(* Author: Tobias Nipkow *) section "Regular expressions" theory Regular_Exp imports Regular_Set begin datatype (atoms: 'a) rexp = is_Zero: Zero | is_One: One | Atom 'a | Plus "('a rexp)" "('a rexp)" | Times "('a rexp)" "('a rexp)" | Star "('a rexp)" primrec lang :: "'a rexp => 'a lang" where "lang Zero = {}" | "lang One = {[]}" | "lang (Atom a) = {[a]}" | "lang (Plus r s) = (lang r) Un (lang s)" | "lang (Times r s) = conc (lang r) (lang s)" | "lang (Star r) = star(lang r)" abbreviation (input) regular_lang where "regular_lang A \ (\r. lang r = A)" primrec nullable :: "'a rexp \ bool" where "nullable Zero = False" | "nullable One = True" | "nullable (Atom c) = False" | "nullable (Plus r1 r2) = (nullable r1 \ nullable r2)" | "nullable (Times r1 r2) = (nullable r1 \ nullable r2)" | "nullable (Star r) = True" lemma nullable_iff [code_abbrev]: "nullable r \ [] \ lang r" by (induct r) (auto simp add: conc_def split: if_splits) primrec rexp_empty where "rexp_empty Zero \ True" | "rexp_empty One \ False" | "rexp_empty (Atom a) \ False" | "rexp_empty (Plus r s) \ rexp_empty r \ rexp_empty s" | "rexp_empty (Times r s) \ rexp_empty r \ rexp_empty s" | "rexp_empty (Star r) \ False" (* TODO Fixme: This code_abbrev rule does not work. Why? *) lemma rexp_empty_iff [code_abbrev]: "rexp_empty r \ lang r = {}" by (induction r) auto text\Composition on rhs usually complicates matters:\ lemma map_map_rexp: "map_rexp f (map_rexp g r) = map_rexp (\r. f (g r)) r" unfolding rexp.map_comp o_def .. lemma map_rexp_ident[simp]: "map_rexp (\x. x) = (\r. r)" unfolding id_def[symmetric] fun_eq_iff rexp.map_id id_apply by (intro allI refl) lemma atoms_lang: "w : lang r \ set w \ atoms r" proof(induction r arbitrary: w) case Times thus ?case by fastforce next case Star thus ?case by (fastforce simp add: star_conv_concat) qed auto lemma lang_eq_ext: "(lang r = lang s) = (\w \ lists(atoms r \ atoms s). w \ lang r \ w \ lang s)" by (auto simp: atoms_lang[unfolded subset_iff]) lemma lang_eq_ext_Nil_fold_Deriv: fixes r s defines "\ \ {(fold Deriv w (lang r), fold Deriv w (lang s))| w. w\lists (atoms r \ atoms s)}" shows "lang r = lang s \ (\(K, L) \ \. [] \ K \ [] \ L)" unfolding lang_eq_ext \_def by (subst (1 2) in_fold_Deriv[of "[]", simplified, symmetric]) auto subsection \Term ordering\ instantiation rexp :: (order) "{order}" begin fun le_rexp :: "('a::order) rexp \ ('a::order) rexp \ bool" where "le_rexp Zero _ = True" | "le_rexp _ Zero = False" | "le_rexp One _ = True" | "le_rexp _ One = False" | "le_rexp (Atom a) (Atom b) = (a <= b)" | "le_rexp (Atom _) _ = True" | "le_rexp _ (Atom _) = False" | "le_rexp (Star r) (Star s) = le_rexp r s" | "le_rexp (Star _) _ = True" | "le_rexp _ (Star _) = False" | "le_rexp (Plus r r') (Plus s s') = (if r = s then le_rexp r' s' else le_rexp r s)" | "le_rexp (Plus _ _) _ = True" | "le_rexp _ (Plus _ _) = False" | "le_rexp (Times r r') (Times s s') = (if r = s then le_rexp r' s' else le_rexp r s)" (* The class instance stuff is by Dmitriy Traytel *) definition less_eq_rexp where "r \ s \ le_rexp r s" definition less_rexp where "r < s \ le_rexp r s \ r \ s" lemma le_rexp_Zero: "le_rexp r Zero \ r = Zero" by (induction r) auto lemma le_rexp_refl: "le_rexp r r" by (induction r) auto lemma le_rexp_antisym: "\le_rexp r s; le_rexp s r\ \ r = s" by (induction r s rule: le_rexp.induct) (auto dest: le_rexp_Zero) lemma le_rexp_trans: "\le_rexp r s; le_rexp s t\ \ le_rexp r t" proof (induction r s arbitrary: t rule: le_rexp.induct) fix v t assume "le_rexp (Atom v) t" thus "le_rexp One t" by (cases t) auto next fix s1 s2 t assume "le_rexp (Plus s1 s2) t" thus "le_rexp One t" by (cases t) auto next fix s1 s2 t assume "le_rexp (Times s1 s2) t" thus "le_rexp One t" by (cases t) auto next fix s t assume "le_rexp (Star s) t" thus "le_rexp One t" by (cases t) auto next fix v u t assume "le_rexp (Atom v) (Atom u)" "le_rexp (Atom u) t" thus "le_rexp (Atom v) t" by (cases t) auto next fix v s1 s2 t assume "le_rexp (Plus s1 s2) t" thus "le_rexp (Atom v) t" by (cases t) auto next fix v s1 s2 t assume "le_rexp (Times s1 s2) t" thus "le_rexp (Atom v) t" by (cases t) auto next fix v s t assume "le_rexp (Star s) t" thus "le_rexp (Atom v) t" by (cases t) auto next fix r s t assume IH: "\t. le_rexp r s \ le_rexp s t \ le_rexp r t" and "le_rexp (Star r) (Star s)" "le_rexp (Star s) t" thus "le_rexp (Star r) t" by (cases t) auto next fix r s1 s2 t assume "le_rexp (Plus s1 s2) t" thus "le_rexp (Star r) t" by (cases t) auto next fix r s1 s2 t assume "le_rexp (Times s1 s2) t" thus "le_rexp (Star r) t" by (cases t) auto next fix r1 r2 s1 s2 t assume "\t. r1 = s1 \ le_rexp r2 s2 \ le_rexp s2 t \ le_rexp r2 t" "\t. r1 \ s1 \ le_rexp r1 s1 \ le_rexp s1 t \ le_rexp r1 t" "le_rexp (Plus r1 r2) (Plus s1 s2)" "le_rexp (Plus s1 s2) t" thus "le_rexp (Plus r1 r2) t" by (cases t) (auto split: if_split_asm intro: le_rexp_antisym) next fix r1 r2 s1 s2 t assume "le_rexp (Times s1 s2) t" thus "le_rexp (Plus r1 r2) t" by (cases t) auto next fix r1 r2 s1 s2 t assume "\t. r1 = s1 \ le_rexp r2 s2 \ le_rexp s2 t \ le_rexp r2 t" "\t. r1 \ s1 \ le_rexp r1 s1 \ le_rexp s1 t \ le_rexp r1 t" "le_rexp (Times r1 r2) (Times s1 s2)" "le_rexp (Times s1 s2) t" thus "le_rexp (Times r1 r2) t" by (cases t) (auto split: if_split_asm intro: le_rexp_antisym) qed auto instance proof qed (auto simp add: less_eq_rexp_def less_rexp_def intro: le_rexp_refl le_rexp_antisym le_rexp_trans) end instantiation rexp :: (linorder) "{linorder}" begin lemma le_rexp_total: "le_rexp (r :: 'a :: linorder rexp) s \ le_rexp s r" by (induction r s rule: le_rexp.induct) auto instance proof qed (unfold less_eq_rexp_def less_rexp_def, rule le_rexp_total) end end