0.76
VisitingProfessor 0.75 0.86 0.76 0.81 1.00 0.73 0.76 1.00 0.81 0.75 0.73

ResearchAssistant 0.86 0.84 1.00 0.72 1.00 0.91 1.00 0.71 1.00 0.71 0.75
TeachingAssistant 1.00 0.84 0.72 0.82 0.70 0.91 0.76 0.75 0.76 0.72 0.79

Professor 0.76 0.82 1.00 0.75 0.80 0.70 0.75 0.70 0.70 0.66 0.72
Room 0.67 1.00 1.00 1.00 1.00 0.67 0.65 0.67 0.64 0.98 0.72

PhDStudent 0.77 0.93 0.90 0.68 1.00 0.75 1.00 0.79 1.00 0.68 0.73
Lecture 0.55 0.80 0.76 0.65 1.00 0.68 1.00 0.68 0.97 0.98 0.75

FullProfessor 0.69 0.76 0.65 0.76 1.00 0.80 0.75 0.77 0.80 0.74 0.72
AssociateProfessor 0.90 0.79 0.68 0.81 0.80 0.79 0.85 0.74 0.83 0.79 0.71

Staff 1.00 0.73 0.73 0.66 0.40 0.69 1.00 1.00 1.00 1.00 1.00

2. For computing linguistic measures, we have used WordNet 3.0, JWNL 1.4,
Lucene 3.0.2 through the OntoSim library and the Alignment API 4.5:
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− cosynonymy distance:
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Assistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Reference 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AssistantProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VisitingProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Room 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PhDStudent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lecture 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FullProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AssociateProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Staff 1.00 1.00 0.89 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

This distance is not very useful because few synonyms occur in the classes.
− gloss overlap similarity (as a distance):
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Assistant 0.98 1.00 1.00 0.93 0.94 0.98 1.00 1.00 1.00 0.97 1.00
Reference 0.96 0.98 1.00 0.97 0.98 0.96 1.00 0.99 0.99 0.97 1.00

AssistantProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VisitingProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 0.98 1.00 0.94 0.92 0.98 1.00 1.00 0.96 1.00 1.00 1.00
Room 0.94 1.00 0.97 0.94 0.97 1.00 1.00 0.97 0.97 0.97 1.00

PhDStudent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lecture 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00

FullProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AssociateProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Staff 0.92 1.00 0.92 0.98 0.00 0.97 1.00 0.97 1.00 0.97 1.00
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− Wu–Palmer similarity (as a distance):
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Assistant 0.50 1.00 1.00 0.40 0.57 0.42 1.00 1.00 0.50 1.00 1.00
Reference 0.12 0.43 0.50 0.52 0.40 0.36 1.00 0.75 0.43 0.38 1.00

AssistantProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VisitingProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 0.58 1.00 1.00 0.54 0.65 0.48 1.00 1.00 0.57 1.00 1.00
Room 0.20 0.78 0.25 0.47 0.33 0.22 1.00 0.50 0.55 0.80 1.00

PhDStudent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lecture 0.29 0.67 0.67 1.00 0.67 0.29 1.00 0.80 0.62 0.69 1.00

FullProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AssociateProfessor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Staff 0.29 0.80 0.00 0.44 0.00 0.09 1.00 0.64 0.52 0.82 1.00

Solution D.6 (Extensional distance computation) Given the ontologies o and o′ of
Problem C.1 as illustrated in Fig. C.1; we assume that the two tables of Problem C.6
specify data instances for o and o′, respectively.

1. In order to use the extensions of classes for matching o and o′, it is first necessary
to produce record linkage because there are no ‘common extension’ nor easy way
to identify objects.

2. It is clear that firstname and lastname in the first table have to be compared
with name in the second one. An easy approximation would be to check if the
lastname is a suffix for name. This joined with the test that firstname is also
a prefix (of length 1) for name should provide a good guess. Unfortunately,
it does not help distinguish between Paola and Pierluiggi Pomodoro. It is also
not enough for identifying Federico di Guava since the name has not be writ-
ten in the same way. Further normalisation of the names should certainly be
performed (identifying first and last names in the second table and compar-
ing them to the first one). One good record linkage technique for these tables
would be:

(a) name2 is name with the first term (alternatively all terms but the last)
acronymed, i.e., replaced by their first letter followed with a dot ‘.’;

(b) name3 is name2 with all capital letters, but the first in each name, preceded
by a space ‘ ’;

(c) name′2 is the concatenation of firstname, a space and lastname;
(d) compute edit distance between name3 and name′2.

3. This distance will provide the following results:
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fdg 0.90 0.70 0.90 0.90 0.70 0.90 0.80 0.00 0.91
gc 0.50 0.70 0.70 0.90 0.70 0.00 0.70 0.90 0.64
sz 0.80 0.90 0.90 0.00 0.90 0.90 0.90 0.90 0.82

plp 0.60 0.80 0.00 0.90 0.70 0.70 0.80 0.90 0.64
cc 0.80 0.00 0.80 0.90 0.78 0.70 0.56 0.70 0.73
pc 0.00 0.80 0.60 0.80 0.80 0.50 0.70 0.90 0.73
ms 0.64 0.91 0.82 0.64 0.91 0.73 0.64 0.91 0.82
pp 0.60 0.80 0.00 0.90 0.70 0.70 0.80 0.90 0.64

dm 0.91 0.82 0.91 0.82 0.73 0.82 0.73 0.73 0.64

4. The substring similarity yields:
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fdg 0.92 0.91 0.92 0.92 0.83 0.83 0.91 0.58 0.84
gc 0.85 0.84 0.92 0.92 0.92 0.38 0.84 0.92 0.85
sz 0.92 0.91 0.92 0.33 0.91 0.92 0.91 0.92 0.92

plp 0.92 0.92 0.38 0.92 0.84 0.92 0.92 0.85 0.93
cc 0.71 0.30 0.90 0.90 0.90 0.81 0.80 0.90 0.91
pc 0.27 0.81 0.91 0.91 0.90 0.73 0.81 0.91 0.83
ms 0.83 0.91 0.91 0.83 0.91 0.74 0.82 0.91 0.83
pp 0.91 0.81 0.27 1.00 0.90 0.82 0.71 0.91 0.91

dm 0.92 0.84 0.85 0.85 0.92 0.92 0.84 0.92 0.78

5. Single linkage applied to the results of the first method comparing individuals
(Answer 3) provides:
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Assistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Reference 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AssistantProfessor 1.00 0.00 0.00 0.70 0.64 1.00 1.00 0.64 0.60 0.00 0.00
VisitingProfessor 1.00 0.00 0.60 0.56 0.64 1.00 1.00 0.56 0.00 0.60 0.00

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 1.00 0.00 0.00 0.56 0.64 1.00 1.00 0.56 0.00 0.00 0.00
Room 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PhDStudent 1.00 0.73 0.64 0.00 0.64 1.00 1.00 0.00 0.73 0.64 0.73
Lecture 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FullProfessor 1.00 0.00 0.90 0.80 0.91 1.00 1.00 0.80 0.70 0.90 0.00
AssociateProfessor 1.00 0.00 0.60 0.80 0.64 1.00 1.00 0.64 0.00 0.60 0.70

Staff 1.00 0.73 0.64 0.00 0.64 1.00 1.00 0.00 0.73 0.64 0.73

and the substring comparison yields:
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Assistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Reference 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AssistantProfessor 1.00 0.38 0.27 0.81 0.83 1.00 1.00 0.81 0.90 0.27 0.38
VisitingProfessor 1.00 0.30 0.71 0.80 0.91 1.00 1.00 0.80 0.38 0.71 0.30

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 1.00 0.27 0.27 0.71 0.83 1.00 1.00 0.71 0.27 0.27 0.30
Room 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PhDStudent 1.00 0.74 0.83 0.33 0.78 1.00 1.00 0.33 0.85 0.83 0.74
Lecture 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FullProfessor 1.00 0.58 0.92 0.91 0.84 1.00 1.00 0.84 0.83 0.92 0.58
AssociateProfessor 1.00 0.27 0.91 0.71 0.91 1.00 1.00 0.71 0.27 0.91 0.81

Staff 1.00 0.74 0.83 0.33 0.78 1.00 1.00 0.33 0.85 0.83 0.74

D.5 Strategies

Solution D.7 (Measure aggregation) Consider the distances between ontology en-
tities in o and o′ given by (i) edit distance computed on their names (see Solu-
tion D.5, third distance), and (ii) the distance computed with the single linkage
measure applied to the substring distance (see Solution D.6, item 3).

1. The aggregation with the max(x + y − 1,0) triangular norm is as follows:
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Assistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Reference 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AssistantProfessor 1.00 0.78 0.94 0.83 0.83 1.00 1.00 0.89 0.90 0.89 0.89
VisitingProfessor 1.00 0.82 1.00 0.82 0.91 1.00 1.00 0.88 0.88 0.88 0.94

ResearchAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TeachingAssistant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Professor 1.00 0.89 1.00 0.89 0.89 1.00 1.00 0.78 0.89 0.80 0.87
Room 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PhDStudent 1.00 0.80 0.90 0.33 0.80 1.00 1.00 0.80 1.00 0.83 0.80
Lecture 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FullProfessor 1.00 0.92 0.92 0.92 0.92 1.00 1.00 0.85 0.85 0.92 0.93
AssociateProfessor 1.00 0.72 0.91 0.83 0.91 1.00 1.00 0.83 0.89 0.91 0.81

Staff 1.00 0.86 1.00 0.71 0.78 1.00 1.00 1.00 1.00 0.90 0.93



D.5 Strategies 445

2. The aggregation with the weighted product, such that 2/3 is the weight for the
former distance and 1/3 is the weight for the latter one, is:
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Assistant 0.20 0.17 0.20 0.15 0.15 0.20 0.22 0.22 0.20 0.20 0.19
Reference 0.17 0.12 0.20 0.17 0.22 0.15 0.22 0.17 0.22 0.22 0.13

AssistantProfessor 0.20 0.07 0.06 0.15 0.14 0.20 0.21 0.16 0.18 0.05 0.08
VisitingProfessor 0.20 0.05 0.16 0.15 0.17 0.20 0.21 0.16 0.08 0.14 0.06

ResearchAssistant 0.20 0.18 0.18 0.18 0.18 0.21 0.22 0.21 0.21 0.20 0.20
TeachingAssistant 0.20 0.20 0.18 0.18 0.18 0.21 0.21 0.21 0.21 0.18 0.20

Professor 0.17 0.05 0.06 0.14 0.16 0.17 0.20 0.12 0.05 0.05 0.06
Room 0.19 0.22 0.22 0.22 0.22 0.22 0.17 0.19 0.16 0.18 0.21

PhDStudent 0.20 0.13 0.17 0.02 0.14 0.20 0.22 0.06 0.19 0.15 0.13
Lecture 0.13 0.19 0.19 0.19 0.19 0.19 0.22 0.16 0.22 0.20 0.18

FullProfessor 0.19 0.12 0.19 0.19 0.17 0.19 0.21 0.16 0.16 0.17 0.12
AssociateProfessor 0.19 0.04 0.18 0.13 0.17 0.20 0.20 0.13 0.05 0.18 0.14

Staff 0.22 0.14 0.18 0.05 0.00 0.22 0.22 0.07 0.19 0.17 0.15

3. The aggregation with the weighted sum, such that 2/3 is the weight for the for-
mer distance and 1/3 is the weight for the latter one, is:
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Assistant 0.93 0.85 0.93 0.78 0.78 0.93 1.00 1.00 0.93 0.93 0.91
Reference 0.85 0.70 0.93 0.85 1.00 0.78 1.00 0.85 1.00 1.00 0.73

AssistantProfessor 0.93 0.65 0.72 0.83 0.79 0.93 0.96 0.86 0.89 0.68 0.72
VisitingProfessor 0.92 0.65 0.90 0.82 0.85 0.92 0.96 0.85 0.72 0.83 0.73

ResearchAssistant 0.92 0.88 0.88 0.88 0.88 0.96 1.00 0.96 0.96 0.92 0.92
TeachingAssistant 0.92 0.92 0.88 0.88 0.88 0.96 0.96 0.96 0.96 0.88 0.92

Professor 0.85 0.68 0.76 0.83 0.87 0.85 0.93 0.76 0.68 0.62 0.68
Room 0.89 1.00 1.00 1.00 1.00 1.00 0.83 0.89 0.81 0.87 0.96

PhDStudent 0.93 0.78 0.88 0.31 0.79 0.93 1.00 0.64 0.95 0.81 0.78
Lecture 0.71 0.90 0.90 0.90 0.90 0.90 1.00 0.81 1.00 0.93 0.87

FullProfessor 0.90 0.81 0.92 0.92 0.90 0.90 0.95 0.84 0.84 0.87 0.82
AssociateProfessor 0.89 0.57 0.90 0.79 0.86 0.93 0.93 0.79 0.68 0.90 0.79

Staff 1.00 0.82 0.94 0.59 0.26 1.00 1.00 0.78 0.95 0.88 0.87
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4. The aggregation with the ordered weighted average, such that 2/3 is the weight
for the higher distance and 1/3 is the weight for the lower one, is:
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Assistant 0.96 0.93 0.96 0.89 0.89 0.96 1.00 1.00 0.96 0.97 0.96
Reference 0.93 0.85 0.96 0.93 1.00 0.89 1.00 0.93 1.00 1.00 0.87

AssistantProfessor 0.96 0.65 0.72 0.83 0.81 0.96 0.98 0.86 0.90 0.68 0.72
VisitingProfessor 0.96 0.65 0.90 0.82 0.88 0.96 0.98 0.85 0.72 0.83 0.73

ResearchAssistant 0.96 0.94 0.94 0.94 0.94 0.98 1.00 0.98 0.98 0.96 0.96
TeachingAssistant 0.96 0.96 0.94 0.94 0.94 0.98 0.98 0.98 0.98 0.94 0.96

Professor 0.93 0.68 0.76 0.83 0.87 0.93 0.96 0.76 0.68 0.62 0.68
Room 0.94 1.00 1.00 1.00 1.00 1.00 0.92 0.94 0.90 0.93 0.98

PhDStudent 0.97 0.78 0.88 0.32 0.79 0.97 1.00 0.64 0.95 0.82 0.78
Lecture 0.86 0.95 0.95 0.95 0.95 0.95 1.00 0.90 1.00 0.97 0.93

FullProfessor 0.95 0.81 0.92 0.92 0.90 0.95 0.97 0.84 0.84 0.89 0.82
AssociateProfessor 0.94 0.57 0.90 0.79 0.89 0.96 0.96 0.79 0.68 0.90 0.80

Staff 1.00 0.82 0.94 0.59 0.52 1.00 1.00 0.78 0.95 0.88 0.87

In summary, it seems that the two measures either complement each other or agree.
The two former aggregations heavily depend on the higher or the lower aggregated
value, while the two latter aggregations are rather an average between these values.
In spite of the different techniques used, they provide similar results.

Solution D.8 (Thresholds) The correspondences resulting from the application of
a .6 threshold to the similarity of Problem C.8 are:

1. for a hard threshold of .6, these are the following (11):

PhDStudent=.92 Student Staff=.65 Student

PhDStudent=.65 Philosophy Staff=.64 Science

PhDStudent=.64 People Staff=.63 Staff

Professor=.62 People Assistant=.62 Science

Room=.62 Office Professor=.60 Faculty

PhDStudent=.60 Science

3. for a proportional threshold of .6, they are those over the best value (.92) multi-
plied by .6, i.e., those over .552, that are the previous ones plus the following 2
correspondences (+2= 13):

Assistant=.58 Faculty Staff=.56 People
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2. for a delta threshold of .6, they are those over the best value (.92) minus .6, i.e.,
those over .32, that is the previous ones plus 17 correspondences (+17= 30):

Professor=.55 Staff PhDStudent=.55 Staff

PhDStudent=.52 Boxology Assistant=.46 Philosophy

PhDStudent=.45 Faculty Professor=.44 Philosophy

Assistant=.44 Student Assistant=.43 Staff

Professor=.40 Science Assistant=.40 People

Professor=.36 Student Professor=.36 Office

Lecture=.34 Philosophy PhDStudent =.34 Office

Assistant=.33 Boxology Staff=.33 Faculty

PhDStudent=.33 Course

4. for a percentage threshold of .6, they are the 60 % best correspondences, i.e.,
the 37 best correspondences, that is the previous ones plus 7 correspondences
(+7= 37 because there are three correspondence at .23):

Professor=.32 Boxology Assistant=.32 Course

Reference=.28 Boxology Reference=.26 Philosophy

Lecture=.26 Faculty Reference=.25 Science

Reference=.23 People

. . . or any of the other at .23

Solution D.9 (Alignment extraction) Consider the two ontologies o and o′ of Prob-
lem C.1 as illustrated in Fig. C.1; assume that the similarity between their entities is
expressed by the similarity table of Problem C.8.

1. The alignment extracted with the greedy algorithm, is as follows and generate a
stable marriage:

PhDStudent=.92 Student Staff=.64 Science

Professor=.62 People Room=.62 Office

Assistant=.58 Faculty Lecture=.34 Philosophy

Reference=.28 Boxology

2. The alignment provided by the greedy algorithm is also a pairwise maximal
matching;



448 D Solutions

3. The weights of the alignment extracted by the greedy algorithms sum to 4.0. The
maximum weight alignment, given below, has weights summing to 4.03:

PhDStudent=.92 Student Staff=.63 Staff

Professor=.62 People Room=.62 Office

Assistant=.62 Science Lecture=.34 Philosophy

Reference=.28 Boxology

Solution D.10 (Composing matchers) Consider the application described in Solu-
tion D.1.

1. The matching architecture developed so far would be:

The advantage of this architecture is that it allows for testing many approaches
for terminological matching (D.6), instance-based matching (D.5), aggregation
(D.7), applying threshold (D.8) or extracting (D.9) the alignment.

2. The figure above provides the names of the classes, available on the book web
site, that implement the surrounding dotted composition. The implementation in
a new Alignment class corresponds to composing the AggregateAlignment
and ExtractAlignment processes. As implemented in the ComposedAlign-
ment class, this can be achieved through:

public void align( Alignment alignment, Properties params )
throws AlignmentException {

// Call AggregateAlignment
matcher.align( alignment, params );

// Call ExtractAlignment... that only do extraction from matcher
extractor.align( matcher, params );

// Extract alignment
for ( Cell c : extractor ) { addCell( c ); }

}
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D.6 Evaluation of Matching Systems

Solution D.11 (Precision and recall computation) The precision, recall, F-measure,
overall and Hamming distance alignments A1, A2, A3 and R are given in the fol-
lowing table:

Alignment precision recall F-measure overall Hamming
distance

R 1. 1. 1. 1. 1.

A1 .33 .33 .33 −.33 .2
A2 .66 .66 .66 .33 .5
A3 .33 .33 .33 −.33 .2

Hence A2 is the best alignment. The results for A3 are different from those given
by the Alignment API because we have considered here that the correspondence
Student = PhDStudent is not correct because of the relation, which should have
been ≥ , though the Alignment API only considers the entities and thus considers
the correspondence correct (all values are .5).

Solution D.12 (Application specific evaluation) We have three systems and only
one application. This application, given our previous answers speed (run time=No)
and automation (automatic = NO) are not important, precision is very important
(correct = YES), recall moderately important (complete = Yes). Hence, we would
assign weights 1 to speed and automation, 5 to precision, 4 to recall, which, once
normalised, yield .1, .5 and .4. Since we have no information about speed, it is not
taken into account and all systems are equally automated.

A1 A2 A3
Automatic 1. 1. 1.

Precision .33 .66 .33
Automatic Precision Recall .33 .66 .33

Our application .1 .5 .4 .27 .63 .27

The results are very similar to those provided by F-measure.

D.7 Representing Alignments

Solution D.13 (Representation generation) Consider R as described in Fig. C.2.

1. R in OWL as given by the Alignment API (see Solution D.15, Question 1, for
the actual API output):
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<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY admin "http://book.ontologymatching.org/exercise/admin.owl#" >
<!ENTITY lab "http://book.ontologymatching.org/exercise/lab.owl#" >

>
<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">
<rdfs:comment>OWL Alignment rendering</rdfs:comment>
<rdfs:comment>(altered from OWLAxiomsRendererVisitor

output)</rdfs:comment>
</owl:Ontology>

<owl:Class rdf:about="&admin;Office">
<owl:equivalentClass rdf:resource="&lab;Room"/>

</owl:Class>
<owl:Class rdf:about="&lab;PhDStudent">
<rdfs:subClassOf rdf:resource="&admin;Student"/>

</owl:Class>
<owl:ObjectProperty rdf:about="&admin;room">
<owl:equivalentProperty rdf:resource="&lab;office"/>

</owl:ObjectProperty>
<owl:Class rdf:about="&admin;Faculty">
<owl:equivalentClass rdf:resource="&lab;FullProfessor"/>

</owl:Class>
<owl:ObjectProperty rdf:about="&admin;teaches">
<owl:equivalentProperty rdf:resource="&lab;teaches"/>

</owl:ObjectProperty>
<owl:Class rdf:about="&admin;Course">
<owl:equivalentClass rdf:resource="&lab;Lecture"/>

</owl:Class>
</rdf:RDF>

2. R in C-OWL as given by the Alignment API:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY admin "http://book.ontologymatching.org/exercise/admin.owl#" >
<!ENTITY lab "http://book.ontologymatching.org/exercise/lab.owl#" >

>
<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:cowl="http://www.itc.it/cowl#"
xml:base="http://www.itc.it/cowl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<cowl:Mapping rdf:ID="">
<cowl:sourceOntology>

<owl:Ontology
rdf:about="http://book.ontologymatching.org/exercise/admin.owl"/>

</cowl:sourceOntology>
<cowl:targetOntology>

<owl:Ontology
rdf:about="http://book.ontologymatching.org/exercise/lab.owl"/>

</cowl:targetOntology>
<cowl:bridgeRule>
<cowl:Equivalent>

<cowl:source>
<owl:Class rdf:about="&admin;Office"/>

</cowl:source>
<cowl:target>
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<owl:Class rdf:about="&lab;Room"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Onto>

<cowl:source>
<owl:Class rdf:about="&admin;Student"/>

</cowl:source>
<cowl:target>

<owl:Class rdf:about="&lab;PhDStudent"/>
</cowl:target>

</cowl:Onto>
</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Equivalent>

<cowl:source>
<owl:ObjectProperty rdf:about="&admin;room"/>

</cowl:source>
<cowl:target>

<owl:ObjectProperty rdf:about="&lab;office"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Equivalent>

<cowl:source>
<owl:Class rdf:about="&admin;Faculty"/>

</cowl:source>
<cowl:target>

<owl:Class rdf:about="&lab;FullProfessor"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Equivalent>

<cowl:source>
<owl:ObjectProperty rdf:about="&admin;teaches"/>

</cowl:source>
<cowl:target>

<owl:ObjectProperty rdf:about="&lab;teaches"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>
<cowl:bridgeRule>
<cowl:Equivalent>

<cowl:source>
<owl:Class rdf:about="&admin;Course"/>

</cowl:source>
<cowl:target>

<owl:Class rdf:about="&lab;Lecture"/>
</cowl:target>

</cowl:Equivalent>
</cowl:bridgeRule>

</cowl:Mapping>
</rdf:RDF>

3. R in SWRL as given by the Alignment API (this generates 11 rules):

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE swrlx:Ontology [

<!ENTITY admin "http://book.ontologymatching.org/exercise/admin.owl#" >
<!ENTITY lab "http://book.ontologymatching.org/exercise/lab.owl#" >

>

<swrlx:Ontology swrlx:name="generatedAl"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
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xmlns:swrlx="http://www.w3.org/2003/11/swrlx#"
xmlns:owlx="http://www.w3.org/2003/05/owl-xml"
xmlns:ruleml="http://www.w3.org/2003/11/ruleml#">

<!-- Generated by fr.inrialpes.exmo.impl.renderer.SWRLRendererVisitor -->
<owlx:Annotation>
<owlx:Documentation>method: Manually generated

(Jérôme Euzenat, 2008/04/17)</owlx:Documentation>
</owlx:Annotation>

<owlx:Imports
rdf:resource="http://book.ontologymatching.org/exercise/admin.owl"/>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&admin;Office"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&lab;Room"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&lab;Room"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&admin;Office"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&admin;Course"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&lab;Lecture"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&lab;Lecture"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
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<owllx:Class owllx:name="&admin;Course"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&admin;Faculty"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&lab;FullProfessor"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&lab;FullProfessor"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&admin;Faculty"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:individualPropertyAtom swrlx:property="&admin;teaches"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrl:individualPropertyAtom swrlx:property="&lab;teaches"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:individualPropertyAtom swrlx:property="&lab;teaches"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrl:individualPropertyAtom swrlx:property="&admin;teaches"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:classAtom>
<owllx:Class owllx:name="&lab;PhDStudent"/>
<ruleml:var>x</ruleml:var>
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</swrl:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owllx:Class owllx:name="&admin;Student"/>
<ruleml:var>x</ruleml:var>

</swrl:classAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:individualPropertyAtom swrlx:property="&admin;room"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrl:individualPropertyAtom swrlx:property="&lab;office"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

<ruleml:imp>
<ruleml:_body>

<swrl:individualPropertyAtom swrlx:property="&lab;office"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrl:individualPropertyAtom swrlx:property="&admin;room"/>
<ruleml:var>x</ruleml:var><ruleml:var>y</ruleml:var>

</swrl:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

</swrlx:Ontology>

4. R in the EDOAL mapping language as given by the Alignment API:
<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE swrlx:Ontology [

<!ENTITY admin "http://book.ontologymatching.org/exercise/admin.owl#" >
<!ENTITY lab "http://book.ontologymatching.org/exercise/lab.owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

>

<rdf:RDF
xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema#’
xmlns:align=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’
xmlns:edoal=’http://ns.inria.org/edoal/1.0/#’>

<Alignment>
<xml>yes</xml>
<level>2EDOAL</level>
<type>**</type>
<method>fr.inrialpes.exmo.align.edoal.EDOALAlignment#toEDOAL</method>
<onto1>
<Ontology

rdf:about="http://book.ontologymatching.org/exercise/admin.owl">
<location>http://book.ontologymatching.org/exercise/admin.owl</location>

<formalism>
<Formalism align:name="OWL2.0"

align:uri="http://www.w3.org/2002/07/owl#"/>
</formalism>

</Ontology>
</onto1>
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<onto2>
<Ontology rdf:about="http://book.ontologymatching.org/exercise/lab.owl">

<location>http://book.ontologymatching.org/exercise/lab.owl</location>
<formalism>

<Formalism align:name="OWL2.0"
align:uri="http://www.w3.org/2002/07/owl#"/>

</formalism>
</Ontology>

</onto2>
<map>
<Cell>

<entity1><edoal:Relation rdf:about="&admin;room"/></entity1>
<entity2><edoal:Relation rdf:about="&lab;office"/></entity2>
<relation>=</relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>
<map>
<Cell>

<entity1><edoal:Class rdf:about="&admin;Office"/></entity1>
<entity2><edoal:Class rdf:about="&lab;Room"/></entity2>
<relation>=</relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>
<map>
<Cell>

<entity1><edoal:Class rdf:about="&admin;Faculty"/></entity1>
<entity2><edoal:Class rdf:about="&lab;FullProfessor"/></entity2>
<relation>=</relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>
<map>
<Cell>

<entity1><edoal:Class rdf:about="&admin;Student"/></entity1>
<entity2><edoal:Class rdf:about="&lab;PhDStudent"/></entity2>
<relation>></relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>
<map>
<Cell>

<entity1><edoal:Relation rdf:about="&admin;teaches"/></entity1>
<entity2><edoal:Relation rdf:about="&lab;teaches"/></entity2>
<relation>=</relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>
<map>
<Cell>

<entity1><edoal:Class rdf:about="&admin;Course"/></entity1>
<entity2><edoal:Class rdf:about="&lab;Lecture"/></entity2>
<relation>=</relation>
<measure rdf:datatype=’&xsd;float’>1.0</measure>

</Cell>
</map>

</Alignment>
</rdf:RDF>

5. R in SKOS as given by the Alignment API:
<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF [

<!ENTITY admin "http://book.ontologymatching.org/exercise/admin.owl#" >
<!ENTITY lab "http://book.ontologymatching.org/exercise/lab.owl#" >

>
<rdf:RDF
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xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:skos="http://www.w3.org/2008/05/skos#">

<skos:Concept rdf:about="&admin;Office">
<skos:exactMatch rdf:resource="&lab;Room"/>

</skos:Concept>

<skos:Concept rdf:about="&admin;room">
<skos:exactMatch rdf:resource="&lab;office"/>

</skos:Concept>

<skos:Concept rdf:about="&admin;Student">
<skos:broadMatch rdf:resource="&lab;PhDStudent"/>

</skos:Concept>

<skos:Concept rdf:about="&admin;Course">
<skos:exactMatch rdf:resource="&lab;Lecture"/>

</skos:Concept>

<skos:Concept rdf:about="&admin;teaches">
<skos:exactMatch rdf:resource="&lab;teaches"/>

</skos:Concept>

<skos:Concept rdf:about="&admin;Faculty">
<skos:exactMatch rdf:resource="&lab;FullProfessor"/>

</skos:Concept>

</rdf:RDF>

6. The discussion on the advantages of alignment formats is rather generic. The
OWL representation provides a merge between the two ontologies. Once loaded,
this OWL does not distinguish an alignment and two ontologies, but only one on-
tology. The other representations maintain the two ontologies and represent the
alignments as mappings (C-OWL, EDOAL or SKOS) or rules (SWRL). SWRL
and C-OWL use oriented mappings (from source to target) while the others are
not oriented. OWL, C-OWL and SWRL are immediately operational for rea-
soning and expressed in a formally defined language, while EDOAL and SKOS
require a processor. With respect to the RDF format, all these representations,
but EDOAL, lose information, such as the metadata on the alignments or the
confidence measures.

D.8 Explaining Alignments

Solution D.14 (Alignment explanation) Consider the ontologies of Fig. C.2 and
the architecture provided in Solution D.10.

1. A decision flow for the correspondence Student = PhDStudent is provided below.
Following the discussion of Solution D.11, the relation of this correspondence is
not specific enough, and hence, it is an incorrect one.
The above presented decision flow would be that of a matching system able to
compute only equivalence correspondences. However, a system able to compute
subsumption relations, e.g., through a common suffix rule (Sect. 5.2.1), hence
being able to generate the Student ≥ PhDStudent as an initial candidate, would
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manage to deliver it as the final and correct correspondence with the same expla-
nation flow.

2. Both the terminological substring matcher and the instance-based single linkage
matcher agree that there is a relation between entities Student and PhDStudent

by assigning them a high similarity, which was further reinforced through an
aggregation via weighted product. This correspondence, with the similarity of
.98, passed the hard threshold of .6 and was also retained by the greedy alignment
extraction algorithm (and is even part of the maximal weight alignment). Hence,
it was delivered as the final one. The (in)correctness depends of the ability of a
matching system to compute a specialisation relation.

D.9 Processing Alignments

Solution D.15 (Merging ontologies)

1. The merge between o and o′ according to R can be expressed with OWL import
by:

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">
<rdfs:comment>Matched ontologies</rdfs:comment>
<owl:imports

rdf:resource="http://book.ontologymatching.org/exercise/admin.owl"/>
<owl:imports

rdf:resource="http://book.ontologymatching.org/exercise/lab.owl"/>
</owl:Ontology>

<owl:Class
rdf:about="http://book.ontologymatching.org/exercise/admin.owl#Office">
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<owl:equivalentClass
rdf:resource="http://book.ontologymatching.org/exercise/lab.owl#Room"/>

</owl:Class>
<owl:Class
rdf:about="http://book.ontologymatching.org/exercise/lab.owl#PhDStudent">
<rdfs:subClassOf

rdf:resource="http://book.ontologymatching.org/exercise/admin.owl#Student"/>
</owl:Class>
<owl:ObjectProperty

rdf:about="http://book.ontologymatching.org/exercise/admin.owl#room">
<owl:equivalentProperty
rdf:resource="http://book.ontologymatching.org/exercise/lab.owl#office"/>

</owl:ObjectProperty>
<owl:Class

rdf:about="http://book.ontologymatching.org/exercise/admin.owl#Faculty">
<owl:equivalentClass rdf:resource=

"http://book.ontologymatching.org/exercise/lab.owl#FullProfessor"/>
</owl:Class>
<owl:ObjectProperty
rdf:about="http://book.ontologymatching.org/exercise/admin.owl#teaches">
<owl:equivalentProperty

rdf:resource="http://book.ontologymatching.org/exercise/lab.owl#teaches"/>
</owl:ObjectProperty>
<owl:Class

rdf:about="http://book.ontologymatching.org/exercise/admin.owl#Course">
<owl:equivalentClass
rdf:resource="http://book.ontologymatching.org/exercise/lab.owl#Lecture"/>

</owl:Class>
</rdf:RDF>

This is what is indeed rendered by the OWLAxiomsRendererVisitor of the
Alignment API.

2. It can also be expressed as an integrated OWL ontology like the one of Fig. D.3,
in which Faculty replaces FullProfessor, Staff in o has been renamed Staff#2, Room

replaces Office, Lecture replaces Course, office replaces room and both teaches have
been unified.

Solution D.16 (Data translation) Assume that one wants to transform the data in-
stances from ontology o into instances of o′ according to the reference alignment
R as described in Fig. C.2. Consider the data instances in the first table of Prob-
lem C.6.

1. The transformation of data instances in the first table of Problem C.6 with re-
gard to the reference alignment R would lead to the creation of six Full professors
with no name, no hiring date and no office. Indeed, two Students had not sufficient
information to convert them into PhDStudents and one Staff instance has no corre-
sponding class in the alignment. This means that the alignment does not contain
sufficient information to convert all data. However, it is already useful by identi-
fying six FullProfessor.

2. There may be several ways to perform the translation using the functions of the
Alignment API. If the data is or can be expressed in XML, then the Align-
ment API is able to generate an XSLT transformation thanks to its XSLTRen-
dererVisitor serialiser. This transformation may then be applied to the XML
data. If the data is available behind a SPARQL endpoint, it is possible to use
the SPARQLConstructRendererVisitor serialiser which extracts triples and
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Fig. D.3 Merge of the ontology o and o′ with regard to the reference alignment R.

generates new triples. Otherwise, it is necessary to use the alignment from Java
for performing the adequate actions. Here is the core of a program that does this
with the Alignment API and Jena:

public void transform( OntModel onto1, OntModel onto2, Alignment al ) {
Hashtable<String,Individual> ht = new Hashtable<String,Individual>();
URI base = al.getOntology2URI();
// For each correspondence involving a class, transform individuals
for ( Cell c : al ) {
OntClass cl = onto1.getOntClass( c.getObject1AsURI( al ).toString() );

if ( cl != null && ( c.getRelation().getRelation().equals("=")
|| c.getRelation().getRelation().equals("<") )) {

OntClass cl2 = onto2.getOntClass(
c.getObject2AsURI( al ).toString() );

for ( Individual i : listInstances( cl ) ) {
String id = base.getScheme()+base.getSchemeSpecificPart()

+URLEncoder.encode( i.getLabel(""), "UTF-8" );
Individual o = onto2.createIndividual( id, cl2 );
ht.put( i.getURI(), o );
System.out.println(o.getURI()+" rdf:type "+o.getOntClass()+" .");

}
}

}
// For each correspondence involving a property, transform statements
for ( Cell c : al ) {

OntProperty pr =
onto1.getOntProperty( c.getObject1AsURI( al ).toString() );;

if ( pr != null ) {
OntProperty pr2 =

onto2.getOntProperty( c.getObject2AsURI( al ).toString() );
StmtIterator stmtit =
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onto1.listStatements( (Resource)null, pr, (RDFNode)null );
for ( ; stmtit.hasNext() ; ) {

Statement st = stmtit.nextStatement();
Individual subj = (Individual)ht.get( st.getSubject().getURI() );

if ( subj != null ) {
RDFNode obj = st.getObject();
if ( obj.isResource() ) {

obj = (Individual)ht.get( obj.asResource().getURI() );
}
if ( obj != null && !obj.isAnon() ) { // do not translate

onto2.createStatement( subj, pr2, obj );
System.out.println( subj+" "+pr2+" "+obj+" ." );

}
}

}
}

}
}

3. Data interlinking may be used for first identifying resources expressed in both
ontologies before applying the transformation. This would complete the existing
identified resources instead of generating brand new disconnected and incom-
plete ones. In this case, a simple measure would be to consider that, if the name

of a Staff member of o′ starts with the firstname and ends with the lastname of
some People of o, then they can be presumed to be the same person. This raises
the problem that Paola and Pierluigi Pomodoro in o′ may be matched to the same
P. Pomodoro of o, so it is necessary to be cautious. But it also helps in identify-
ing that four out of the six initial FullProfessors were already existing in o′. In
addition, Stefano Zucchini can now be identified as a PhDStudent which is already
existing on o′ so his information is not duplicated.

Solution D.17 (Mediation)

1. The query:

SELECT ?room
WHERE {

?x rdf:type o:Faculty .
?x o:room ?room .

}

expressed with respect to ontology o involves finding the correspondences for
attribute room and class Faculty. These are respectively office and FullProfessor.
Hence the translated query by the reference alignment R as described in Fig. C.2
is:

SELECT ?room
WHERE {

?x rdf:type o’:FullProfessor .
?x o’:office ?room .

}

2. When evaluated against the second table, the answer will be {〈B12〉} because the
only instance of the class FullProfessor in the second ontology is Federico di Guava

whose office is B12 (or rather the room identified by B12).
3. A mediator able to perform the transformations of any query q based on the

reference alignment R will have to transform the query with regard to R (q ′ =
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TransformQuery(q,R)), it will then have to evaluate the result (r ′ = Eval(q ′))
and to return the results by translating them with regard to the converse of R

(r = Translate(r ′, Invert(R))). Hence, the full mediator would be implemented
by:

Translate(Eval(TransformQuery(q,R)), Invert(R))
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Index1

Symbols
= (property assignment), 35
C (ontology classes), 35
D (domain of interpretation), 36
F(·, ·) (fallout), 303
H(·, ·) (Hamming distance), 301
I (ontology individuals), 35
I (·) (interpretation function), 36
M (set of models), 37
M(·, ·) (miss), 304
Mα(·, ·) (F-measure), 304
O(·, ·) (overall), 305
P (·, ·) (precision), 302
QL(·) (ontology entities), 43
R

ontology relations, 35
reference alignment, 300

R(·, ·) (recall), 302
T (ontology types), 35
V (ontology values), 35
W(·, ·) (weighted harmonic mean), 315
Δ(·, ·) (linkage measures), 119
Λ (set of alignments), 46
Ω (set of ontologies), 46
Σ (synonym resource), 100
Θ (correspondence relations), 43
Ξ (confidence structure), 44
α (alignment), 48
α-closure, 52, 309
α-consequence, 52, 309
⊥ (ontology exclusion), 35
δ (dissimilarity or distance), 86
ε

empty string, 87

iteration threshold, 135
∈ (ontology instantiation), 35
κ (confidence function), 44
|=

correspondence satisfaction, 51
ontology entailment, 37
satisfiability of a formula, 36

ω(·, ·) (alignment proximity), 307
π (probability), 102
σ (similarity), 85
	 (ontology specialisation), 35

A
Accuracy (matching -), 304
Agent, 3, 15, 19, 23, 391

cognitive -, 19
communication, 24, 382

language, 19
reactive -, 19

Aggregation
fuzzy -, 164, 165
similarity -, 160, 348

AgreementMaker, 229, 230, 274, 280
AGROVOC, 297
ALCOMO, 195, 259, 390
Algebra, 341
Alignment, viii, 39, 42–53, 321

API, 96, 156, 161, 225, 226, 244, 266, 273,
288, 299, 309, 331, 333, 346, 347,
350, 380, 383, 389, 392

bijective -, 47
coherence, 51, 130, 193, 194, 260, 261, 390
completeness, 302
completion, 293

1A searchable index can be found on-line at http://book.ontologymatching.org.
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Alignment (cont.)
composition, 384, 394
consistency, 51, 66, 130, 192–195, 390, 395
correctness, 302
debugging, 193–196, 254, 313
disambiguation, 193, 313
edition, 65, 66, 369–375
evaluation, 62, 64–66, 347
evolution, 11, 394, 395
extraction, 154, 186–192, 348

greedy -, 190
extractor, 187
filter, 187, 192
format, 67, 68, 288, 321–337, 346, 349,

390
improvement, 192–196
inconsistency, see alignment consistency
initial -, 354
injectivity, 47, 120, 187, 190, 294
life cycle, 56, 57, 69, 350, 394
maximal cardinality -, 190
metadata, 61, 65, 67, 329, 337–340, 358,

360, 365, 386, 391, 392
identification -, 338
provenance -, 338–340
qualification -, 340

model, 51
multiplicity, 47, 293, 294
one-to-one -, 47, 75, 190, 191, 207, 235,

236, 238, 239, 245, 251, 264, 294
pattern, 130
reference -, 300–302, 304, 305, 307
relation, 42
repair, see alignment debugging
repository, 61, 66, 67, 390–394
retrieval, 60, 61, 67, 350
reuse, 56, 60, 67, 79, 81
reversible -, 47
satisfiability, 51, 145
semantics, 48–53
server, 61, 67, 347, 350, 392, 393
service, 390–394
sharing, 67, 68, 390
structure, 42–48
surjective -, 47
total -, 47, 187, 190, 294, 379, 381
trimming, see threshold
update, 293
validity, 51

Alterator, 299
AlViz, 373, 374
Ambient computing, 19, 20, 391
AMC, 268, 282

AMS, 182, 268, 269, 282
Anchor, 39, 121, 127, 145, 148, 150–152, 157,

159, 187, 209, 223, 224, 229, 230,
248, 261, 274, 313, 353

reduction, 152
Anchor-Flood, 152, 228, 229, 274, 280
Anchor-Prompt, 127, 208, 209
Anchoring, 157, 224
Annotation, see metadata (alignment -)
Antipattern, 130, 193, 195, 254
Antonym, 99
AOAS, 223, 273, 279
APFEL, 262, 263, 282, 348, 356
Application

-specific evaluation, 290, 308, 314
ontology, 32

Approximate algorithm, 74
Approximation (ontology -), 48
Argumentation, 15, 362, 364, 365
AROMA, 62, 65, 152, 252, 253, 267, 276, 281
Array, 112
Artemis, 74, 206, 207, 271, 278
ArtGen, 206
Articulation axiom, see bridge axiom
ASCO, 216, 217, 272, 279
ASMOV, 195, 254, 255, 276, 281, 303
Association rule, 252
Associativity, 161
ATOM, 343
Automatch, 236, 237, 274, 280
Automation (evaluation -), 290, 291
AutoMed, 201
Autonomy

design -, 13
participation -, 13
total -, 13, 14

Average, 166, 264
linkage, 119
ordered weighted -, 166, 260, 263, 266, 269
weighted -, 164, 165, 184, 244, 245, 315

Axiom (bridge -), 5, 40, 379, 380, 390

B
Background knowledge, 156, 157
Bag, 112

of words, 93, 97, 217, 248
Bagging, 184
Bandwidth, 312
Bayesian

classification, 364, 366
learning, 173, 174, 182, 183, 195,

235–238, 241, 242, 244, 245, 249,
251, 255, 257, 271, 384

network, 140–143, 219, 220
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BayesOWL, 219, 220, 273, 279
Beam search, 236
BeMatch, 227, 273, 279
Benchmark, 286

competence -, 289
suite, 286

Best match, 190–192
BibSter, 14
Bijective alignment, 47
BioPortal, 4, 345, 391–393
BizTalk schema mapper, 377
Blank normalisation, 88
Blocking, 117, 150, 386
BLOOMS, 99, 225, 226, 273, 279

BLOOMS+, 225, 226, 279
BN mapping, 219, 220
Boosting, 184, 267
Boundary condition, 161
Bounded path matcher, 126
Boundedness (evaluation measure -), 308
Bridge

axiom, 5, 24, 40, 379, 380, 389, 390
concept - (in MAFRA), 323
property - (in MAFRA), 323
rule, 323, 326, 380
semantic - (in MAFRA), 323

Brown corpus, 103
Browsing (semantic web -), 20–23
Built-in composition, 354

C
C-OWL, 326, 327, 336, 337, 383, 390, 396
CAIMAN, 234, 274, 280
Cardinality, 80

compatibility, 110, 212
maximal -, 190
property -, 107, 109–111

Case normalisation, 88, 217
Catalogue integration, viii, 3, 6, 8, 9
CATCH, 393, 394
CBW, 221, 222, 273, 279
Chebichev distance, 162
Chimaera, 372, 373
CIDER, 224, 226, 267, 273, 279, 347
City-blocks distance, see Manhattan distance
Class, 34

exclusion, 35
specialisation, 35

Classification, 27, 28, 214, 234, 237, 245,
278–280

of matching approaches, 75–83, 201, 203,
271

Clio, 383, 384
Closure (α-), 52, 309

CODI, 260, 277, 282
CogZ, 374, 375
Coherence (alignment -), 51, 130, 193, 194,

260, 261, 390
Collective matching, 357–360
COMA, 74, 210, 211, 244, 272, 278, 342–344

COMA++, 210, 211, 256, 272, 278,
342–344, 354

Combination (matcher -), see composition
Common homomorphic directed subgraph,

122
Communication (agent -), 19, 382
Commutativity, 161
Comparison evaluation, 290
Compatibility

cardinality -, 110
data type -, 108, 110, 207, 218, 227, 246
transformation -, 388

Competence benchmark, 289
Complete linkage, 119
Completeness (alignment -), 302
Completion (alignment -), 293
Composition, 76

built-in -, 354
manual matcher -, 354, 355
opportunistic -, 354
parallel -, 154, 245

heterogeneous -, 155
homogeneous -, 155

sequential -, 153, 205, 206, 209, 217, 238,
245

user-driven -, 354
web service -, 16, 17, 40, 340

Compound similarity, 160
Computing

ambient -, 19, 20
pervasive -, see ambient computing

Concatenation of strings, 87
Concept

bridge (in MAFRA), 323
lattice, 114

Conceptual model, 31, 32
Conceptualisation mismatch, 38
Conditional probability table, 141, 220
Confidence, 75

degree, 44
structure, 44

Consequence
α-, 52, 309
ontology -, 37

Consistency
alignment -, 51, 66, 130, 192–195, 390, 395
network of ontologies -, 51

Constraint-based technique, 76, 79, 80, 107
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Content-based matching, 74, 78
ContentMap, 147, 195, 266, 267, 282
Context, 74

-based matching, 74, 78, 80, 81, 156–160,
212, 224, 270

Contextualising, 157
Continuity

evaluation -, 286
property, 164

Convergence (fixed point algorithm -), 132,
135, 137

Corpus, 103
-based similarity, 103
Brown -, 103

Correctness (alignment -), 302
Correspondence, 39, 43

analysis, 94
graded -, 75
justified -, 338
pattern, 129, 130
satisfiability, 50

Cosine similarity, 93, 96
Cosynonymy similarity, 102
Count, 328
Cover (graph -), 190
Coverage, 38, 49
Crosslingual matching, 105
CSR, 180, 257, 258, 276, 282
CtxMatch, 213, 214, 271, 272, 278
Cupid, 74, 209, 210, 211, 251, 272, 278
Cyc, 32, 224

D
Damerau–Levenshtein distance, 91
DAML+OIL, 323
Data

analysis technique, 80, 82
integration, 3, 5, 9–13, 15, 24, 49, 153,

239, 336, 341, 348, 382, 389
interlinking, 12, 23, 24, 40, 59, 150, 288,

333, 384–387
linked -, 11–13, 23, 40, 59, 225
set (evaluation -), 286, 291–299
transformation, 381
translation, viii, 24, 40, 58, 324, 333, 341,

381–384, 387, 390
translator, see data translation
type, 29, 34, 74, 107, 111, 234

compatibility, 108, 110, 207, 218, 227,
246

value, 34
warehouse, 3, 5
web of -, see linked data

Database
federated -, 8
schema, 25, 28, 29, 108, 203, 213,

236–238, 242, 251, 269, 341, 383,
395

matching, viii
Datalog, 240, 241
DCM, 220, 221, 273, 279
DDL, 390
Debugging (alignment -), 193–196, 254, 313,

357
Decision tree, 174, 178, 179, 182, 183, 228,

242, 245, 257, 259, 275, 279
learning, 178, 263

Deep web matching, 23, 247
Definiteness (property), 86
Degree

confidence -, 44
of completeness, 302
of correctness, 302

DELTA, 203, 271, 278
Delta threshold, 188
Dempster combination rule, 168
Dependency

graph, 238, 362, 366, 366, 367
tuple-generating -, 44, 384

Descendant similarity inheritance, 230
Description logic, 145, 328

technique, 82, 146, 147, 213
Design autonomy, 13
Diacritic suppression, 88
Diagnosis, 194, 196, 357

globally optimal -, 194, 195
locally optimal -, 194, 195

Dice coefficient, 93, 96
Dictionary, 97, 99
Digit suppression, 88
DIKE, 204, 205, 271, 278, 380
Directory, 27, 28
Disambiguation

alignment -, 193, 313
page, 99
word sense -, 99, 105, 106, 224

Disjointness, 35, 75
Dissemination (evaluation -), 286
Dissimilarity, 86, 191

Leacock–Chodorow -, 106, 125
Distance, 86

aggregation, see similarity aggregation
Chebichev -, 162
City-block -, see Manhattan
Damerau–Levenshtein -, 91
edit -, 90–92, 209, 211, 214, 233, 246, 251,

264, 303, 304
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Distance (cont.)
edit - (on trees), 127, 215
Euclidean -, 93, 110, 162, 163, 238
Hamming -

on alignments, 301
on multisets, 93
on sets, 93, 113, 163
on strings, 89

Hausdorff -, 119
Levenshtein -, 91, 161
Manhattan -, 93, 162, 163, 164
Minkowski -, 93, 162
multidimensional -, 162–164
n-gram -, 210, 214, 251, 264
Needleman–Wunch -, 91
on sequences, 95
path -, 95
relative-size -, 110
tree -, 124

Distributed
database, 8
knowledge, 53
system, 45

Divergence (Kullback–Leiber -), 94
Document frequency (inverse -), 94
DOLCE, 32, 156, 224
Domain

-specific ontology (technique based on -),
81

of interpretation, 36, 50
ontology, 32, 40
property -, 107, 108, 128

DPLL procedure, 339, 367–369
Drago, 383, 390
DSSim, 22, 231, 274, 280
DTD, 29, 111, 212, 331
Dublin core, 83
Dumas, 238, 239, 274, 280
DWQ, 201

E
E-commerce, 8–13
ECOMatch, 182
Edge count similarity, see structural

topological dissimilarity
Edit distance, 90–92, 209, 211, 214, 233, 246,

251, 264, 303, 304
on trees, 127, 215

Edition
alignment -, 65, 66, 369–375
ontology -, 4, 5

EDOAL, 129, 331–333, 336, 337, 346, 378,
382, 389

Effort-based
precision, 308
recall, 308

Element-based technique, 76, 78, 107
Elementary matchers, 76
Emergent semantics, 15, 16
Empty

phrase, 104
word, 104

Engineering (ontology -), 3–5, 55, 68
Entailment, 48
Enterprise information integration, see data

integration
Entity

–relationship model, 31, 32, 74, 203, 205
interpretation, 42
language, 42, 46
ontology -, 34–36

EON, 288, 294
Equalising

function, 50
semantics, 50, 390

Error minimisation, 356
ETuner, 181, 264, 265, 282
Euclidean distance, 93, 96, 110, 162, 163, 238
Evaluation, 62, 64–66, 285–317

application-specific -, 290, 308, 314
automation, 290, 291
comparison, 290
type, 289, 290

Evolution
alignment -, 11, 394, 395
ontology -, 5, 56, 59, 348

Exact algorithm, 74, 78
Exclusion, 35
Exclusivity, 190
Executability, 336
Exhaustivity, 75
Expectation maximisation, 137–139, 256
Explicitation mismatch, 38
Expressiveness, 335
Extendibility, 336
Extensional technique, 78, 112–120, 234
External

resource, 293
structure-based technique, 106, 121–130
technique, 74

Extract-Transform-Load (ETL), 384
Extraction (alignment -), 186–192, 348
Extractor (alignment -), 187
Extrinsic linguistic technique, 80, 98–104
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F
F-logic, 292
F-measure, 181, 265, 304, 306, 315

optimal threshold, 305
FaCT, 213
Falcon-AO, 151, 247–249, 266, 275, 281, 303,

331, 354
Fallout, 303
False

negative, 302
positive, 99, 302

FCA, see formal concepts analysis
FCA-merge, 234, 235, 274, 280, 380
Feature path equations, 328
Federated database, 8
Feedback (relevance -), 355–357
Filter

alignment -, 187, 192
similarity -, 187

FIPA ACL, 19, 393
Fixed point, 53, 132

computation, 130–137, 212, 247, 271
FMA, 32, 156, 157, 296, 392
FOAF, 4
FOAM, 156, 243, 244, 256, 262, 263, 266,

276, 331, 347–349
Folksonomy, 25–27, 334
Formal

concept analysis, 114, 234, 235, 243
resource-based technique, 79–81

Foundational ontology, 32, 130
FSM, 241
Fuzzy aggregation, 164, 165

G
Galen, 296
Galois

connection, 114
lattice, see concept lattice

Gap threshold, 188
GATE, 97
GAV, see global-as-view
GBM, 241, 242
GEM, 256, 257

Optima, 256, 257, 276
Optima+, 282

Generation (test -), 298, 299
Genetic programming, 117, 184–186, 226, 232
GeRoMeSuite, 159, 222, 223, 273, 279, 342
GLAV, see global-local-as-view
Global

-as-view, 10, 206
-local-as-view, 10, 11, 240
knowledge, 52

maximal - similarity, 190
Globally optimal diagnosis, 194, 195
Gloss, 100, 103, 104, 215, 334

overlap, 103, 106
GLUE, 74, 180, 235, 236, 274, 280
GOALS, 266, 282
Gold standard, see reference alignment
GOMMA, 343, 344
Gotoh distance, 92, 96
Graded correspondence, 75
Granularity, 38, 49

matcher -, 76
Graph

-based technique, 79
cover, 190
dependency -, 366, 367
matching, 132, 190

maximum weight -, 191, 239
minimum weight -, 191, 238

Greedy alignment extraction, 190
Ground truth, see gold standard

H
H-Match, 206–208, 271, 278, 354
Hamming distance

on alignments, 301
on multisets, 93
on sets, 93, 113, 163
on strings, 89

HAMSTER, 255, 276, 281
Hard threshold, 188
Harmonic

adaptive weighted sum, 165, 166
mean, 304, 315

weighted -, 315
Harmony, 349, 349
Hausdorff distance, 119
HCONE, 215, 216, 272, 278, 331
HermiT, 390
Heterogeneity, vii, 3

conceptual -, 38
language -, 292
pragmatic -, 38
semantic -, 38
semiotic -, 38
syntactic -, 37
terminological -, 38

Heterogeneous parallel composition, 155
Hitting set, 194
Homogeneity, 75
Homogeneous parallel composition, 155
Homolonto, 230, 230, 231, 274, 280
Homonym, 87, 99, 205
Horn clause, 44, 327, 328
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HSM, 221, 273, 279
HTTP, 393
Hungarian method, 191
Hypernym, 97, 99, 100, 102, 215
Hyponym, 80, 97, 99, 102, 205, 215

I
I3CON, 288
IceQ, 246, 247, 275, 281
IDDL, 390
Ideal semantic

precision, 309
recall, 309

Idempotency, 164
Identification metadata, 338
IF-Map, 243, 275, 281
IIMB, 299
ILIADS, 253, 276, 281
Illinois Semantic Integration Archive, 297
IMAP, 236, 274, 280, 361, 362, 364, 366, 367
IMapper, 251, 252, 276, 281
IMatch, 233, 274, 280
IMerge, 371, 372
Implicit matching, 357
Import (ontology -), 4, 5
Improvement (alignment -), 192–196
Inconsistency

alignment -, see alignment consistency
network of ontologies -, see network of

ontologies consistency
Individual, 34
Inference Web, 361
InfoMix, 201
Informal resource-based technique, 79, 80
Information

-theoretic similarity, 103, 106
integration, 3, 5–13, 22
retrieval, 244

InfoSleuth, 201
Initial alignment, 354
Injectivity (alignment -), 47, 120, 187, 190,

294
Input, 76

dimensions, 74
kind of -, 78

Instance, see individual
-based technique, 74, 76, 79, 82
matching, 288

Instantiation, 35
Integer linear programming, 260
Integration

catalogue -, 3, 6, 8, 9
data -, 3, 5, 9–13, 15, 24, 336, 341, 348,

382, 389

information -, 3, 5–13, 22
ontology -, 3, 40, 340
schema -, 3, 5, 8, 24

Integrity constraint, 112
Intelligibility (evaluation -), 286
Interlinking (data -), 12, 23, 24, 40, 59, 150,

288, 333, 384–387
Internal

structure-based technique, 106–112, 117,
208

technique, 74
Interoperability, see heterogeneity
Interpretation

domain of -, 36
entity -, 42
ontology -, 36, 42

Intrinsic linguistic technique, 80, 97, 98
Inverse document frequency, 94
IPrompt, 373
Iterative propositional fitting, 220

J
Jaccard similarity, 96, 103, 111, 113, 125, 220,

231, 253, 255, 260
Jaro measure, 92, 96
Jaro–Winkler measure, 92, 96, 217, 223, 228,

253, 259, 260, 266, 386
JDBC, 393
Jeffrey rule, 220
Jiang–Conrad similarity, 103
Justification, 338
Justified correspondence, 338

K
k-nearest neighbours, see nearest neighbours
KAON2, 348
Key, 107, 108, 115
KIF, 243, 292
Kind of input, 78
Knob, 265
KnoFuss, 117, 385, 386
Knowledge base, 33
Knowledge web, xii
Kraft, 201
Kullback–Leiber divergence, 94

L
Language

-based technique, 79, 80, 96–106, 247
independence, 335
ontology -, 33–37
query -, 42

Latent semantic indexing, 94, 216
LAV, see local-as-view
LCS, 165, 263, 282



504 Index

Leacock–Chodorow dissimilarity, 106, 125
Learning, 171–180
Lemmatisation, 97, 245
Levenshtein distance, 91, 96, 161, 217, 222,

223, 226, 228, 229, 254, 258–260
Lexicon, 99, 106

interlingual -, 105
semantico-syntactic -, 99

Life cycle (alignment -), 56, 57, 69, 350, 394
Lily, 152, 229, 274, 280, 303
Linguistic

quantifiers, 165, 260, 263
technique, 76, 107, 206–210, 217, 245, 248

based on - resource, 205–207, 209–213,
215, 272

Link stripping, 88
Linkage

dissimilarity
average -, 119
complete -, 119
single -, 119, 217

record -, 117
Linked data, 11–13, 23, 40, 59, 225
Linkkeys, 115
LinQuer, 387
List, 112
Local

-as-view, 10, 11, 15
knowledge, 52

Locally optimal diagnosis, 194, 195
Logical mismatch, 38
LogMap, 62, 65, 152, 195, 260–262, 271, 390

LogMap2, 277, 282
LOV, 59, 61
LSD, 83, 235, 236, 251, 274, 280
Lucene, 97

M
MAFRA, 323, 324, 336, 337, 344, 345
Magpie, 21
Majority

vote, 166
weighted vote, 167

Manhattan distance, 93, 96, 162, 163, 164
MapForce, 377
MapOnto, 213, 272, 278, 383
Mapping, 39, 179

in Drago, 390
in model management, 341
rule, 39, 179

MapPSO, 231, 232, 274, 280
MapReduce, 151, 387
MapSSS, 303

Markov
logic network, 143, 260
network, 143, 233, 270

Marriage (stable -), 190–192
Match-based similarity, 119
Matcher

composition, 153–156
manual -, 354, 355

selection, 61–63
Matching, 39

accuracy, 304
coefficient, 93, 96
collective -, 357–360
crosslingual -, 105
graph -, 132
implicit -, 357
instance -, 288
memory consumption, 312
monolingual -, 105
multilingual -, 105
multiple -, 41, 46
process, 41, 42
scalability, 312
schema -, 55, 107
speed, 312, 317
usability, 313

MatchPlanner, 182, 228, 273, 279
Matrix, 86, 154
Maximality

evaluation measure -, 308
of similarity measures, 85

Maximum
weight matching, 191, 239

Mean (harmonic -), 304
Measure

Jaro -, 92
Jaro–Winkler -, 92, 386
SMOA -, 93, 96, 223, 224, 232, 248, 261

Mediation, 24, 40
query -, 57, 59, 68, 324, 387, 387, 388–390

Mediator, 5, 40, 336, see mediation
Memory consumption, 312
Mereologic structure, 124, 127
Merging (ontology -), viii, 4, 24, 39, 40,

57–59, 68, 208, 209, 215, 216, 235,
246, 322, 324, 328, 345, 348, 372,
378–381

Meronym, 100, 207, 246
Message translation, 24
Metadata (alignment -), 61, 65, 67, 169, 329,

337–340, 358, 360, 365, 386, 391,
392, 394

Method
composition, 153–156
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learning, 171–180
Methodology, 69
Metric, 86
Minimal

inconsistency preserving subalignment,
194, 196

semantic matching, 215
unsatisfiability preserving subalignment,

194, 196
Minimality, 86
Minimisation (error -), 356
Minimum

cost maximum flow, 237
weight matching, 191, 238

Minkowski distance, 93, 162
MIPS, see minimal inconsistency preserving

subalignment
Mismatch, see heterogeneity

conceptualisation -, 38
explicitation -, 38
logical -, 38

Miss, 304
Mixed technique, 74
MoA, 216, 272, 279
Moda, 342
Modal logic satisfiability, 146
Model

-based technique, see semantic technique
-theoretic semantics, 78
alignment -, 51
conceptual -, 31, 32
entity–relationship -, 31, 32, 203, 205
in model management, 341
in Rondo, 342
management, 341–344
of a network of ontologies, 51
ontology -, 37

ModelGen, 342
Modularisation (ontology -), 151
Monge–Elkan distance, 92, 96, 217, 231
Monolingual matching, 105
Monotony, 161

increasing, 164
Morphism, 48

in Rondo, 342
Morphological

analysis, 98
normalisation, 210, 293

Mostro, 382
MoTo, 165, 259, 260, 277, 282
MSeer, 265, 266, 282, 361
Multi

-response linear regression, 183
alignment, 46

dimensional distance, 162–164
lingual, 97

matching, 105
technique, 104, 105

plicity
property -, 107, 109–111
similarity, 111

set, 93, 112
MultiFarm, 297
Multiple matching, 46, 293
Multiplicity, 80

alignment -, 47, 293, 294
MUPS, see minimal unsatisfiability preserving

subalignments
Muse, 371
MWSDI, 218, 273, 279

N
n-gram, 96

distance, 210, 214, 251, 264
similarity, 90, 177

NAL, 297
Name-based technique, 78, 87–107, 244, 366
Natural language processing, 80
NCI, 296
Nearest neighbours, 174, 241, 249, 275
Needleman–Wunch distance, 91, 96
Negative

false -, 302
Neighbours (nearest -), 174, 241, 249, 275
NeOn Toolkit, 349, 350, 391
Network of ontologies, 40, 46, 68, 346, 404

consistency, 51
inconsistency, see network of ontologies

consistency
model of -, 51

Neural network, 175–177, 183, 243, 263
NIST, 287, 288
Noise, 303
NOM, 243, 244, 275, 281, 348
Norm (triangular -), 132, 160–162, 165
Normalisation, 244, 245

measure, 86
morphological -, 210, 293
string -, 88, 89

blank -, 88
case -, 88
diacritic -, 88
digit -, 88
link stripping -, 88
punctuation -, 89
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O
OAEI, 60, 62, 287–289, 291, 296, 297, 303,

317, 331, 347
Object, see individual

-oriented model, 74
categorical -, 48
identifier, 342

Observer, 201
Occurrence

of a character in a string, 87
of a substring in a string, 87

ODEDialect, 322
OID, 342
OLA, 134, 247, 267, 271, 275, 281, 331, 347

algorithm, 134–137
OMap, 244, 244, 245, 275, 281, 331, 347
OMEN, 220, 220, 273, 279
OMviaUO, 157, 224, 224, 225, 273, 279
OMWG, 331
One-to-one alignment, 47, 75, 190, 191, 207,

235, 236, 238, 239, 245, 251, 264,
294

ONION, 205, 205, 206
Onto function, 47
ONTOBI, 299
OntoBuilder, 209, 209, 272, 278, 380
OntoFarm, 297
Ontologies (network of -), 40, 46, 68, 404
Ontology, 25, 32, 33

approximation, 48
consequence, 37
domain -, 40
edition, 4, 5, 380
engineering, 3–5, 24, 55, 68
entity, 34–36

language, 42, 46
evolution, 5, 56, 59, 348
foundational -, 130
import, 4, 5
integration, 3, 40, 340
interpretation, 36, 42
language, 33–37, 292
management, 56
merging, viii, 4, 24, 39, 40, 57–59, 68, 208,

209, 215, 216, 235, 246, 322, 324,
328, 345, 348, 372, 378, 378,
379–381

model, 37
modularisation, 151
partition, 39, 149–152, 231, 248, 257, 261,

268
peer-to-peer -, 15
reconciliation, 40
satisfaction of a formula, 36

semantics, 36, 37
syntax, 35
transformation, 24, 40, 328, 336, 380, 380,

381, 387
translation, 40, 55, 345, 380
upper-level -, 55, 381
version, 5, 40

Ontology Alignment Evaluation Initiative, see
OEAI

Ontologymatching.org, 297, 377
OntoMas, 62
OntoMediate, 358
OntoMerge, 380, 380
OntoSim, 232
Ontowrap, 347
Opportunistic composition, 354
Orchid, 384
Ordered weighted average, 166, 166, 260, 263,

266, 269
Oriented

precision, 308
recall, 308

Origin, 76
dimension, 74

Output dimension, 75
Overall, 304, 305, 308
Overlap, 96
OWA, see ordered weighted average
OWL, 15, 33–37, 43, 60, 68, 74, 104, 106, 108,

109, 111, 112, 123, 134, 147, 207,
209, 213, 216, 231, 233, 244, 247,
256, 263, 267, 269, 278, 279, 292,
296, 321–328, 331, 333, 336, 337,
347, 373, 378, 380, 389, 390, 396

-DLP, 348
C-OWL, 326, 327, 390
sameAs, see sameAs
SWRL, 327–329, 390

P
P2P, see peer-to-peer
Parallel composition, 245
Parameter, 262, 264, 293, 354
PARIS, 262, 262, 277, 282
Part-of-speech tagger, 97, 106
Partially ordered synonym resource, 100, 100,

103
Participation autonomy, 13
Particle swarm optimisation, 139, 140, 231
Partition (ontology -), 39, 149–152, 231, 248,

257, 261, 268
Path, 324

bounded - matcher, 126
distance, 95
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Pattern
-based matching, 81, 128–130
alignment -, 130
anti-, 130, 193, 195, 254
correspondence -, 129, 130
redundancy -, 215
refinement -, 130, 232

Peer (in Drago), 390
Peer-to-peer, 13–16, 24, 207, 389

ontology, 15
system, 3

semantic -, 14
Pellet, 147, 213, 390
Percentage threshold, 188
PerMIS, 288
Perspective, 38, 49
Pervasive computing, see ambient computing
Picsel, 201
Pivot language, 105
Polysemy, 87
Pooling, 311, 316
PORSCHE, 152, 227, 228, 228, 273, 279
Positive

false -, 99, 302
true -, 99, 302

Positiveness, 85
evaluation measure -, 308

Pre-similarity, 86, 90
Precision, 65, 301, 302, 305–310, 315

/recall curve, 303, 347
@k, 303
effort-based -, 308
generalised -, 305–310
ideal semantic -, 309
oriented -, 308
relative -, 310, 311
relaxed -, 307
semantic -, 309
symmetric -, 308
weighted -, 306

Prior+, 258, 276, 282
ProbaMap, 242
Process

dimension, 74
trace, 339

Product
classification, 9
weighted -, 161, 315

Prolog, 243
Prompt, 5, 345, 346, 373

Anchor-Prompt, 208, 209, 272, 345
iPrompt, 345, 373
PromptDiff, 209, 345, 346
PromptFactor, 345

Proof Markup Language, 361
Property, 107

bridge (in MAFRA), 323
Proportional threshold, 188
Propositional

satisfiability, 82, 145, 146
technique, 145, 146

Protégé, 5, 345
Provenance metadata, 338–340
Prüfer sequences, 219
Pruning (search-space -), 152, 228, 229, 258
Punctuation

normalisation, 217
suppression, 89

Purpose independence, 336

Q
QOM, 74, 243, 244, 263, 275, 281, 348
Qualification metadata, 340
Quality (evaluation -), 286
Query

answering, viii, 23, 24, 40, 348
language, 42
mediation, 57, 59, 68, 324, 387, 387,

388–390
transformation, 24, 59, 68, 322, 383

QuickMig, 211, 212, 272, 278

R
Range (property -), 107, 108, 128
RDF, 6, 14, 68, 74, 243, 248, 256, 263, 333,

335, 347, 382, 385, 387, 389
/XML, 331, 335, 347
schema, 15, 209, 217, 279, 292, 334, 335,

344, 389
RDFS, see RDF Schema
Reasoning, 39, 380, 389, 390
Recall, 65, 301, 302, 305–310, 315

effort-based -, 308
generalised -, 305–310
ideal semantic -, 309
oriented -, 308
relative -, 310, 311
relaxed -, 307
residual -, 311
semantic -, 309
symmetric -, 308
weighted -, 306

Recall+, 311
Reconciliation (ontology -), 40
Record linkage, 117
Reduced semantics, 50, 378, 390
Redundancy pattern, 215
Reference alignment, 300–302, 304, 305, 307
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Refinement pattern, 130, 232
Relation, 34

alignment -, 42
Relational

database model, 74
structure-based technique, 106, 121–130,

205–207, 210, 212, 217, 245, 247,
248, 272

Relative
precision, 311
recall, 311
size distance, 110

Relaxed
precision, 307
recall, 307

Relevance feedback, 263, 355–357
Repair

alignment -, see alignment debugging
plan, 147, 267

Repository
alignment -, 61, 66, 67, 390–394
of structure, 81

Residual recall, 311
Resnik similarity, 103, 106
Resource, 293

consumption, 312
REST, 393
Retrieval (alignment -), 60, 61, 67, 350
Reuse

-oriented matcher, 83, 210–212, 272
alignment -, 56, 60, 67, 79, 81

Reversible alignment, 47
RIF, 328, 328, 329
RiMOM, 249, 250, 275, 281, 303, 354
ROC curves, 347
ROCK, 151
Role-value map, 328
Rondo, 132, 156, 188, 212, 341–343, 354, 380,

383
Rule

bridge -, 323, 326, 380
mapping -, 39, 179

Rule interchange format, see RIF
RuleML, 327

S
S-Match, 74, 213–216, 271, 272, 361–369
SAMBO, 252, 252, 276, 281
SameAs (owl:sameAs), 11, 12, 68, 385,

387
Sampling, 310, 311
SAT, see propositional satisfiability

modal, see modal logic satisfiability
solver, 145, 146, 214, 362, 367

SAT4J, 215, 367–369
Satisfaction (by an ontology), 36
Satisfiability

alignment -, 51, 145
modal logic -, 145, 146
of correspondence, 50
propositional logic -, 145, 146, 369

Saturation, 75
SBI&NB, 237, 238, 274, 280
Scalability, 312
Scarlet, 157, 159, 223, 224, 273, 279
Schema

-based technique, 74, 76
database -, 25, 28, 29, 203, 213, 236–238,

242, 251, 269, 341, 383, 395
integration, 3, 5, 8, 24, 39
matching, 55, 107
RDF -, 15, 209, 217, 279, 334, 335, 344
UML, 25
XML -, 15, 29–31, 109, 213, 214, 235, 245,

278, 280, 292, 328, 341, 383, 395
Schemr, 5, 349
Scope, see perspective
SEALS, 291
Search

-space pruning, 152, 228, 229, 258
beam -, 236

SecondString, 96
SEKT mapping language, 331, 336
Selection (matcher -), 61–63
Selector (in Rondo), 342
Semantic

bridge (in MAFRA), 323
ideal - precision, 309
ideal - recall, 309
peer-to-peer system, 14
precision, 309
recall, 309
technique, 74, 78, 79, 81, 145–148, 213,

361, 380
web

browsing, 20–23
service, 16, 17, 382

Semantic Bridge Ontology, 323, 324, 336
Semantic Web Rule Language, see SWRL
SemanticIntegrator, 377
Semantics

alignment -, 48–53
emergent -, 15, 16
ontology -, 36, 37

SeMap, 253, 254, 276, 281
SEMINT, 242, 243, 275, 281
SeqDisc, 218, 219, 273, 279
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Sequential composition, 205, 206, 209, 217,
238, 245

Service
(in MAFRA), 323
web -, 3

composition, 40
semantic -, 16, 17, 24, 56, 382

Set, 112
SGen, 299
Sharing (alignment -), 67, 68, 390
Sibling similarity contribution, 230
Sigmoïd, 189, 244, 257
Silence, 303
Silk, 117, 347, 377, 385–387, 396
Similarity, 85, 191

aggregation, 160–165, 348
compound -, 160
corpus-based -, 103
cosine -, 93
cosynonymy -, 102
filter, 187
global - computation, 130–137
gloss-overlap -, 103
information-theoretic -, 103, 106
Jaccard -, 103, 111, 113, 220, 231, 253,

255, 260
match-based -, 119
multiplicity -, 111
n-gram -, 90, 177
nonsymmetric -, 86
pre-, 86, 90
Resnik -, 103, 106
structural topological -, 102, 106, 124
substring -, 90
synonymy -, 101
upward cotopic -, 126
vector-based -, 93, 240
Wu–Palmer -, 102, 106, 125, 151, 259

Similarity flooding, 132–134, 137, 212, 223,
227, 229, 259, 272, 278, 342

SimPack, 96, 106
Simplicity, 335
SIMS, 201
Single linkage, 119, 217
Singular value decomposition, 94
SKAT, 205, 206, 271, 278, 380
SKOS, 68, 104, 297, 321, 322, 325, 333–336,

394
mapping, 394

SMART, see Prompt
Smart Matcher, 255, 256, 276, 282
SMB, 267, 268, 282
Smith–Waterman measure, 92, 96, 257, 259

SMOA measure, 93, 96, 223, 224, 232, 248,
261

SNOMED, 296
SOAP, 393
Solution space, 399
SomeWhere, 15
Soundex, 96
SPARQL, 68, 333, 347, 382, 383, 386, 389,

396, 430
SPEC, 290
Specialisation, 35, 81
Speed, 312, 317
Spicy, 384
SPLMap, 240, 241, 275, 280, 383
SQL, 28, 32, 383, 384, 389, 396

DDL, 292
Stable marriage, 190–192
Stacked generalisation, 182–184, 235, 251,

259
Statistical technique, 80, 82
STBenchmark, 299
Stemmer, 106
Stemming, see lemmatisation
Stopword elimination, 98
Strengthening, 189, 190
String, 87

-based technique, 79, 88–96, 117, 203–205,
208–210, 214, 217, 239, 241,
244–247, 251, 271, 272, 275, 384

concatenation, 87
equality, 89, 95
normalisation, 88, 89
occurrence

of a string, 87
of a substring, 87

substring, 87
Stringmetrics, 96
Structural

technique, 78
topological dissimilarity, 102, 106, 124

Structure-based
internal - technique, 107–112, 117
relational - technique, 106, 121–130,

205–207, 210, 212, 217, 245, 247,
248, 272

technique, 76, 78, 106–112, 121–130, 244
Stylus, 377
Substring, 87

similarity, 90
test, 89

Subsumption, 35, 146, 388
test, 146
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Sum
weighted -, 162–165, 210, 212, 217, 236,

315
harmonic adaptive -, 165, 166

SUMO, 32, 224
Support vector machine, 177, 178, 242, 257,

263
Surjective alignment, 47
Swing, 299
Swoogle, 226
SWRL, 325, 327–329, 336, 337, 347, 380,

390, 396
Symmetric

precision, 308
recall, 308

Symmetry, 85
evaluation measure -, 308
property -, 107, 112

Synonym, 80, 87, 99, 101, 205, 212, 221
Synonymy similarity, 101
Synset, 64, 99, 100–103
Syntactic technique, 74, 78, 78
Syntax (ontology -), 35
Systematicity (evaluation -), 286

T
T-tree, 233, 234, 274, 280
TaxoMap, 151, 232, 232, 233, 274, 280
Taxonomy, 27, 28, 124–127, 236

-based technique, 79, 81
Term, 97, 99

extraction, 98
frequency, 94

-inverse document frequency, 94, 96,
175, 217, 234, 239, 248

Terminological
technique, see name-based technique

Terminology, 99
Tess, 208, 271, 278
Test generation, 298, 299
TFIDF, see term frequency-inverse document

frequency
THALIA, 297
Thesaurus, 99, 106, 334, 345
Threshold, 66, 187–190, 205–210, 217, 220,

221, 234, 235, 237, 244, 245, 249,
262, 264, 304, 347, 350, 356

delta -, 188
double -, 66
F-measure (optimal -), 305
gap -, 188
hard -, 188, 208
percentage -, 188
proportional -, 188

Time (processing -), 293
Tokenisation, 97, 216, 344
ToMAS, 383, 394, 395
Top-k, 209
Total

alignment, 47, 187, 190, 294, 379, 381
autonomy, 13, 14

Trace (process -), 339
Transformation

compatibility, 388
data -, 381
ontology -, 24, 40, 328, 336, 380, 381, 387
query -, 24, 59, 68, 322, 383

Transitivity (property -), 107
Translation

data -, viii, 24, 40, 58, 324, 333, 341,
381–384, 387, 390

message -, 24
ontology -, 40, 55, 345, 380

TransScm, 204, 271, 278, 383
TREC, 287, 303
Tree distance, 124
Triangular

inequality, 86
norm, 132, 160–162, 165

Trimming (alignment -), see threshold
True

positive, 99, 302
Truth (ground -), see gold standard
Tsimmis, 201
Tuning, 180–186, 313

parameter -, 294
Tuple-generating dependency, 44, 384

U
UFO, 32
Ultrametric, 86

inequality, 86
UML, 25, 31, 110, 292, 293, 324, 337

model, 341
UMLS, 28, 214, 223, 252, 254, 260, 273, 276,

277, 296, 392
Update (alignment -), 293
Upper-level ontology, 32, 55, 81, 156, 224,

225, 270, 381
Upward cotopic similarity, 126
URI, 67, 137, 330, 335
Usability, 313
User

-driven composition, 354
input, 83, 145, 293, 294, 307, 360
interaction, 211, 216, 234, 263, 342,

353–375
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V
Validity (alignment -), 51
Value, 34
Variable, 328
Vector-based similarity, 93, 240
Version, 345

ontology -, 5, 40
Vote

majority -, 166
majority weighted -, 167

VSBM, 241, 241, 242

W
W3C, 324
Watson, 59
Weakening, 189, 190
Web

compatibility, 335
deep -, 23, 247
of data, see linked data
service, 3, 16, 17

composition, 40, 340
semantic -, 17, 24, 56

Weighted
average, 164, 165, 184, 244, 245, 315

ordered, 166, 260, 263, 266, 269
harmonic mean, 315
precision, 306
product, 161, 315
recall, 306
sum, 162–165, 210, 212, 217, 236, 315

harmonic adaptive -, 165, 166
Weka, 179, 242, 257, 259, 263

WHIRL, 182
learner, 174, 175, 235

Wikipedia, 99, 156, 225
Wise-Integrator, 245, 245, 246, 275, 281, 389
Word, 96

sense disambiguation, 99, 105, 106, 219,
224

WordNet, 62, 64, 99, 125, 126, 145, 156, 157,
161, 177, 179, 205–207, 212–218,
224, 226–229, 231, 232, 241, 245,
246, 249, 252–254, 257, 259, 260,
266, 270–273, 275, 293, 334, 345,
365

WSML, 337
WSMT, 370, 371
Wu–Palmer similarity, 102, 106, 125, 151, 259

X
XClust, 152, 212, 213, 272, 278
XML, 6, 29, 68, 74, 214, 297, 326, 335, 377

RDF/-, 335
schema, 15, 25, 29–31, 109, 213, 214, 235,

245, 278, 280, 292, 328, 341, 383,
395

matching, viii
Xpath, 324
XQuery, 297, 384
XSLT, 68, 347, 383, 384

Y
YAM, 258, 259, 276, 282

YAM++, 180, 258, 259, 276, 282
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