(* Author: Tobias Nipkow Copyright 1998 TUM *) section "Automata based scanner" theory AutoMaxChop imports DA MaxChop begin primrec auto_split :: "('a,'s)da => 's => 'a list * 'a list => 'a list => 'a splitter" where "auto_split A q res ps [] = (if fin A q then (ps,[]) else res)" | "auto_split A q res ps (x#xs) = auto_split A (next A x q) (if fin A q then (ps,x#xs) else res) (ps@[x]) xs" definition auto_chop :: "('a,'s)da => 'a chopper" where "auto_chop A = chop (%xs. auto_split A (start A) ([],xs) [] xs)" lemma delta_snoc: "delta A (xs@[y]) q = next A y (delta A xs q)" by simp lemma auto_split_lemma: "!!q ps res. auto_split A (delta A ps q) res ps xs = maxsplit (%ys. fin A (delta A ys q)) res ps xs" apply (induct xs) apply simp apply (simp add: delta_snoc[symmetric] del: delta_append) done lemma auto_split_is_maxsplit: "auto_split A (start A) res [] xs = maxsplit (accepts A) res [] xs" apply (unfold accepts_def) apply (subst delta_Nil[where ?s = "start A", symmetric]) apply (subst auto_split_lemma) apply simp done lemma is_maxsplitter_auto_split: "is_maxsplitter (accepts A) (%xs. auto_split A (start A) ([],xs) [] xs)" by (simp add: auto_split_is_maxsplit is_maxsplitter_maxsplit) lemma is_maxchopper_auto_chop: "is_maxchopper (accepts A) (auto_chop A)" apply (unfold auto_chop_def) apply (rule is_maxchopper_chop) apply (rule is_maxsplitter_auto_split) done end