section \ SI Units \ theory Units imports Groups_mult (* HOL.Fields *) HOL.Transcendental "HOL-Eisbach.Eisbach" begin text\ The International System of Units (SI, abbreviated from the French Système international (d'unités)) is the modern form of the metric system and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the second, metre, kilogram, ampere, kelvin, mole, candela, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities. (cited from \<^url>\https://en.wikipedia.org/wiki/International_System_of_Units\).\ text\ This is an attempt to model the system and its derived entities (cf. \<^url>\https://www.quora.com/What-are-examples-of-SI-units\) in Isabelle/HOL. The design objective are twofold (and for the case of Isabelle somewhat contradictory, see below) The construction proceeds in three phases: \<^enum> We construct a generic type \<^theory_text>\SI_domain\ which is basically an "inner representation" or "semantic domain" of all SI types. Since SI-types have an interpretation in this domain, it serves to give semantics to type-constructors by operations on this domain, too. We construct a multiplicative group on it. \<^enum> From \<^theory_text>\SI_domain\ we build a \<^theory_text>\'a SI_tagged_domain\ types, i.e. a polymorphic family of values tagged with values from \<^theory_text>\SI_domain\. We construct multiplicative and additive groups over it. \<^enum> We construct a type-class characterizing SI - type expressions and types tagged with SI - type expressions; this construction paves the way to overloaded interpretation functions from SI type-expressions to \ section\The Domains of SI types and SI-tagged types\ subsection \ The \<^theory_text>\SI_domain\-type and its operations \ text \ An SI unit associates with each of the seven base unit an integer that denotes the power to which it is raised. We use a record to represent this 7-tuple, to enable code generation. \ record SI_domain = Seconds :: int Meters :: int Kilograms :: int Amperes :: int Kelvins :: int Moles :: int Candelas :: int text \ We define a commutative monoid for SI units. \ instantiation SI_domain_ext :: (one) one begin \ \ Here, $1$ is the dimensionless unit \ definition one_SI_domain_ext :: "'a SI_domain_ext" where [code_unfold]: "1 = \ Seconds = 0, Meters = 0, Kilograms = 0, Amperes = 0 , Kelvins = 0, Moles = 0, Candelas = 0, \ = 1 \" instance .. end instantiation SI_domain_ext :: (times) times begin \ \ Multiplication is defined by adding together the powers \ definition times_SI_domain_ext :: "'a SI_domain_ext \ 'a SI_domain_ext \ 'a SI_domain_ext" where [code_unfold]: "x * y = \ Seconds = Seconds x + Seconds y, Meters = Meters x + Meters y , Kilograms = Kilograms x + Kilograms y, Amperes = Amperes x + Amperes y , Kelvins = Kelvins x + Kelvins y, Moles = Moles x + Moles y , Candelas = Candelas x + Candelas y, \ = more x * more y \" instance .. end instance SI_domain_ext :: (comm_monoid_mult) comm_monoid_mult proof fix a b c :: "'a SI_domain_ext" show "a * b * c = a * (b * c)" by (simp add: times_SI_domain_ext_def mult.assoc) show "a * b = b * a" by (simp add: times_SI_domain_ext_def mult.commute) show "1 * a = a" by (simp add: times_SI_domain_ext_def one_SI_domain_ext_def) qed text \ We also define the inverse and division operations, and an abelian group. \ instantiation SI_domain_ext :: ("{times,inverse}") inverse begin definition inverse_SI_domain_ext :: "'a SI_domain_ext \ 'a SI_domain_ext" where [code_unfold]: "inverse x = \ Seconds = - Seconds x , Meters = - Meters x , Kilograms = - Kilograms x, Amperes = - Amperes x , Kelvins = - Kelvins x, Moles = - Moles x , Candelas = - Candelas x, \ = inverse (more x) \" definition divide_SI_domain_ext :: "'a SI_domain_ext \ 'a SI_domain_ext \ 'a SI_domain_ext" where [code_unfold]: "divide_SI_domain_ext x y = x * (inverse y)" instance .. end print_classes instance SI_domain_ext :: (ab_group_mult) ab_group_mult proof fix a b :: "'a SI_domain_ext" show "inverse a \ a = 1" by (simp add: inverse_SI_domain_ext_def times_SI_domain_ext_def one_SI_domain_ext_def) show "a \ inverse b = a div b" by (simp add: divide_SI_domain_ext_def) qed instance SI_domain_ext :: (field) field proof fix a b :: "'a SI_domain_ext" show "inverse a \ a = 1" sledgehammer by (simp add: inverse_SI_domain_ext_def times_SI_domain_ext_def one_SI_domain_ext_def) show "a \ inverse b = a div b" by (simp add: divide_SI_domain_ext_def) qed subsection \ The \<^theory_text>\SI_tagged_domain\-type and its operations \ record 'a SI_tagged_domain = factor :: 'a unit :: SI_domain instantiation unit :: comm_monoid_add begin definition "zero_unit = ()" definition "plus_unit (x::unit) (y::unit) = ()" instance proof qed (simp_all) end instantiation unit :: comm_monoid_mult begin definition "one_unit = ()" definition "times_unit (x::unit) (y::unit) = ()" instance proof qed (simp_all) end instantiation unit :: inverse begin definition "inverse_unit (x::unit) = ()" definition "divide_unit (x::unit) (y::unit) = ()" instance .. end instantiation SI_tagged_domain_ext :: (times, times) times begin definition "times_SI_tagged_domain_ext x y = \ factor = factor x \ factor y, unit = unit x \ unit y, \ = more x \ more y \" instance .. end instantiation SI_tagged_domain_ext :: (zero, zero) zero begin definition "zero_SI_tagged_domain_ext = \ factor = 0, unit = 1, \ = 0 \" instance .. end instantiation SI_tagged_domain_ext :: (one, one) one begin definition "one_SI_tagged_domain_ext = \ factor = 1, unit = 1, \ = 1 \" instance .. end instantiation SI_tagged_domain_ext :: (inverse, inverse) inverse begin definition "inverse_SI_tagged_domain_ext x = \ factor = inverse (factor x), unit = inverse (unit x), \ = inverse (more x) \" definition "divide_SI_tagged_domain_ext x y = \ factor = factor x / factor y, unit = unit x / unit y, \ = more x / more y \" instance .. end instance SI_tagged_domain_ext :: (comm_monoid_mult, comm_monoid_mult) comm_monoid_mult by (intro_classes, simp_all add: one_SI_tagged_domain_ext_def times_SI_tagged_domain_ext_def mult.assoc, simp add: mult.commute) text \ A base unit is an SI_tagged_domain unit here precisely one unit has power 1. \ definition is_BaseUnit :: "SI_domain \ bool" where "is_BaseUnit u = (\ n. u = 1\Meters := n\ \ u = 1\Kilograms := n\ \ u = 1\Seconds := n\ \ u = 1\Amperes := n\ \ u = 1\Kelvins := n\ \ u = 1\Moles := n\ \ u = 1\Candelas := n\)" section\The Syntax and Semantics of SI types and SI-tagged types\ subsection \ Basic SI-types \ text \ We provide a syntax for type-expressions; The definition of the basic type constructors is straight-forward via a one-elementary set. \ typedef meter = "UNIV :: unit set" .. setup_lifting type_definition_meter typedef kilogram = "UNIV :: unit set" .. setup_lifting type_definition_kilogram typedef second = "UNIV :: unit set" .. setup_lifting type_definition_second typedef ampere = "UNIV :: unit set" .. setup_lifting type_definition_ampere typedef kelvin = "UNIV :: unit set" .. setup_lifting type_definition_kelvin typedef mole = "UNIV :: unit set" .. setup_lifting type_definition_mole typedef candela = "UNIV :: unit set" .. setup_lifting type_definition_candela subsection \ SI-type expressions and SI-type interpretation \ text \ The case for the construction of the multiplicative and inverse operators requires --- thus, the unary and binary operators on our SI type language --- require that their arguments are restricted to the set of SI-type expressions. The mechanism in Isabelle to characterize a certain sub-class of Isabelle-type expressions are \<^emph>\type classes\. We therefore need such a sub-class; for reasons of convenience, we combine its construction also with the "semantics" of SI types in terms of @{typ SI_domain}. \ subsubsection \ SI-type expression definition as type-class \ class si_type = finite + fixes si_sem :: "'a itself \ SI_domain" assumes unitary_unit_pres: "card (UNIV::'a set) = 1" syntax "_SI" :: "type \ logic" ("SI'(_')") translations "SI('a)" == "CONST si_sem TYPE('a)" text \ The sub-set of basic SI type expressions can be characterized by the following operation: \ class si_baseunit = si_type + assumes is_BaseUnit: "is_BaseUnit SI('a)" subsubsection \ SI base type constructors \ text\We embed the basic SI types into the SI type expressions: \ declare [[show_sorts]] instantiation meter :: si_baseunit begin definition si_sem_meter :: "meter itself \ SI_domain" where "si_sem_meter x = 1\Meters := 1\" instance by (intro_classes, auto simp add: si_sem_meter_def is_BaseUnit_def, (transfer, simp)+) end instantiation kilogram :: si_baseunit begin definition si_sem_kilogram :: "kilogram itself \ SI_domain" where "si_sem_kilogram x = 1\Kilograms := 1\" instance by (intro_classes, auto simp add: si_sem_kilogram_def is_BaseUnit_def, (transfer, simp)+) end instantiation second :: si_baseunit begin definition si_sem_second :: "second itself \ SI_domain" where "si_sem_second x = 1\Seconds := 1\" instance by (intro_classes, auto simp add: si_sem_second_def is_BaseUnit_def, (transfer, simp)+) end instantiation ampere :: si_baseunit begin definition si_sem_ampere :: "ampere itself \ SI_domain" where "si_sem_ampere x = 1\Amperes := 1\" instance by (intro_classes, auto simp add: si_sem_ampere_def is_BaseUnit_def, (transfer, simp)+) end instantiation kelvin :: si_baseunit begin definition si_sem_kelvin :: "kelvin itself \ SI_domain" where "si_sem_kelvin x = 1\Kelvins := 1\" instance by (intro_classes, auto simp add: si_sem_kelvin_def is_BaseUnit_def, (transfer, simp)+) end instantiation mole :: si_baseunit begin definition si_sem_mole :: "mole itself \ SI_domain" where "si_sem_mole x = 1\Moles := 1\" instance by (intro_classes, auto simp add: si_sem_mole_def is_BaseUnit_def, (transfer, simp)+) end instantiation candela :: si_baseunit begin definition si_sem_candela :: "candela itself \ SI_domain" where "si_sem_candela x = 1\Candelas := 1\" instance by (intro_classes, auto simp add: si_sem_candela_def is_BaseUnit_def, (transfer, simp)+) end lemma [simp] : "is_BaseUnit SI(meter)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(kilogram)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(second)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(ampere)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(kelvin)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(mole)" by(simp add: Units.si_baseunit_class.is_BaseUnit) lemma [simp] : "is_BaseUnit SI(candela)" by(simp add: Units.si_baseunit_class.is_BaseUnit) subsubsection \ Higher SI Type Constructors: Inner Product and Inverse \ text\On the class of SI-types (in which we have already inserted the base SI types), the definitions of the type constructors for inner product and inverse is straight) forward.\ typedef ('a::si_type, 'b::si_type) UnitTimes (infixl "\" 69) = "UNIV :: unit set" .. setup_lifting type_definition_UnitTimes text \ We can prove that multiplication of two SI types yields an SI type. \ instantiation UnitTimes :: (si_type, si_type) si_type begin definition si_sem_UnitTimes :: "('a \ 'b) itself \ SI_domain" where "si_sem_UnitTimes x = SI('a) * SI('b)" instance by (intro_classes, simp_all add: si_sem_UnitTimes_def, (transfer, simp)+) end text \ Similarly, we define division of two SI types and prove that SI types are closed under this. \ typedef 'a UnitInv ("(_\<^sup>-\<^sup>1)" [999] 999) = "UNIV :: unit set" .. setup_lifting type_definition_UnitInv instantiation UnitInv :: (si_type) si_type begin definition si_sem_UnitInv :: "('a\<^sup>-\<^sup>1) itself \ SI_domain" where "si_sem_UnitInv x = inverse SI('a)" instance by (intro_classes, simp_all add: si_sem_UnitInv_def, (transfer, simp)+) end subsubsection \ Syntactic Support for SI type expressions. \ text\A number of type-synonyms allow for more compact notation: \ type_synonym ('a, 'b) UnitDiv = "'a \ ('b\<^sup>-\<^sup>1)" (infixl "'/" 69) type_synonym 'a UnitSquare = "'a \ 'a" ("(_)\<^sup>2" [999] 999) type_synonym 'a UnitCube = "'a \ 'a \ 'a" ("(_)\<^sup>3" [999] 999) type_synonym 'a UnitInvSquare = "('a\<^sup>2)\<^sup>-\<^sup>1" ("(_)\<^sup>-\<^sup>2" [999] 999) type_synonym 'a UnitInvCube = "('a\<^sup>3)\<^sup>-\<^sup>1" ("(_)\<^sup>-\<^sup>3" [999] 999) translations (type) "'a\<^sup>-\<^sup>2" <= (type) "('a\<^sup>2)\<^sup>-\<^sup>1" translations (type) "'a\<^sup>-\<^sup>3" <= (type) "('a\<^sup>3)\<^sup>-\<^sup>1" print_translation \ [(@{type_syntax UnitTimes}, fn ctx => fn [a, b] => if (a = b) then Const (@{type_syntax UnitSquare}, dummyT) $ a else case a of Const (@{type_syntax UnitTimes}, _) $ a1 $ a2 => if (a1 = a2 andalso a2 = b) then Const (@{type_syntax UnitCube}, dummyT) $ a1 else raise Match | Const (@{type_syntax UnitSquare}, _) $ a' => if (@{print} a' = b) then Const (@{type_syntax UnitCube}, dummyT) $ a' else raise Match | _ => raise Match)] \ subsection \ SI Tagged Types \ text\We 'lift' SI type expressions to SI tagged type expressions as follows:\ typedef (overloaded) ('n, 'u::si_type) Unit ("_[_]" [999,0] 999) = "{x :: 'n SI_tagged_domain. unit x = SI('u)}" morphisms fromUnit toUnit by (rule_tac x="\ factor = undefined, unit = SI('u) \" in exI, simp) text \ Coerce values when their units are equivalent \ definition coerceUnit :: "'u\<^sub>2 itself \ 'a['u\<^sub>1::si_type] \ 'a['u\<^sub>2::si_type]" where "SI('u\<^sub>1) = SI('u\<^sub>2) \ coerceUnit t x = (toUnit (fromUnit x))" section\Operations SI-tagged types via their Semantic Domains\ subsection\Predicates on SI-tagged types\ text \ Two SI types are equivalent if they have the same value-level units. \ definition Unit_equiv :: "'n['a::si_type] \ 'n['b::si_type] \ bool" (infix "\\<^sub>U" 50) where "a \\<^sub>U b \ fromUnit a = fromUnit b" text\This gives us an equivalence, but, unfortunately, not a congruence.\ lemma Unit_equiv_refl [simp]: "a \\<^sub>U a" by (simp add: Unit_equiv_def) lemma Unit_equiv_sym: "a \\<^sub>U b \ b \\<^sub>U a" by (simp add: Unit_equiv_def) lemma Unit_equiv_trans: "\ a \\<^sub>U b; b \\<^sub>U c \ \ a \\<^sub>U c" by (simp add: Unit_equiv_def) (* the following series of equivalent statements ... *) lemma coerceUnit_eq_iff: fixes x :: "'a['u\<^sub>1::si_type]" assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" shows "(coerceUnit TYPE('u\<^sub>2) x) \\<^sub>U x" by (metis Unit_equiv_def assms coerceUnit_def fromUnit toUnit_inverse) (* or equivalently *) lemma coerceUnit_eq_iff2: fixes x :: "'a['u\<^sub>1::si_type]" assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" and "y = (coerceUnit TYPE('u\<^sub>2) x)" shows "x \\<^sub>U y" by (metis Unit_equiv_def assms coerceUnit_def fromUnit toUnit_inverse) lemma updown_eq_iff: fixes x :: "'a['u\<^sub>1::si_type]" fixes y :: "'a['u\<^sub>2::si_type]" assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" and "y = (toUnit (fromUnit x))" shows "x \\<^sub>U y" by (metis Unit_equiv_def assms fromUnit toUnit_inverse) text\This is more general that \y = x \ x \\<^sub>U y\, since x and y may have different type.\ find_theorems "(toUnit (fromUnit _))" lemma eq_ : fixes x :: "'a['u\<^sub>1::si_type]" fixes y :: "'a['u\<^sub>2::si_type]" assumes "x \\<^sub>U y" shows "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" by (metis (full_types) Unit_equiv_def assms fromUnit mem_Collect_eq) subsection\Operations on SI-tagged types\ setup_lifting type_definition_Unit lift_definition Unit_times :: "('n::times)['a::si_type] \ 'n['b::si_type] \ 'n['a \'b]" (infixl "*\<^sub>U" 69) is "(*)" by (simp add: si_sem_UnitTimes_def times_SI_tagged_domain_ext_def) lift_definition Unit_inverse :: "('n::inverse)['a::si_type] \ 'n['a\<^sup>-\<^sup>1]" ("(_\<^sup>-\<^sup>\)" [999] 999) is "inverse" by (simp add: inverse_SI_tagged_domain_ext_def si_sem_UnitInv_def) abbreviation Unit_divide :: "('n::{times,inverse})['a::si_type] \ 'n['b::si_type] \ 'n['a/'b]" (infixl "'/\<^sub>U" 70) where "Unit_divide x y \ x *\<^sub>U y\<^sup>-\<^sup>\" abbreviation Unit_sq ("(_)\<^sup>\" [999] 999) where "u\<^sup>\ \ u *\<^sub>U u" abbreviation Unit_cube ("(_)\<^sup>\" [999] 999) where "u\<^sup>\ \ u *\<^sub>U u *\<^sub>U u" abbreviation Unit_neq_sq ("(_)\<^sup>-\<^sup>\" [999] 999) where "u\<^sup>-\<^sup>\ \ (u\<^sup>\)\<^sup>-\<^sup>\" abbreviation Unit_neq_cube ("(_)\<^sup>-\<^sup>\" [999] 999) where "u\<^sup>-\<^sup>\ \ (u\<^sup>\)\<^sup>-\<^sup>\" instantiation Unit :: (zero,si_type) zero begin lift_definition zero_Unit :: "('a, 'b) Unit" is "\ factor = 0, unit = SI('b) \" by simp instance .. end instantiation Unit :: (one,si_type) one begin lift_definition one_Unit :: "('a, 'b) Unit" is "\ factor = 1, unit = SI('b) \" by simp instance .. end instantiation Unit :: (plus,si_type) plus begin lift_definition plus_Unit :: "'a['b] \ 'a['b] \ 'a['b]" is "\ x y. \ factor = factor x + factor y, unit = SI('b) \" by (simp) instance .. end instance Unit :: (semigroup_add,si_type) semigroup_add by (intro_classes, transfer, simp add: add.assoc) instance Unit :: (ab_semigroup_add,si_type) ab_semigroup_add by (intro_classes, transfer, simp add: add.commute) instance Unit :: (monoid_add,si_type) monoid_add by (intro_classes; (transfer, simp)) instance Unit :: (comm_monoid_add,si_type) comm_monoid_add by (intro_classes; transfer, simp) instantiation Unit :: (uminus,si_type) uminus begin lift_definition uminus_Unit :: "'a['b] \ 'a['b]" is "\ x. \ factor = - factor x, unit = unit x \" by (simp) instance .. end instantiation Unit :: (minus,si_type) minus begin lift_definition minus_Unit :: "'a['b] \ 'a['b] \ 'a['b]" is "\ x y. \ factor = factor x - factor y, unit = unit x \" by (simp) instance .. end instance Unit :: (numeral,si_type) numeral .. instantiation Unit :: (times,si_type) times begin lift_definition times_Unit :: "'a['b] \ 'a['b] \ 'a['b]" is "\ x y. \ factor = factor x * factor y, unit = SI('b) \" by simp instance .. end instance Unit :: (power,si_type) power .. instance Unit :: (semigroup_mult,si_type) semigroup_mult by (intro_classes, transfer, simp add: mult.assoc) instance Unit :: (ab_semigroup_mult,si_type) ab_semigroup_mult by (intro_classes, (transfer, simp add: mult.commute)) instance Unit :: (comm_semiring,si_type) comm_semiring by (intro_classes, transfer, simp add: linordered_field_class.sign_simps(18) mult.commute) instance Unit :: (comm_semiring_0,si_type) comm_semiring_0 by (intro_classes, (transfer, simp)+) instance Unit :: (comm_monoid_mult,si_type) comm_monoid_mult by (intro_classes, (transfer, simp add: mult.commute)+) instance Unit :: (comm_semiring_1,si_type) comm_semiring_1 by (intro_classes; (transfer, simp add: semiring_normalization_rules(1-8,24))) instantiation Unit :: (divide,si_type) divide begin lift_definition divide_Unit :: "'a['b] \ 'a['b] \ 'a['b]" is "\ x y. \ factor = factor x div factor y, unit = SI('b) \" by simp instance .. end instantiation Unit :: (inverse,si_type) inverse begin lift_definition inverse_Unit :: "'a['b] \ 'a['b]" is "\ x. \ factor = inverse (factor x), unit = SI('b) \" by simp instance .. end instantiation Unit :: (order,si_type) order begin lift_definition less_eq_Unit :: "'a['b] \ 'a['b] \ bool" is "\ x y. factor x \ factor y" . lift_definition less_Unit :: "'a['b] \ 'a['b] \ bool" is "\ x y. factor x < factor y" . instance by (intro_classes, (transfer, simp add: less_le_not_le)+) end lift_definition mk_unit :: "'a \ 'u itself \ ('a::one)['u::si_type]" is "\ n u. \ factor = n, unit = SI('u) \" by simp syntax "_mk_unit" :: "logic \ type \ logic" ("UNIT'(_, _')") translations "UNIT(n, 'a)" == "CONST mk_unit n TYPE('a)" subsection \Polymorphic Operations for Elementary SI Units \ named_theorems si_def definition [si_def]: "meter = UNIT(1, meter)" definition [si_def]: "second = UNIT(1, second)" definition [si_def]: "kilogram = UNIT(1, kilogram)" definition [si_def]: "ampere = UNIT(1, ampere)" definition [si_def]: "kelvin = UNIT(1, kelvin)" definition [si_def]: "mole = UNIT(1, mole)" definition [si_def]: "candela = UNIT(1, candela)" subsubsection \The Projection: Stripping the SI-Tags \ definition factorUnit :: "'a['u::si_type] \ 'a" ("\_\\<^sub>U") where "factorUnit x = factor (fromUnit x)" subsubsection \More Operations \ lemma unit_eq_iff_factor_eq: "x = y \ \x\\<^sub>U = \y\\<^sub>U" by (auto simp add: factorUnit_def, transfer, simp) lemma unit_le_iff_factor_le: "x \ y \ \x\\<^sub>U \ \y\\<^sub>U" by (auto simp add: factorUnit_def; (transfer, simp)) lemma factorUnit_zero [si_def]: "\0\\<^sub>U = 0" by (simp add: factorUnit_def, transfer, simp) lemma factorUnit_one [si_def]: "\1\\<^sub>U = 1" by (simp add: factorUnit_def, transfer, simp) lemma factorUnit_plus [si_def]: "\x + y\\<^sub>U = \x\\<^sub>U + \y\\<^sub>U" by (simp add: factorUnit_def, transfer, simp) lemma factorUnit_times [si_def]: "\x * y\\<^sub>U = \x\\<^sub>U * \y\\<^sub>U" by (simp add: factorUnit_def, transfer, simp) lemma factorUnit_div [si_def]: "\x / y\\<^sub>U = \x\\<^sub>U / \y\\<^sub>U" by (simp add: factorUnit_def, transfer, simp) lemma factorUnit_numeral [si_def]: "\numeral n\\<^sub>U = numeral n" apply (induct n, simp_all add: si_def) apply (metis factorUnit_plus numeral_code(2)) apply (metis factorUnit_one factorUnit_plus numeral_code(3)) done lemma factorUnit_mk [si_def]: "\UNIT(n, 'u::si_type)\\<^sub>U = n" by (simp add: factorUnit_def, transfer, simp) method si_calc = (simp add: unit_eq_iff_factor_eq unit_le_iff_factor_le si_def) section \ Some Derived Units \ definition "radian = 1 \ (meter *\<^sub>U meter\<^sup>-\<^sup>\)" definition degree :: "real[meter / meter]" where [si_def]: "degree = (2\(UNIT(pi,_)) / 180)\radian" abbreviation degrees ("_\" [999] 999) where "n\ \ n\degree" definition [si_def]: "litre = 1/1000 \ meter\<^sup>\" definition [si_def]: "pint = 0.56826125 \ litre" definition [si_def]: "milli = UNIT(0.001, _)" definition [si_def]: "kilo = UNIT(1000, _)" definition [si_def]: "hour = 3600 \ second" abbreviation "tonne \ kilo\kilogram" abbreviation "newton \ (kilogram *\<^sub>U meter) /\<^sub>U second\<^sup>\" abbreviation "volt \ kilogram *\<^sub>U meter\<^sup>\ *\<^sub>U second\<^sup>-\<^sup>\ *\<^sub>U ampere\<^sup>-\<^sup>\" abbreviation "watt \ kilogram *\<^sub>U meter\<^sup>\ *\<^sub>U second\<^sup>-\<^sup>\" abbreviation "joule \ kilogram *\<^sub>U meter\<^sup>\ *\<^sub>U second\<^sup>-\<^sup>\" text\The full beauty of the approach is perhaps revealed here, with the type of a classical three-dimensional gravitation field:\ type_synonym gravitation_field = "(real\<^sup>3 \ real\<^sup>3)[meter \ (second)\<^sup>-\<^sup>2]" section \ Tactic Support for SI type expressions. \ lemmas [si_def] = Units.si_sem_meter_def Units.si_sem_kilogram_def Units.si_sem_second_def Units.si_sem_ampere_def Units.si_sem_kelvin_def Units.si_sem_mole_def Units.si_sem_candela_def si_sem_UnitTimes_def si_sem_UnitInv_def times_SI_domain_ext_def one_SI_domain_ext_def (* renaming and putting defs into the rewrite set (which is usually not a good idea) *) lemma "SI(meter) = 1\Meters := 1\" by(simp add: si_def) lemma "SI(kilogram)= 1\Kilograms := 1\" by(simp add: si_def) lemma "SI(second) = 1\Seconds := 1\ " by(simp add: si_def) lemma "SI(ampere) = 1\Amperes := 1\" by(simp add: si_def) lemma "SI(kelvin) = 1\Kelvins := 1\ " by(simp add: si_def) lemma "SI(mole) = 1\Moles := 1\" by(simp add: si_def) lemma "SI(candela) = 1\Candelas := 1\" by(simp add: si_def) lemma "SI(mole \ kelvin \ mole) = SI(kelvin \ (mole)\<^sup>2)" by(simp add: si_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, second) = \factor = x, unit = \Seconds = 1, Meters = 0, Kilograms = 0, Amperes = 0, Kelvins = 0, Moles = 0, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_second_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, meter) = \factor = x, unit = \Seconds = 0, Meters = 1, Kilograms = 0, Amperes = 0, Kelvins = 0, Moles = 0, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_meter_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, kilogram) = \factor = x, unit = \Seconds = 0, Meters = 0, Kilograms = 1, Amperes = 0, Kelvins = 0, Moles = 0, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_kilogram_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, ampere) = \factor = x, unit = \Seconds = 0, Meters = 0, Kilograms = 0, Amperes = 1, Kelvins = 0, Moles = 0, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_ampere_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, kelvin) = \factor = x, unit = \Seconds = 0, Meters = 0, Kilograms = 0, Amperes = 0, Kelvins = 1, Moles = 0, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_kelvin_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, mole) = \factor = x, unit = \Seconds = 0, Meters = 0, Kilograms = 0, Amperes = 0, Kelvins = 0, Moles = 1, Candelas = 0\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_mole_def) lemma [si_def]:"fromUnit UNIT(x::'a::one, candela) = \factor = x, unit = \Seconds = 0, Meters = 0, Kilograms = 0, Amperes = 0, Kelvins = 0, Moles = 0, Candelas = 1\\" by (simp add: mk_unit.rep_eq one_SI_domain_ext_def si_sem_candela_def) lemma Unit_times_commute: fixes X::"'a::{one,ab_semigroup_mult}['b::si_type]"and Y::"'a['c::si_type]" shows "X *\<^sub>U Y \\<^sub>U Y *\<^sub>U X" unfolding Unit_equiv_def by (simp add: Unit_times.rep_eq linordered_field_class.sign_simps(5) times_SI_tagged_domain_ext_def) text\Observe that this commutation law also commutes the types.\ (* just a check that instantiation works for special cases ... *) lemma " (UNIT(x, candela) *\<^sub>U UNIT(y::'a::{one,ab_semigroup_mult}, mole)) \\<^sub>U (UNIT(y, mole) *\<^sub>U UNIT(x, candela)) " by(simp add: Unit_times_commute) lemma Unit_times_assoc: fixes X::"'a::{one,ab_semigroup_mult}['b::si_type]" and Y::"'a['c::si_type]" and Z::"'a['d::si_type]" shows "(X *\<^sub>U Y) *\<^sub>U Z \\<^sub>U X *\<^sub>U (Y *\<^sub>U Z)" unfolding Unit_equiv_def by (simp add: Unit_times.rep_eq mult.assoc times_SI_tagged_domain_ext_def) text\The following weak congruences will allow for replacing equivalences in contexts built from product and inverse. \ lemma Unit_times_weak_cong_left: fixes X::"'a::{one,ab_semigroup_mult}['b::si_type]" and Y::"'a['c::si_type]" and Z::"'a['d::si_type]" assumes "X \\<^sub>U Y" shows "(X *\<^sub>U Z) \\<^sub>U (Y *\<^sub>U Z)" by (metis Unit_equiv_def Unit_times.rep_eq assms) lemma Unit_times_weak_cong_right: fixes X::"'a::{one,ab_semigroup_mult}['b::si_type]" and Y::"'a['c::si_type]" and Z::"'a['d::si_type]" assumes "X \\<^sub>U Y" shows "(Z *\<^sub>U X) \\<^sub>U (Z *\<^sub>U Y)" by (metis Unit_equiv_def Unit_times.rep_eq assms) lemma Unit_inverse_weak_cong: fixes X::"'a::{field}['b::si_type]" and Y::"'a['c::si_type]" assumes "X \\<^sub>U Y" shows "(X)\<^sup>-\<^sup>\ \\<^sub>U (Y)\<^sup>-\<^sup>\" unfolding Unit_equiv_def by (metis Unit_equiv_def Unit_inverse.rep_eq assms) text\In order to compute a normal form, we would additionally need these three:\ (* field ? *) lemma Unit_inverse_distrib: fixes X::"'a::{field}['b::si_type]" and Y::"'a['c::si_type]" shows "(X *\<^sub>U Y)\<^sup>-\<^sup>\ \\<^sub>U X\<^sup>-\<^sup>\ *\<^sub>U Y\<^sup>-\<^sup>\" sorry (* field ? *) lemma Unit_inverse_inverse: fixes X::"'a::{field}['b::si_type]" shows "((X)\<^sup>-\<^sup>\)\<^sup>-\<^sup>\ \\<^sub>U X" unfolding Unit_equiv_def sorry (* field ? *) lemma Unit_mult_cancel: fixes X::"'a::{field}['b::si_type]" shows "X /\<^sub>U X \\<^sub>U 1" unfolding Unit_equiv_def sorry lemma Unit_mult_mult_Left_cancel: fixes X::"'a::{field}['b::si_type]" shows "(1::'a['b/'b]) *\<^sub>U X \\<^sub>U X" unfolding Unit_equiv_def apply transfer unfolding Unit_equiv_def sorry lemma "watt *\<^sub>U hour \\<^sub>U 3600 *\<^sub>U joule" unfolding Unit_equiv_def hour_def apply(simp add: Units.Unit_times.rep_eq si_def zero_SI_tagged_domain_ext_def times_SI_tagged_domain_ext_def inverse_SI_tagged_domain_ext_def Unit_inverse_def Unit_times_def) find_theorems fromUnit oops thm Units.Unit.toUnit_inverse lemma "watt *\<^sub>U hour \\<^sub>U 3.6 *\<^sub>U kilo *\<^sub>U joule" oops end