section \Normalizing Derivative\ theory NDerivative imports Regular_Exp begin subsection \Normalizing operations\ text \associativity, commutativity, idempotence, zero\ fun nPlus :: "'a::order rexp \ 'a rexp \ 'a rexp" where "nPlus Zero r = r" | "nPlus r Zero = r" | "nPlus (Plus r s) t = nPlus r (nPlus s t)" | "nPlus r (Plus s t) = (if r = s then (Plus s t) else if le_rexp r s then Plus r (Plus s t) else Plus s (nPlus r t))" | "nPlus r s = (if r = s then r else if le_rexp r s then Plus r s else Plus s r)" lemma lang_nPlus[simp]: "lang (nPlus r s) = lang (Plus r s)" by (induction r s rule: nPlus.induct) auto text \associativity, zero, one\ fun nTimes :: "'a::order rexp \ 'a rexp \ 'a rexp" where "nTimes Zero _ = Zero" | "nTimes _ Zero = Zero" | "nTimes One r = r" | "nTimes r One = r" | "nTimes (Times r s) t = Times r (nTimes s t)" | "nTimes r s = Times r s" lemma lang_nTimes[simp]: "lang (nTimes r s) = lang (Times r s)" by (induction r s rule: nTimes.induct) (auto simp: conc_assoc) primrec norm :: "'a::order rexp \ 'a rexp" where "norm Zero = Zero" | "norm One = One" | "norm (Atom a) = Atom a" | "norm (Plus r s) = nPlus (norm r) (norm s)" | "norm (Times r s) = nTimes (norm r) (norm s)" | "norm (Star r) = Star (norm r)" lemma lang_norm[simp]: "lang (norm r) = lang r" by (induct r) auto primrec nderiv :: "'a::order \ 'a rexp \ 'a rexp" where "nderiv _ Zero = Zero" | "nderiv _ One = Zero" | "nderiv a (Atom b) = (if a = b then One else Zero)" | "nderiv a (Plus r s) = nPlus (nderiv a r) (nderiv a s)" | "nderiv a (Times r s) = (let r's = nTimes (nderiv a r) s in if nullable r then nPlus r's (nderiv a s) else r's)" | "nderiv a (Star r) = nTimes (nderiv a r) (Star r)" lemma lang_nderiv: "lang (nderiv a r) = Deriv a (lang r)" by (induction r) (auto simp: Let_def nullable_iff) lemma deriv_no_occurrence: "x \ atoms r \ nderiv x r = Zero" by (induction r) auto lemma atoms_nPlus[simp]: "atoms (nPlus r s) = atoms r \ atoms s" by (induction r s rule: nPlus.induct) auto lemma atoms_nTimes: "atoms (nTimes r s) \ atoms r \ atoms s" by (induction r s rule: nTimes.induct) auto lemma atoms_norm: "atoms (norm r) \ atoms r" by (induction r) (auto dest!:subsetD[OF atoms_nTimes]) lemma atoms_nderiv: "atoms (nderiv a r) \ atoms r" by (induction r) (auto simp: Let_def dest!:subsetD[OF atoms_nTimes]) end