
A Formal Description Technique for Interactive
Cockpit Applications Compliant with ARINC

Specification 661

Eric Barboni, David Navarre, Philippe Palanque & Sandra Basnyat
LIIHS-IRIT

Universite Paul Sabatier (Toulouse III)
118, route de Narbonne, 31062 Toulouse Cedex 4, France barboni,navarre,palanque,basnyatWirit.fr

Abstract- The purpose of the ARINC specification 661 [1] is to
define interfaces to a Cockpit Display System (CDS) targeting
new aircraft installations. ARINC 661 provides precise
information for communication protocols between application
and user interface components (called widgets) as well as precise
information about the widgets themselves. However, no
information is given on the behavior of these widgets and on the
behavior of an application made up of a set of such widgets. This
paper presents a formal description technique called Interactive
Cooperative Objects to define in a precise and non-ambiguous
way such behaviors. This description technique also defines the
relationships between the behavioral description and the user
interface. We show the benefits of such a notation for the
specification of interactive cockpit applications and we introduce
each modeling concept on a small example.

Keywords - ARINC 661 specification, formal description
techniques, interactive software engineering, Interactive Cockpits.

I. INTRODUCTION

In order to provide pilots with additional means for
handling more and more complex embedded equipments, new
aircrafts are provided with interactive applications. This is not
only true for military aircraft (that have always been ahead with
new equipment) but also for civil aircrafts [9], [16].

Embedding interactive applications in civil and military
cockpits is expected to provide significant benefits to the pilots
by providing them with easier to use and more efficient
applications increasing the communication bandwidth between
pilots and systems. However, this technological enhancement
brings inside the cockpit a set of problems that have been well
known in the field of interactive systems. The more freedom
given to the user, the more complex the system is in order to
handle such freedom. Such problems have been identified in
the beginning of the 80's through the "direct manipulation"
paradigm [24] which raises the issues of state space explosion
and very limited test coverage. The ARINC specification 661
(see next section), aims at providing a common ground for
building interactive applications in the field of aeronautical
industry. However, this standard only deals with part of the
issues raised. The aim of this paper is to present a formal
description technique to be used as a complement to ARINC
661 for the behavioral description of interactive applications.

The paper is structured as follows. The next section
introduces the application domain of interactive cockpits.
Section 3 presents the ICO formalism, a formal description
technique for the design of safety critical interactive
applications. The applicability of ICOs to cockpit display
system and its compatibility with ARINC specification 661 is
presented in section 4 by means of a case study. The last
section of the paper deals with conclusions and perspectives to
this work.

II. INTERACTIVE COCKPITS CONSTRAINTS

A. Constraintsfrom standards
The purpose of the ARINC specification 661 [1] is to

define software interfaces to a Cockpit Display System (CDS)
used in interactive cockpits that have been deployed by several
aircraft manufacturers including Airbus, Boeing and Dassault.

Among the objectives of this standard we find:

* The minimization of the cost of adding new
display function to the cockpit during the life of an
aircraft.

* The introduction of interactivity in the cockpit,
providing a basis to standardize the Human
Machine Interface (H1MI) in the cockpit.

ARINC 661 defines two interfaces between the Cockpit
Display System (CDS) and the aircraft systems to provide a
clear separation between them. The first interface is between
the avionics equipment and the display system graphics
generators, and the second is a way to define the symbology
and its related behavior. The CDS provides graphical and
interactive services to user applications (UA) within the flight
deck environment. The interactive applications will be
executed on Display Units (DU) and interaction with the pilots
will take place through the use of keyboard and graphical input
devices like the Keyboard Cursor Control Unit (KCCU)
developed by Thales Avionics1.

1 Description available and last accessed May 20th 2007
http://www.flightglobal.com/articles/2006/09/25/209189/airbu

s-a380-flight-test-in-full-our-report-from-toulouse.html

1-4244-0840-7/07/$20.00 ©2007 IEEE. 250Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



A user application is then defined as a system that has a
two-way communication with the CDS:

* Transmission of data to the CDS, which can be
displayed to the flight deck crew.

* Reception of input (as events) from interactive
items managed by the CDS.

Figure 1. KCCU (Keyboard Cursor Control Unit) for interactive cockpits
taken from AWST (September 27th 2004)

The ARINC specification 661 provides the definition of the
software interface between the CDS and the UAs. It also
represents the expression of airline desires in the form of
guidance material. Designers should interpret this standard in
terms of the "need" for specific design practices rather than
practices that "must" be met under all circumstances.

The ARINC specification 661 does not provide the
specification of the "look and feel" of any graphical
information and does not document the activities to be carried
out in order to design a CDS.

B. Domain constraints
In addition to the software engineering-related issues

identified above, the fact that interactive applications are aimed
at keeping the human in the loop introduces additional
constraints such as, usability and error-tolerance. These
properties are to be dealt with as carefully as reliability issues
that this paper targets. Information on how to address usability,
safety and reliability at the same time can be found in [21] and
[19].

III. ICO FORMALISM

The aim of this section is to present the main features of the
Interactive Cooperative Objects (ICO) formalism that we have
proposed for the formal description of interactive systems. We
encourage the interested reader to look at [18] for a complete
presentation of this formal description technique.

The ICO formalism is a formal description technique
dedicated to the specification of interactive systems [6]. It uses
concepts borrowed from the object-oriented approach (dynamic
instantiation, classification, encapsulation, inheritance,
client/server relationship) to describe the structural or static
aspects of systems, and uses high-level Petri nets [12] to
describe their dynamic or behavioral aspects.

The ICO notation has evolved since to address news
challenges raised by the various application domains it has
been applied to. This paper presents the current version with
the last extensions.

A. Informal Presentation
ICOs are dedicated to the modeling and the implementation

of event-driven interfaces, using several communicating
objects to model the system, where both behavior of objects
and communication protocol between objects are described by
the Petri net dialect called Cooperative Objects (CO) [6]. The
following paragraphs briefly recall basics about Petri nets and
their extensions in order to finally present the main features of
the ICO formal description technique.

1) Petri nets(PN)
Petri nets were initially introduced in C.A Petri's PhD

thesis inl962 and are used for modeling discrete event systems.
Petri nets are a formalism that features a complete equivalence
between a graphical and an algebraic representation. We
present here the basics of Petri nets through their structural
aspects and their dynamic behavior.

a) Structure
A Petri net is an oriented graph composed of two disjoint

sets of nodes and a set of arcs:

* Places (represented by ellipses) symbolize states
variables holding untyped tokens which symbolize
values.

* Transitions (represented by rectangles) symbolize
actions and state changes.

* Arcs link places to transitions (called input arcs),
or transitions to places (called output arcs), and
symbolize the flow of tokens through the Petri
nets. Arcs may be given integer values which are
described as the weight of the arc, e.g. the quantity
of tokens that is consumed following this arc.(This
sentence is hard to understand! !!)

The global state of the modeled system is fully represented
by the distribution of tokens across the set of places (called
marking).

b) Dynamic behaviour
Given a marked Petri net, its behavior is expressed in terms

of a token game. The token game defines two basic rules, the
enabling rule and the firing rule:

* Enabling of transition: the enabling rule involves
input arcs of a transition. A transition is enabled if
each input place (places linked to the transition
with input arcs) contains at least as many tokens as
the weight of the input arcs it is linked to.

* Firing of transitions: firing a transition leads to
the removal of as many tokens as the weight of the
corresponding input arcs from its input places and
then setting into the output places as many tokens
as the weight ofthe corresponding output arcs.

251Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



These rules illustrate one of the main properties of Petri
nets, called locality of enabling and firing of transitions. This
property makes Petri nets able to model true concurrent
systems.

2) Object Petri Nets(OPN)
Classic Petri nets do not easily allow describing data. The

introduction of Object Petri nets (OPN) [15], [25] provides a
means to handle more complex data structure using the Object
paradigm.

a) Structure
* Typed place and tokens: each place of an OPN is

a typed tuple that may hold a set of tokens which
are tuples ofvalues ofthe corresponding type.

* Transition with Actions and Preconditions:
Transitions may be constituted of a precondition
(expressed as a predicate depending of the values
held by the input places) and actions on the values
held by the tokens from input places in order to
produce the output values.

* Variable names on arcs: each arc is decorated
while a tuple of variable names, in order to make
actions and preconditions of a transition able to
handle values held by token.

* Inhibitor and Test arcs: inhibitor arcs are used as
zero tests or threshold tests that allow the enabling
of transitions if the linked places are empty, and
test arcs are used for simple tests on the tokens
held by a place, without removing them from the
place while firing the transition.

b) Dynamic behaviour
* Enabling of transitions: the enabling rule evolves

to account the precondition and the new kind of
arc. The rule remains basically the same as for
classic Petri nets (e.g. enough tokens in each input
places), and then the precondition is evaluated
using the set of possible input values (called
substitutions).

* Firing of transitions: the firing is the same as for
classic Petri nets, and the value of the produced
token may be the result of actions inside the
transition.

3) Cooperative Objectsformalism (CO)
A Cooperative Object states how the object reacts to

external stimuli according to its inner state. This behavior,
called the Object Control Structure (ObCS) is described by
means of OPN.

a) Structure
* A software interface which describes the set of

public methods provided by the object. The
syntax used to express this set is the Java syntax
as it is precise enough for describing method
signature and basic types.

* Several communication protocols:

o A unicast synchronous communication (e.g.
method calls): Cooperative Objects may
communicate among each other using
method calls, where these methods are the
ones from the associated software interface.
A binding mechanism provides a translation
of one signature of one method into a set of
special places in the Petri net itself, which
corresponds to input or output or exception
parameters of the method. The semantic of
this way of communication is based on a
rebuild mechanism, which describes the
communication as a Petri net.

o A multicast asynchronous communication
(e.g. event communication): Cooperative
Objects may provide a set of events to which
other Cooperative Objects may listen. The
CO formalism defines ways to add/remove
listeners, to trigger events and catch events
using event handlers (represented by a set of
particular transitions, called synchronized
transitions). The semantics are not yet fully
described, but we are investigating among
related works in the Petri net community
such as using Signal nets [14].

b) Dynamic behaviour
* Enabling of transitions: the enabling rule is

exactly the same as for OPN.

* Firing of transitions: the firing rule is exactly
the same as for OPN, and the action inside the
transitions may result into a method call of
another CO or into the raise of an event.

* Observability: the execution of the Petri net
itself is fully observable, based on the event
mechanism presented below. This feature is
based on the design pattern called Observer [10],
e.g. it provides means for the notification of state
changes (e.g. marking changes for places),
transitions and event handlers' availability and
firing.

4) Interactive Cooperative Objectsformalism (ICO)
In the ICO formalism, an object is an entity featuring four

components: a cooperative object which describes the behavior
of the object, a presentation part, and two functions (the
activation function and the rendering function) that make the
link between the cooperative object and the presentation part.

Cooperative Object: Using the Cooperative Object
formalism, ICO provides the following features:

* Links between user events from the presentation
part and event handlers from the CO.

* Links between user events availability and event
handlers availability.

* Links between state in the CO changes and
rendering.

252Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



Presentation part: the presentation of an object states its
external appearance. This presentation is a structured set of
widgets organized in a set of windows. Each widget may be a
way to interact with the interactive system (user - system
interaction) and/or a way to display information from this
interactive system (system i user interaction). Even if the
method used to render (description and/or code) is out of the
scope of an ICO specification, it is possible for it to be handled
by an ICO in the following way.. The presentation part is
viewed as a set of rendering methods (in order to render state
changes and availability of event handlers) and a set of user
events, embedded in a software interface, in the same language
as for the CO interface description.

Activation function: the user - system interaction
(inputs) only takes place through widgets. Each user action on
a widget may trigger one of the CO event handlers. The
relation between user services and widgets is fully stated by the
activation function that associates each event from the
presentation part with the event handler to be triggered and the
associated rendering method for representing the activation or
the deactivation:

* When a user event is triggered, the Activation
function is notified (via the event mechanism) and
asks the CO to fire the corresponding event
handler providing it values that only come from
the user event.

* When the state of an event handler changes (e.g.
becomes available or not), the Activation function
is notified (via the Observer+event mechanism)
and calls the corresponding activation rendering
method from the presentation part with values for
its parameters that only come from the event
handler.

The activation function is fully expressed through a
mapping as a CO which provides it with its semantic.

Rendering function: the system - user interaction
(outputs) aims at presenting the state changes that occurs in the
system to the user. The rendering function maintains the
consistency between the internal state of the system and its
external appearance by reflecting system states changes:

* When the state of the Cooperative object changes
(e.g. marking changes for a place), the Rendering
function is notified (via the Observer+event
mechanism) and call the corresponding rendering
method from the presentation part with values for
its parameters that only come from the event
handler.

As for the Activation function, the Rendering function is
fully expressed as a CO class.

ICOs are used to provide a formal description of the
dynamic behaviour of an interactive application. An ICO
specification fully describes the potential interactions that users
may have with the application. The specification encompasses
both the "input" aspects of the interaction (i.e. how user actions
impact on the inner state of the application, and which actions
are enabled at any given time) and its "output" aspects (i.e.

when and how the application displays information relevant to
the user).

An ICO specification is fully executable, which gives the
possibility to prototype and test an application before it is fully
implemented [17]. The specification can also be validated
using analysis and proof tools developed within the Petri net
community and extended in order to take into account the
specificities of the Petri net dialect used in the ICO formal
description technique. This formal specification technique has
already been applied in the field of Air Traffic Control
interactive applications [19], space command and control
ground systems [21], or interactive military [8] or civil cockpits
[2]. The example of civil aircraft is used in the next section to
illustrate the specification of embedded systems.

B. Advantages
The main advantages of ICOs for the formal description of

behavioral specification of interactive cockpit applications are
related to their use of Petri nets. Indeed, by the representation
of tokens.

IV. ILLUSTRATION OF ICO ON THE EXAMPLE OF ARINC
661 SPECIFICATION

In ARINC 661, a user application is defined as a system
that has a two way communication with the Cockpit Display
System (CDS):

* Transmission of data to the CDS, which can be
displayed to the flight deck crew.

* Reception of input from interactive items managed
by the CDS.

Event

Data to be
displayed

Figure 2. CDS / UA communication

As shown in Fig. 2 the CDS part may be seen as the
presentation part of the whole system, provided to the crew

members, and the set of UAs may be seen as the merge of both
the dialogue and the functional core of this system. ARINC 661
then puts on one side input and output devices (provided by
avionics equipment manufacturers) and on the other side the
user applications (designed by aircraft manufacturers). Indeed,
the consistency between these two parts is maintained through
the communication protocol defined by ARINC 661.

Due to space constraints we only present in this paper an

application featuring few widgets and supporting few tasks.
However, the specification covers the entire application both at
the widget and the User Application levels.

253

Crew

Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



A. Specification ofa user application
Modeling a user application using ICO is quite simple as

ICO has already been used to model such kind of interactive
applications. Indeed, UAs in the area of interactive cockpits
correspond to classical WIMP interfaces.

2) Behaviour
As stated in the section describing the Cooperative Objects

formalism, a model may is composed of a software interface
and a behavior described using Petri nets.

The WXR page does not offer public methods (except the
default ones for allowing the event mechanism), and this is
why there is no software interface here. Fig. 5 shows the entire
behavior of page WXR which is made up oftwo non connected
parts:

.

40 MUX. SO.

Figure 3. Snapshots of the 3 pages of the UA MPIA

The Multi Purpose Interactive Application (MPIA) is a
User Application (UA) that aims at handling several flight
parameters. It is made up of 3 pages (called WXR, GCAS and
AIRCOND) between which a crew member is allowed to
navigate using 3 buttons (as shown by Fig. 3). The WXR page
is responsible for managing weather radar information; GCAS
is responsible for the Ground Anti Collision System parameters
while AIRCOND deals with settings of the air conditioning.

The next sections present the 4 parts of the ICO
specification of the page WXR extracted from the User
Application MPIA.

1) Presentation part
The presentation part is made up of a set of widgets that are

used for both rendering information and provides the user with
means to interact with the interactive systems.

Public interface WXR_PAGE extends ICOWidget

//List of user events.
public enum WXR_PAGE_events {asked_off, asked_stdby, asked_wxa,

asked_wxon, asked_tst, asked-auto asked-stabilization, asked_changeAngle}

e RList of actevettion rendering Lethodsn
void setWXRModeSelectEnabled(WXR_PAGE_events, List<lSubstitution>);
void setWXRTiltSelection Enabled (WXR_PAGE_events, List< lSubstitution>);
//List of renderi,ng methods.
void showModeSelection (I Marking Event an Event);
void showTiltAngle (IMarkingEvent anEvent);
void showAuto (IMarkingEvent anEvent);
void showStab (IMarkingEvent anEvent);

Figure 4. Software interface of the page WXR from the user application
MPIA

The layout of the presentation part (the upper left window
in Fig. 3) is out of the scope of the ICO specification, but this
presentation part is seen as a collection of rendering methods
and ways to provide events as shown in Fig. 4.

0i AGE

Figure 5. Behaviour of the page WXR

* The upper part aims at handling events from the 5
CheckButtons and the modification implied of the
MODE SELECTION that may be one of five
possibilities (OFF, STDBY, TST, WXON, WXA).
Value changes of tokens stored in place Mode-
Selection are described in the transitions while
variables on the incoming and outgoing arcs play the
role of formal parameters of the transitions.

* The lower part concerns the handling of events from
the 2 PicturePushButton and the EditBoxNumeric.
Interacting with these buttons will change the state of
the application.

3) Activationfunction
Fig. 6 shows an excerpt of the activation function for the

WXR page.

Use Evnt Event hanidler ActivationRederingf
asked off off setWXRModeSelectEnabled
asked stdby stdby setWXRModeSelectEnabled
asked tst tst setWXRModeSelectEnabled
asked wxon wxon setWXRModeSelectEnabled
asked wxa wxa setWXRModeSelectEnabled
asked auto switchAUTO setWXRTiltSelectionEnabled
asked stabilization switchSTABILIZATION setWXRTiltSelectionEnabled
asked changeAngle changeAngle setWXRTiltSelectionEnabled

Figure 6. Activation Function of the page WXR

This table may be read line by line, as one line describes the
three objects linked in the activation process, for instance the

254

oli

-.k A

Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



user event ask off, the event handler off from the behavior and
the activation rendering method setWXRModeSelectEnabled
from the presentation part. The signification of this line is:

* When the event handler off becomes enabled, the
activation function calls the activation rendering
method setWXRModeSelectEnabled providing it
with data about the enabling ofthe event handler.

* When the button OFF of the presentation part is
pressed, the presentation part raises the event
called asked off. This event is catch by the
activation function which asked the behavior part
to fire the event handler off.

4) Rendering Function
The modeling ofthe rendering function is shown in Fig. 7).

ObCSNode name ObCS event Renderihngmethod
MODE SELECTION token enter showModeSelection
TILT ANGLE token enter showTiltAngle
AUTO marking reset showAuto
AUTO token enter showAuto
AUTO token remove showAuto
STABILIZATION ON marking-reset showStab
STABILIZATION ON token enter showStab
STABILIZATION ON token remove showStab

Figure 7. Rendering Function of the page WXR

This table may be read line by line too, as one line
describes the three objects linked in the rendering process, for
instance the place MODE SELECTION, the event linked to
this place and in which we are interested token-enter and the
rendering method showModeSelection from the presentation
part. The signification of this line is:

When a token enters the place MODE SELECTION, the
rendering function is notified and calls the rendering method

CDS

events

XSL
rransformatio

NMe

showModeSelection providing it with data about the new
marking of the place.

B. Specification ofthe CDS
One of the goals of the work done on interactive cockpits

compliant with ARINC Specification 661 was to define an
architecture that clearly identifies each part of this architecture
and their communication, as shown in Fig. 8. The aim of this
architecture is also to clearly identify which components will
be taken into account in the modeling process and which ones
are taken into account in a different way (for instance rendering
is done using SVG facilities).

Such architecture presents two main advantages:

1. Every component that has an inner behavior
(server, widgets, User Applications (UA), and the
connection between UA and widgets, e.g. the
rendering and activation functions) is fully
modeled using the ICO formal description
technique.

2. The rendering part is delegated to a dedicated
language and tool (such as SVG).

As written in the description of ARINC 661, the need for
precise specification occurs at both widget and UA levels.

At a widget level, ICO must be used to describe the inner
behavior of the widgets and to describe the impact of state
changes on their external presentation.

At a user application level, ICO must be used to describe
the behavior of the application itself and the impact of state
changes in term ofwidget parameters modification.

ARINO 661

events

setParameters

Mod

UA

events
..,

events

events

Figure 8. Detailed architecture to support ARINC 661 specification

We briefly present hereafter the definition of widgets in
ARINC 661 and then show how ICO can be fruitfully used to
formally represent their detailed behavior. Due to space
constraints we do not present the Server part of which an
overview is given in [4].

C. Specification ofa widget
A widget is defined with an identifier (widget type, widget

identifier and widget parent), states (informal description of the
relationship between these states) and a six other description
parts that provides information about parameters, data needed

255Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



for creation, events raised... such as the parameters table
shown in TABLE I.

TABLE I. EXCERPT OF THE PUSHBUTTON PARAMETERS

Parameter Change Description
Commonly used parameters
PosX D The X position of the widget

reference position
Enable DR Ability of the widget to be

activated
Specific parameters
LabelString DR String of the PushButton
MaxStringLength D Maximum length of the label text
The main drawback of this description is the lack of

specification of state changes and their impact on the
presentation of the widget. In order to be able to build reliable
and certifiable interactive software a precise and unambiguous
specification is required. We exploit here the ICO formal
description technique presented above. As stated earlier, the
behavior of a widget is made up with a software interface, as
shown in Fig. 9, and a high-level Petri net, as shown in Fig. 10.

public interface A661_PUSH_BUTTON {
void setEnable(char A661 ENABLE);
void setVisible(charA661 VISIBLE);
void setStyleSet(short A661_STYLE_SET);
void setLabelString(string A661_STRING);

Figure 9. Software interface for ARINC 661 PushButton

For the description of ARINC 661 widgets, this software
interface defines the run-time modifiable parameters: one
definition of a "set" method for one run-time modifiable
parameter. For instance, the ARINC 661 PushButton provides
a run-time modifiable parameter, called Enable of the type
"char", as shown in Table 4. In its definition, this parameter is
represented by the method "void setEnable(char
A661_ENABLE)".

(.. ffij SgW51 S..> + ......
_>.'-e _L

........

''S1g.;''

g.-E,,,1,,,W+
+1..__,+

<'M v
Ea

..,_ii, ,. i
g '=tg'l _ lif5v$6X |gXr11.

M l'j{*-i>S
Zi ilWl, . Si l}

.>-..1.

Figure 10. Behaviour of the ARINC 661 PushButton

In the High-level Petri net model the complete and
unambiguous description of the widget is given. Widget

parameters are held by tokens in places. Depending on the
repartition and value of these tokens, special transitions (called
synchronized transitions) may be fired, and when fired, these
transitions raise an event (those described in the corresponding
ARINC specification). Therefore, by specifying the widget
behavior, we clearly define the conditions under which a
widget raises an event.

As for the user application part, we do not describe here the
"look and feel" of the widget, but show what must be
represented. Indeed, the important element is what information
has to be presented to the pilot and when to present it.

TABLE II. shows an excerpt of the rendering method of the
PushButton. For instance, it describes that when a token enters
the place Enabled, the PushButton must be shown as enabled.

TABLE II. EXCERPT OF PUSHBUTTON RENDERING FUNCTION

ObCS Item Event Rendering method
Place LabelString Token <x> enters Display <x>
Place Enabled Token enters Show as enabled
Place Enabled Token exit Show as disabled

D. What has not been presented through this example
Due to space constraints, we have not presented the part of

the work linked to both ICO and the interactive cockpit. We
use the next paragraphs to list some ofthese points.

1) ARINC 661 Specification
A big part of the interactive cockpits is the user interface

server which manages the set of widgets and the hierarchy of
widgets used in the User Applications. More precisely, the user
interface server is responsible in handling creation of widgets,
graphical cursors of both the pilot and his co-pilot, the mouse
and keyboard events and dispatching it to the corresponding
widgets, ... The corresponding ICO models have been done
and presented in [4] and illustrates how to handle huge and
complex models.

2) ICOformal description technique
The Activation functions and Rendering functions are fully

describe using Petri nets, legitimates the use of the table
notation as a readable way to express the connection between
the dialog and the presentation parts.

As it does not bring more sense to the presentation of the
notation, we did not present all the initialization mechanisms
such as creation of models, initialization of the communication
using events (registers for listening some events, ...).

3) Execution ofmodels
A well-known advantage of Petri nets is their executability.

This is highly beneficial to our approach, since as soon as a
behavioral specification is provided in term of ObCS, this
specification can be executed to provide additional insights on
the possible evolutions of the system. The environment used to
support the edition, verification and execution of models is
called PetShop, and more details may be found in [3].

The execution of the models of the user application MPIA
leads to another interesting part ofthe work done about ARINC
specification 661. The models of the user application MPIA
can both be connected to the modeled CDS or to an

256

4mal
"A

Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 



implemented CDS, using a special API, as it respects the
ARINC 661 specification. As testing an implemented user
application is still a problem that has to be solved, especially
when the UA is connected to a real CDS, a model based
approach may support testing at different levels:

1. Test a modeled user application on the modeled CDS.
2. Test the modeled user application on the CDS

implemented by the manufacturer.
3. Code and test the user application on the

implemented CDS.
The first step promotes a very iterative prototyping process

where both the User Application and the CDS may be
modified, as the second step allows user testing on the real
interactive system (CDS), with classical prototyping facilities
provided by the models expressed in ICO of the User
Application.

V. CONCLUSION AND PERSPECTIVES

This paper has presented the use of a formal description
technique for describing interactive components in ARINC
specification 661. One of the advantages of using the ICO
formal description technique is that it provides additional
benefits with respect to other notations such as Statecharts as
proposed in [23]. Thanks to its Petri nets basis the ICO
notations makes it possible to model behaviors featuring an
infinite number of states (as states are modeled by a
distribution oftokens in the places of the Petri nets).

ACKNOWLEDGEMENTS

This work was supported by the EU funded ResIST
Network http://www.resist-noe.eu. The work was also partly
funded by DPAC (Direction des Programmes de l'Aviation
Civile) under contract #00.70.624.00.470.75.96.

REFERENCES
[1] ARINC, ARINC 661 specification: Cockpit Display System Interfaces

To User Systems, Prepared by AIRLINES ELECTRONIC
ENGINEERING COMMITTEE, Published by AERONAUTICAL
RADIO, INC, april 22, 2002.

[2] Barboni E., Navarre D., Palanque P. & Basnyat S.. Exploitation of
Formal Specification Techniques for ARINC 661 Interactive Cockpit
Applications. Proceedings of HCI aero conference, (HCI Aero 2006),
Seatle, USA, Sept. 2006.

[3] Eric Barboni, David Navarre, Philippe Palanque & Didier Bazalgette.
PetShop : A Model-Based Tool for the Formal Modelling and
Simulation of Interactive Safety Critical Embedded Systems.
Proceedings of HCI aero conference (Demonstration) (HCI Aero 2006),
Seatle, USA, Sept. 2006.

[4] Eric Barboni, Stephane Conversy, David Navarre & Philippe Palanque.
Model-Based Engineering of Widgets, User Applications and Servers
Compliant with ARINC 661 Specification. Proceedings of the 13th
conference on Design Specification and Verification of Interactive
Systems (DSVIS 2006), Dublin, 2006, LNCS, Springer Verlag.

[5] Bastide, R., Palanque, P. A Petri Net Based Environment for the Design
of Event-Driven Interfaces. 16th International Conference on
Application and theory of Petri Nets (ATPN'95), Italy, 20-22 June 1995.

[6] Bastide, Remi, Palanque, Philippe, Le, Duc-Hoa and Munioz, Jaime.
Integrating Rendering Specifications into a Formalism for the Design of
Interactive Systems. in 5th Eurographics Workshop on Design,

Specification and Verification of Interactive Systems, DSV-IS'98,
Abingdon, U. K. Springer-Verlag (1998)

[7] Bastide R., Barboni E., Lacaze X., Navarre D., Palanque P., Schyn A. &
Bazalgette D. Supporting INTUITION through formal specification of
the User Interface for military aircraft cockpit. In procedings of HCI
International 2005, Las Vegas, July 2005.

[8] Bastide, R., Palanque, P., Ousmane, S, Duc-Hoa Le., Nvarre, D.. Petri
Net Based Behavioural Specification of CORBA Systems. International
Conference on Application and Theory of Petri nets ATPN'99,
Williamsburg (USA), LNCS Springer Verlag, 1999.

[9] Faerber R. Vogl T. & Hartley D. Advanced Graphical User Interface for
Next Generation Flight Management Systems. In proceedings of HCI
Aero 2000, pp. 107-112.

[10] Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements
of Reusable Object-Oriented SoftwareAddison Welsey #63361, 1994.

[11] Gram, Christian; Cockton, Gilbert, Editors. Design principles for
interactive software. Chapman et Hall ed. 1995.

[12] Genrich, H. J. Predicate/Transitions Nets. High-Levels Petri Nets:
Theory and Application K. Jensen and G. Rozenberg (Eds.)Berlin:
Springer Verlag (1991) pp. 3-43.

[13] ICAO, Guidance Material on CNS/ATM Operations in the Asia/Pacific
Region, http://www.icao.org, International Civil Aviation Organization,
DOC 4444 PANS/RAC, 1991.

[14] Juhas Gabriel, Lorenz Robert, Neumair Christian: Modelling and
Control with Modules of Signal Nets. 585-625 in proceedings of 24th
International Conference on Applications and Theory of Petri Nets,
ICATPN'2003

[15] Lakos, C. Language for Object-Oriented Petri Nets. #91-1. Department
of Computer Science, University of Tasmania, 1991.

[16] Marrenbach J. & Kraiss K-F. Advanced Flight Management System: A
New Design and Evaluation Results. In proceedings of HCI Aero 2000,
pp. 101-106.

[17] Navarre, David, Palanque, Philippe, Bastide, Remi and Sy, Ousmane.
Structuring Interactive Systems Specifications for Executability and
Prototypability. 7th Eurographics Workshop on Design, Specification
and Verification of Interactive Systems, DSV-IS'2000, Limerick,
Ireland. Lecture Notes in Computer Science.

[18] Navarre, D. Contribution a l'ingenierie en Interaction Homme Machine -
Une technique de description formelle et un environnement pour une
modelisation et une exploitation synergiques des taches et du systcme.
PhD Thesis. Uniersity of Toulouse I. Defended July 2nd 2001. 2001.

[19] Navarre, David; Palanque, Philippe & Bastide, Remi. Reconciling Safety
and Usability Concemns through Formal Specification-based
Development Process HCI-Aero'02 MIT, USA, 23-25 October, 2002.

[20] OMG. The Common Object Request Broker: Architecture and
Specification. In CORBA IIOP 2.2.Framingham 1998.

[21] Palanque P., Bernhaupt R., Navarre D., Ould M., Winckler M..
Supporting Usability Evaluation of Multimodal Man-Machine Interfaces
for Space Ground Segment Applications Using Petri net Based Formal
Specification. Ninth International Conference on Space Operations,
Rome, Italy, June 18-22, 2006.

[22] User Interface Management Systems, Eurographics Seminar, Seeheim,
1983. Gunther Ptaff, editor. Springer Verlag, 1983.

[23] Sherry L., Polson P., Feary M. & Palmer E. When Does the MCDU
Interface Work Well? Lessons Learned for the Design of New
Flightdeck User-Interface. In proceedings of HCI Aero 2002, AAAI
Press, pp. 180-186.

[24] Shneidermann B. Direct manipulation: a step beyond programming
languages. Computer 16 (Aug. 1983), 57-69.

[25] Sy, Ousmane, Bastide, Remi, Palanque, Philippe, Le, Duc-Hoa and
Navarre, David. PetShop: a CASE Tool for the Petri Net Based
Specification and Prototyping of CORBA Systems. 20th International
Conference on Applications and Theory of Petri Nets, ICATPN'99.

[26] Valk, R. Petri Nets as Token Objects: an Introduction to Elementary
Object Nets. I9th International Conference on Application and Theory of
Petri Nets, ICATPN'98, Lissabon, Portugal, June 1998, Springer, 1998.

257Authorized licensed use limited to: Université Paris-Saclay. Downloaded on July 07,2022 at 07:30:47 UTC from IEEE Xplore.  Restrictions apply. 


