
BS EN 50128:2011
Incorporating corrigendum February 2014

Railway applications —
Communication,signalling
and processing systems —
Software for railway control
and protection systems

®

bsi. ..making excellence a habit?

BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 50128:2011,
incorporating corrigendum February 2014. It supersedes

BS EN 50128:2001 which is withdrawn.

It should be noted that this standard is presently undergoing further
revision to expandits remit to cover software applications within

the context of the whole railway system, including, but notlimited
to, rolling stock, fixed installations as well as signalling systems.
Whenrevisedit is planned that EN 50128 will becomea part of the

new suite of EN 50126 railway standards.

The UK participation in its preparation was entrusted by Technical
Committee GEL/9, Railway Electrotechnical Applications to Subcommittee

GEL/9/1, Railway Electrotechnical Applications - Signalling and
communications.

A list of organizations represented on this subcommittee can be
obtained on request to its secretary.

This publication does not purport to includeall the necessary

provisions of a contract. Users are responsible forits correct

application.

TheBritish StandardsInstitution 2014. Published by BSI Standards

Limited 2014

ISBN 978 0 580 86207 6

ICS 35.240.60; 45.020; 93.100

Compliance with a British Standard cannot confer immunity from

legal obligations.

This British Standard was published underthe authority of the

Standards Policy and Strategy Committee on 31 July 2011.

Amendments/corrigenda issued since publication

Date Text affected

30 April 2014 Implementation of CENELEC corrigendum February

2014: DOW date extended to 2017-04-25 in the

EN Foreword

BS EN 50128:2011

EUROPEAN STANDARD EN 50128

NORME EUROPEENNE

EUROPAISCHE NORM June 2011

Incorporating corrigendum February 2014

ICS 35.240.60; 45.020; 93.100

English version

Railway applications-

Communication, signalling and processing systems-

Software for railway control and protection systems

Applications ferroviaires - Bahnanwendungen-

Systémesde signalisation, de Telekommunikationstechnik,

télecommunication et de traitement- Signaltechnik und

Logiciels pour systemes de commandeet Datenverarbeitungssysteme -

de protection ferroviaire Software für Eisenbahnsteuerungs- und
Überwachungssysteme

This European Standard was approved by CENELEC on 2011-04-25. CENELEC members are bound to

comply with the CEN/CENELECInternal Regulations which stipulate the conditions for giving this European

Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on

application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other

language madebytranslation under the responsibility of a CENELEC memberinto its own language and

notified to the Central Secretariat has the samestatus asthe official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia,

Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,

Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC
European Committee for Electrotechnical Standardization

Comité Européen de Normalisation Electrotechnique

Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2011 CENELEC - All rights of exploitation in any form and by any meansreserved worldwide for CENELEC members.

Ref. No. EN 50128:2011 E

BS EN 50128:2011
EN 50128:2011 -2-

Contents

FOREWOK |IPRFUNNNNERENRERREEURNEIHENEEE ESSETERSETENLESSESREROLLTTULRCEEETTELRFECLLCEOLLLOELELLITLLLELTITERETTRTETEETTLELTERTTTEPELTSERFETFFERTFRORRRTENT ER6

INGFODUGCTION :occcscesescverevecsnersvexcreseenereswaaecexwnannaunnenennnnemennceuntsnaanHEEn7

1 Son...anne10

2 Normativerreferencesu...nn11

3 Terms, definitions and abbreviations............uussunnennnnnnnnennnnnnnnnnnnnnnennnnnnnnnnnnnnnnnensnsnnennnnnnnnnnnnsnnnernennnnnenn 11

3.1 Terms and definitions.....nnnenenenne11

3.2 Abbreviations...........:ccccsossssssressssecsnsnensnvnse sth ves sansacndaasinavedususenvunanavanuavensavevansenbdsibupenssanaasnaavaneeauadenns 15

4 Objectives, conformance and software safety integrity levelsnersersesseonennnonnnnnnnnnnnnenennnnennnnn anne 16

5 Software management and organisation.....nuesnesnsennsnnnennennennnnnnennnnnnnnnnnnnnsnnnnnsnennnennnnnnnnnnnnnnnennnnnnsnnenen 17

5.1 Organisation, roles and responsibilities200.200220020000000000020000000000000000000RnnR nen nenn nennennennen 17

5.2 Personnel COMPECCENCE.ccesececcessseseececssecccneessceccessnsnccausesnucecssensaucceuanecsceesessccessenseaseessanscesnsasseessnsesaess 20

5.3 Lifecycle issues and documentationzursnenneannnnnennnnonennnnnennnnnnnnnnnnnnnnnnnennnnnnnnnennnnnnsnnnannnnnnnannnnnnnann 21

6 Softwaresassuranesenseenarenaerueren 23

6.1 Software testingccscsssesssssesssssesescessrecsesessessessonsonsrnesnessasaniscnssessesscensoesonensesnasensasassensussesseersesenasenersaes 23

6.2 Software Verification.ccssccsssccssesessseessseesscerssceesssnessecesesncessecsessnseeeeeceecseeeesseeseseeseseeesaessssaesnaesenaeeass 25

6.3 Software Validationcccscccssscsssseeseeeeeeneeeeneeeeseeeeseaesaneeuenseesesueseseesesseesnseeeesseesesaeeessaeseaesessaeseeeeseneeeeas 27

6.4 Software aSSCSSMENL ai sscsssssssseciicicacsseccevesesesscccsensssneccransercnccanenscosnsunsnansestsaevensecannseesnsecendestersecaseneceeensens 28

6.5 Software quality ASSUTANCEsaa eeeeeeeecessesssnsnsnnsteeeeeeeeeeensossnsnsnnsssssenssesennnnnnanenannnannassssssssqceneceneneeneeseesennsnay 30

6.6 Modification and Change CONtrOl...........csccssesceessssseesseesecsteesseeneeessneeeesnanseaeseaeeneeeseenseeeseaseseeneeeaensas 33

6.7 Support tools and languages..........ccesceccesssesssssssssssensssssorsensssseenenseseneesersensensesaessesesaeeasanenenanensaenerses 34

7 Generic software development..........:csscsecsesseeeseeseessesscesssenseeseessnessessseseseensaeseauensessneesnessneensensonenas 37

7.1 Lifecycle and documentation for generic Software ...ueunsnrserennnrnnnnnnnnennnnennnnnennnnnnnnennunnnnnnnnnnnsnnnnennannen 37

7.2 Software requirements........nussuennennnonnnnnnnnennnnnnnnnnnnnnnnnnnnnnnnnnnnnennensennnnnnnnnnnnnnnnnnnrnnnnnnsnnnnnnsnnnnnsnsnnnansannsens 37

7.3 Architecture and Design........unssssannennnnnnennnnnnnnnnnnnnnnenennnnnnnnnnnnnennsnnnnnnennnnntnnnnnsnnnnnsnennnnnnnnsnnsnensnsnnssnnnaenen 40

7.4 Component designsunsnnennnnnnnnnnnnnnnnnnnnnnnernnnnnnnennnnnnnnnnnnnnnnennnnnnnnennnansnnnsnnsnnnnnnnsnnssnnnnnsrnsnnnesnnssnernnnnnnne 46

7.5 Component implementation and testingusssr222000200n2n0nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnesnnnsnsnnnnsannnen 49

7.6 Integration.cccccecceeeseeeceseseseseneneessensaeeeseeessesssneeseeseseeesanenaeeeaaesseesneseseseneaseauseesseussessaeeeeesaesesesnensaneaaes 50

7.7 Overall Software Testing / Final Validationccccssceseessrsseeeseeeseseseneneeseeseeennenseeesnensaeseaeensensaesanens 52

8 Development of application data or algorithms: systems configured by application data or

AIQOTICHIMS..........cccceceeeeeeeceeeeeeeeeeeeeseneeesaecaeseusessenseeaeeoeeateaeeneeassansesaeeansassensenessesaneesuseanecevsesneuauseesenaesersensess 54

BS EN 50128:2011
-3- EN 50128:2011

8.1. ODjCCUVESszene01a54

8.2 Input documents...nennenEEE55

8.3 Output documentsuuuu440usnnnonnnnnnnnennnnnnnnnnnnnannnnnnnnenssnnnnnnnnnnnnnsnnsnsnnsnnnnnnannnsnnnnensnsnnnsnnnsnnnnnsannensnnnnnnnn 55

8.4 REQUITEMENHS sisecccesicccsesececnecencarermunsnencenseneearenee nen se eeveneverssevesesuscessanncauvavesvrsusareeuseseveneoeserennatnensaseeeentsnnsa® 55

9 Software deployment and maintenance......unsunesnonsnnsnnnensnnunnnnunnnnnnnnnnnunnnnsnnnnnnnnnnnnnnnnnnnensnnnnnennnnnnnnnnnnnnn 60

9:1 Software:deployment....onen60

9.2 Software maintenance..........uunsonnennennnenennonnennnennnnnnnnunnnnnnnnnnnnnnnnnnnnnnnnnnnnsnesnnersnnrennnsnnsnnnnssnnnnnarnernnneennnnnn 62

Annex A (normative) Criteria for the Selection of Techniques and Measures.......uuesusesenenosnenennnnnennennnnnne 65

A.1 Clausestables.................useessssseseesnenesnnnesneneennnnennnnenennennnnnn nennen ernennen nennen nennen ennnennn66

A2 Detälledtäbles....umesssonsnneeerenenennEEERIEETEERE13

Annex B (normative) Key software roles and responsibilities.............222200022202400200020n0000000000000000 00000 Bo nnnn 00 79

Annex C (informative) Documents Control Summaryursuusssssennsnnnennonnnnnnnnnnunnennannnsnnnnonnnsnsnnnnnnonnsannnnnnsnnnne 88

Annex (informative) Bibliography of techniques........nuusrssonssnsnnunnnnnnnnnnnanunnnnnnnnonnnnnnnunnunnnnnnnnnnnennnnnnnnannnnnn 90

D.1 Artificial Intelligence Fault Correction.......................4.44srs ner nnnersnnnnsnnennnnnnennnen nennen essen nennen 90

D.2 Analysable Programs...................rsennennennesnneennnnnensnnnnnnnnnennen nennen nennen nennen ennernnnn anne 90

D.3 Avalanche/Stress Testing.......................4ussmeeneessennnnsssnnnnnennnnnnnenennenne nennen nennnnnnnennnnnnnnnnnnn 91

D4 Bolndary Valle ANalySISnrseesinmunn1011111111012111291

BS Backward Recoven.....u...usacmenn1111IH aa BcecScrCI.92

D.6 Cause Consequence Diagrams................uuuussssseeeessneneenennnnnnnenesnnnneneennnnneenennnennernnnnnnenen nennen nnen 92

D.7 Checklists................0.ssseesseneenesnnnneensennnneensnnnnennnnnnnnnennnnnnenennennnarennnnnnensnnnnnnnerrnnnnnsnnnnnnnnr nn nnnn 92

D.8 Göniröl Flow AnalySiSissuasssesuunsanemnam111enentaNennnEacenanEeeeeRNETEE 93

D.9 Common CauseFailure Analysis..............442444sH4nessnensenensnnnnennneennnenennnennnn nenne nennen nnnetrnnn nenn 93

D.10 Data Flow Analysis................--2224444nsnnneeeesessnsnnnnnnnnnnnenennennsennnnnennnnnnnnnnenensnnnnnnnnsnnnnnnnnnesnen ernennen nennen 94

D.11 Data Flow Diagrams............2eccesseseeseesenenennenenesssssssnnnnennennnnenenesensenennnnnnnnnnnensenssnsnnnnnanennnnnnessnnnnnnnnnnn 94

BD.12 Data Recardıng and Analysıs.nennenmereman ec aemourneneumnenie 95

D,18 Decision Tablés:(Truth Tables)....u.emeunn95

D.14 Defensive Programming..................24444sssnseenessnnenenennnennnsnnneenenennnnnnenenennnnenennnnnnernnnnnneennnnnentnnenn 96

D.15 Coding Standards and Style Guide...cece cece eeccceceececceeeeeeeeseeeeeseeeesseeeesseesssseeenseeeneeeeesees 96

D.16 Diverse Programming a:::::00s00RR1707kackcıe197

D.17 Dynamic Reconfiguration...............uusressesssnensennseneessnnensnnnennnneennnnnsnnennen nennennennen98

D.18 Equivalence Classes and Input Partition Testing....................ueseeeeneeeeseenneeenseennnennennnnennnnn 98

D.19 Error Deteeting’and Correcting COS.neu98

D.20 Error Guessing..........uessessssnnnnensssennnnnsnnnnnnsnnnnnnnnnnnnnnnnnnnsnnnnnnnnsnsnnnnnnsnennnnnnnsnnnnnnesnnneesnnnnnenennnnen 99

D.21 Error Seeding..................20snneesneeennenensnneennneeennnnerenneennenennnnnnennnnenennnennnnenennnerennennnnennnneneesnnnenan 99

D.22 Event Tree Analysiseeesesnssnneennnenennnennnneenenneeenennenennennenennnnneneeneeneenensnnesnnennnnennnnnan 99

D.23 Fagan INSHECIONScesses 000000HUB1E111111111 1111111011107 111mPDFIIS 100

D.24 Failure Assertion Programming...............2.4424444 204er nnneennneeenneeennneenenennnneennnneneenenennnenennennnennn 100

D.25 SEEA - Software Error Effect Analysis................20002400cseennnnennennnnnnnennnnnnnnnnenennnnnnnnnnnenennnnennnnn 100

D.26 Fault Detection and Diagnosis...................00ssenesnnneesnenensnnennnneennnnnnnnennnnenenennnneennnn nennen 101

D.27 Finite State Machines/State Transition Diagrame....................c:cccccessceccssnnsssecenseccseessseceasseveeaseess 102

D.28 FormalMethods...BERNER 102
D.29 Formal Proof...............usessesessesssnssennnnnnnnnnnnnennnnnenennnnnennnnnnnnnnnnnennnnnnnnnnnnnnnnnnnennnnnnnenne nennen 108

Un

BS EN 50128:2011
EN 50128:2011 -4-

D.30 Forward RECOVETY...........cccccccssssesssesseesseceseceseecsssesetecsescaesesesessscsesessesesesuscssesesevsuessaeesueeneessesseeeaeee 108

D.31 Graceful Degradation...ccc ccccccccceceseesseeeseessessseesseessesssescssessessseesseesasssussatecstecsesesssveseseesece 108

DiS2. IMPACHANAIYSIS;nennen1111121111111 U 1111011110111UCT109

D.33 Information Hiding / Encapsulationc0ccccccccccccccsseessecssessssecsecesecseeesessaesssecsecessecseesetecseessesses 109

D.34 Interface TeSting cc cccceceeeeeceteecseeeeseeseeecesesseessecsessesesevsesseesseseecaessessessuseessateseesaesessessaeeseees 110

D.35 Language Subset...ccc cece cece cece ce ceseess sees sseusssssesssesssaeeessssecssssessesecsesecssesesseeesteesseesesees 110

B36 Memorising Executed Gasesaannn110

DESH (MSCS scr cr seisaseaaennanTnEEeTRTREREnETRETE 111

D.38 Modular Approach.ccccccccccccccceccccsscseeeeeessesesueeesssesessescsssessssessssaesessseesseecseseecseessseeserstessineseees 111

D.39 Performance Modellingcccccccccccccccceeseeseseceesssesesseescsseecsseseesseecsseessesessssessetectstseseeetsesenseees 112

D.40 Performance Requirements...11111Da112

BD:41 Probabilistie TESUNMG:susanneannVBEen113

D.42 Process Simulation oo... ccccceccccceeeseceeessecsecseseeeesessesueessessesssessessesssssapesesssesascsecsesseeesseseesaeees 113

D.43 Prototyping / Animation...cccceceeceeceeesceeeeeceeseeesseeceseeesesseesssseecssescseeccsseeessectseesteeeseeee 114

D:44, RECOVERY BIOCK vescceccezoseuavessemsausnesvavenqenenerestextuanasee.sgntnas/enn cp eneulvensiae aencuswanivsacgxi wuss TanisawaanSoteaeoewlse 114

D.45 Response Timing and Memory Constraints......................0eneeennnneneeneen 114

D.46 Re-Try Fault Recovery Mechanisms.:ccccccecceeseeeseeeseesstecseeeecessecaeeeseeeseesseeeseessseceeesseesees 115

DAS Safety! BAG evecesnmrensnwayesncnanmumeneaeenasmnananmnnnammnennainemreraseuTREO115

D.48 Software Configuration Management..............cccccccccececcesseessseeeesseecssescsseeeseeeseeeeeseeeesseseneeetsaeeed 115

D.49 Strongly Typed Programming Languages...............cc ccc ccccccssceessecssesssesecsuecesseeesseeessesecteeeesseee 118

D.50 Structure Based Testing ccc cccccscccseceeceeseesecssecneeeeseessecnseeeseeeseesseeseseteeseesieeeneeeteesieseeeees 116

D:;51 Structure DiagramiS..ussnen11111116

D.52 Structüred Meihodalsgy....0n0011110101öD-aRRmERIE 117

D.53 Structured ProgrammMing..........cccsecceenscesesscscsnesersenncesasennesnsteesssnsseeecessstesceecseeaeensseneeteanenaeeoneeneten 117

D.54 Suitable Programming languages.ccccccceeeceeeeeeeteceteeeneeeeneeseteeesteesneesneeesiessnresteeseneeees 118

D.55 Time Petri Nets.............uersnneeesneeeennenennensnenennnnennnnnnneennnnnnnnne nennen nnnn nee nnnnrnnnsn none nn nnnnn ren 119

D.56 Walkthroughs / DesignReviews...119

D.57 Object Oriented Programming.................24444s44Hnnensnnnensnnenennnnnnnnensnnenennnen nneennn nnnnnnn 119

D.58 Traceability................ueeeeeeessssnnnnnnenennnennnnnnnnnnnnnnnnnnnnnnnnnnnenensnnnnnnnnnnnnnnnenensnnnnnnnnnannenneennnnnnnnnnn 120

D.59 Metaprogramming.........eeseessesneessnneesnnnnsnnennnnnnnnne nennen ennnen nennen nenne nnnnennnenennnersnnernnnen 121

D:60 Procedural PFOIAMMING a..u::045500RR121

| D:61 Sequential FunetionChantssammenIT121

| D.62 LadderDiagrameeeenenneneennennen 122

D.63 Functional Block Diagram....................0004440eseeeeeeensenenneeeenensessnsnnnnnnenenenennsnnnnennnnennen nennennn 122

Di64 State: Chartier State: Diagramm.11012111110————122

Bi65 Batamedellig.mau.enIE122

D.66 Control Flow Diagram/Control Flow Graph..............useuussesessnneesssnnnennnnnenennnnennnennnnne nennen 123

D:67 SEguENCEdagraMı.u.nun124

D:68: Tabular Specification Methods...0HL124

D.69 Application specific language.................uuuu0ssennnneessnnnnennnnnnennnnnneennnnnnnnnenersnnen nennen rennen nenn 124

D.70 UML (Unified Modeling Language).................u0useecssenneeeesnennnensnnneenennnnenneennenee nennen nennen 125

Dall (DOMAIN SPCC IANQUAGESSusesm126

BiblioGrapHyy..=2c0c:EueranmendeneeENTE Ew NINEEEGTETTT SSN RREROUNTTOTERSARRoEAnaeeneRieened 127

BS EN 50128:2011

-5- EN 50128:2011

Figures

Figure 1-= Illustrative Software: ROUTE MAR.uneuen9

Figure 2 - Illustration of the preferred organisational structure...............ueeneeennenennenennnnon 18

Figure 3 - Illustrative DevelopmentLifecycle 1..................224244202nsesnennennennensennennnenneenennensnennnnsnsnsnnnnnn nennen 22

Figure 4 - Illustrative Development Lifecycle 2...uneeennn23

Tables

Table 1 - Relation betweentool class and applicable sub-clauses....................4444snnnnensennnnnereennnnnennnennen nn 37

Table A.1- Lifecycle Issues and Documentation (5.3)cececee eescessecseeeneeenseessesessesneeeeeesneeetseenseeteeeen 66

Table: A.2 = Software: Requirements Speeificätion(7.2)...68

Table A.3 — Software Architecture (7.3)..........ccccccceccecceeeeeeeeeeeeesneeeeeceeeeeeeesnaeeeeectsseecessseseeeeesnssseeeeseseaeereseesiea69

Table A.4- Software Design and Implementation (7.4)................244424se4nnnsnnennnnnneenenennenennesnnennnesnnennnensnnenennnn70

Table A:5 = Verification and Testing (6.2 and 7.3)... u.neeunaann71

Table A:6 — Integration (7.6)::.:.:sux0000000000 mama 0011210110 111121112121110u—71

Table A.7 - Overall Software Testing (6.2 and 7.7)................44444444400nnneennnnenennnnennnennnennnnnnnensnennnennnnssnnennnenenennn71

Table A.8 — Software Analysis Techniques(6.3)............u.sssnsensnnnnsnnnernonnessnennnnnannennennennessnnessnnnesnnnnesnnnesnnnen 72

Table A:9: — Software Quality Assurance (6.5)...neuunun72

Table A.10 — Software Maintenance(9.2)0.22044nennneeesnnnersnnensnnnnnnnnn nennen nennen nnnnnnnnnnnnennnneennnnennnnne 72

Table A.11 — Data Preparation Techniques(8.4)................0000nnunnnennnennnennnnnnnnennennnnnnnennnnennnsnennnnesenenennnenn 73

Table:A.12 - Coding Standards...arzz—7.3

Table A.13 = Dynamic:Analysis and Testing...nunnennen74

Table A.14 — Functional/Black Box Test.........................2400ssnnnnnenennennnnenennnnnnensnnnnnenennnnnnnennennnnnenennnnnnen rn74

Table A.15 — Textual Programming Languages.............. ccc ceeeececeeeceseecesnseecssseseesueecnsesessuesenseesessaeeesseseneerens 75

Table A.16 — Diagrammatic Languagesfor Application Algorithmsuu224444224s22nnennnneennnneeenneennnne 75

Table A.17 — Modellingccccccccceccecceceeeceeceeeeeeeececeeeeeeceeneeeeeseseseeeeesesseeeeesseeeeectesaeeeeceseeeeeeeenneseeeeeneseeeeeesea 76

Table A.18 — Performance TeSting0...cccceecceeescecctteeeeneeeseneeceeeeeeseeeseneeesneeessieessnseeessaeeessreesneeesenesenteeeeees76

TableA,19- Static Analysis...u...mmemanmmeneenananessnooennsunenrmemeneneens76

Table A.20 - Componentsusesensensenenseneenneeeennnnnnnnn nennennnnnnennen nn sennsnennnannnn1

Table A.21 — Test Coverage for Code...................444cnneesenensnnnsnnnennnnennnnennnneennnnen nennen enter nennen77

Table A.22 - Object Oriented Software Architecture....................244444 nee snesesnnnennnnenennnesennen nennen nennen78

Table: A.23 Object Oriented Detailed Design...wemmenseumenranmnsnevsusosrssannerresmemncnavonannnesncnamnes 78

Table B.1 — Requirements.ManagerRole Specification..................u.enennennnnnneennennnnen nennen nennen79

Table B.2 - Designer Role Specification......................44nsssnnenennnnnnnnensnnneennnennnnennnnennnnnennnnennnnennnnen nenn nenne 80

Table B.3-- Implementer Role Specification.........-......+...nee81

Table B.4 - Tester Role Specification44ss2200s0nnnnerssneennnnenennen nennen ernennen nennen nennen nennen82

Table B.5 — Verifier Role Specification.......................2s4ss4seseeesesnsnennnnnnnnnenennenssnnnnnnnnennnenennenennnnnnnenennn nennen 83

Table B.6 — Integrator Role Specificationc. cc ccccscccceeeseeceeeeeeeeeceseeneeeeeesaaeeeeneqnseeeenenaaeeesenaeeserseseeeeeeeas 84

Table B.7 -Validator Role Specification.... u...suneeuneennn85

Table B.8 — Assessor Role Specification.....................200sss0neeesssnneeensnnnnnnennnnnnnennnnnneeennnnnnenen nennen een nenn 86

Table B.9 - Project Manager Role Specification......................2444444seennenennenensneensnneenenenennen87

Table B.10 — Configuration Manager Role SPECHICAHON seenonenoneanmacvsmanennencervewmnenscieeememmeemceeemnnane 87

Table’C 1 = Documents; Control SUHNANnm88

ERE

mW

BS EN 50128:2011
EN 50128:2011 =6

Foreword

This European Standard was prepared by SC 9XA, Communication, signalling and processing systems, of
Technical Committee CENELEC TC 9X, Electrical and electronic applicationsfor railways..

It was submitted to the Formal Vote and was approved by CENELEC as EN 50128 on
2011-04-25.

This document supersedes EN 50128:2001.

The main changeswith respect to EN 50128:2001are listed below:

* requirements on software management and organisation, definition of roles and competencies,
deployment and maintenance have been added:

° a new clauseontools has beeninserted, based on EN 61508-2:2010;

e tables in Annex A have been updated.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN and CENELECshall not be held responsible for identifying any or all such patent rights.

Thefollowing dates were fixed:

- latest date by which the EN hasto be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2012-04-25

- latest date by which the national standards conflicting. : 2017-04-25with the EN haveto be withdrawn (dow)

This European Standard should be read in conjunction with EN 50126-1:1999 "Railway applications —
The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) — Part 7:
Basic requirements and generic process” and EN 50129:2003 "Railway applications - Communication,
signalling and processing systems — Safety related electronic systemsfor signalling".

BS EN 50128:2011
ens EN 50128:2011

Introduction

This European Standard is part of a group of related standards. The others are EN 50126-1:1999 "Railway
applications — The specification and demonstration of Reliability, Availability, Maintainability and Safety

(RAMS) - Part 1: Basic requirements and generic process’ and EN 50129:2003 "Railway applications —

Communication, signalling and processing systems — Safety related electronic systems for signalling".

EN 50126-1 addresses system issues on the widest scale, while EN 50129 addresses the approval process

for individual systems which can exist within the overall railway control and protection system. This European

Standard concentrates on the methods which need to be used in order to provide software which meets the
demandsfor safety integrity which are placed uponit by these wider considerations.

This European Standard provides a set of requirements with which the development, deployment and
maintenance of any safety-related software intended for railway control and protection applications shall

comply. It defines requirements concerning organisational structure, the relationship between organisations
and division of responsibility involved in the development, deployment and maintenanceactivities. Criteria for
the qualification and expertise of personnel are also providedin this European Standard.

The key concept of this European Standard is that of levels of software safety integrity. This European
Standard addresses five software safety integrity levels where O is the lowest and 4 the highest one.
The higherthe risk resulting from softwarefailure, the higher the software safety integrity level will be.

This European Standard has identified techniques and measures for the five levels of software safety

integrity. The required techniques and measures for software safety integrity levels 0-4 are shown in the
normative tables of Annex A.In this version, the required techniquesfor level 1 are the sameasforlevel2,

and the required techniquesfor level 3 are the sameas for level 4. This European Standard does not give
guidance on which level of software safety integrity is appropriate for a given risk. This decision will depend

upon manyfactors including the nature of the application, the extent to which other systems carry out safety
functions and social and economicfactors.

It is within the scope of EN 50126-1 and EN 50129 to define the process of specifying the safety functions
allocated to software.

This European Standard specifies those measures necessary to achieve these requirements.

EN 50126-1 and EN 50129 require that a systematic approachbe taken to

a) identify hazards, assessing risks and arriving at decisions based onriskcriteria,

b) identify the necessary risk reduction to meet the risk acceptancecriteria,

c) define an overall System Safety Requirements Specification for the safeguards necessary to achieve the
required risk reduction,

d) select a suitable system architecture,

e) plan, monitor and control the technical and managerialactivities necessary to translate the System Safety
Requirements Specification into a Safety-Related System of a validated safety integrity.

As decomposition of the specification into a design comprising safety-related systems and components takes
place, further allocation of safety integrity levels is performed. Ultimately this leads to the required software
safety integrity levels.

The current state-of-the-art is such that neither the application of quality assurance methods (so-called fault
avoiding measures and fault detecting measures) nor the application of software fault tolerant approaches
can guarantee the absolute safety of the software. There is no known wayto prove the absenceoffaults in
reasonably complex safety-related software, especially the absenceof specification and design faults.

BS EN 50128:2011
EN 50128:2011 -8-

The principles applied in developing high integrity software include, but are not restricted to

— top-down design methods,

modularity,

- verification of each phaseof the developmentlifecycle,

— verified components and componentlibraries,

= clear documentation and traceability,

- auditable documents,

- validation,

- assessment,

- configuration management and change control and

- appropriate consideration of organisation and personnel competencyissues.

The System Safety Requirements Specification identifies all safety functions allocated to software and

determines their system safety integrity level. The successive functional steps in the application of this

European Standard are shownin Figure 1 and are asfollows:

a) define the Software Requirements Specification and in parallel consider the software architecture.

The software architecture is where the safety strategy is developed for the software and the software

safety integrity level (7.2 and 7.3);

b) design, develop and test the software according to the Software Quality Assurance Plan, software safety

integrity level and the softwarelifecycle (7.4 and 7.5);

c) integrate the software on the target hardware andverify functionality (7.6);

d) accept and deploy the software (7.7 and 9.1);

e) if software maintenance is required during operational life then re-activate this European Standard as

appropriate (9.2).

A numberof activities run across the software development. These include testing (6.1), verification (6.2),

validation (6.3), assessment(6.4), quality assurance (6.5) and modification and changecontrol(6.6).

Requirements are given for support tools (6.7) and for systems which are configured by application data or

algorithms (Clause 8).

Requirements are also given for the independenceof roles and the competenceofstaff involved in software

development(5.1, 5.2 and Annex B).

This European Standard does not mandate the useof a particular software developmentlifecycle. However,

illustrative lifecycle and documentation sets are given in 5.3, Figure 3 and Figure 4 andin 7.1.

Tables have been formulated ranking various techniques/measures against the software safety integrity

levels 0-4. The tables are in Annex A. Cross-referenced to the tables is a bibliography giving a brief

description of each technique/measure with referencesto further sources of information. The bibliography of

techniquesis in Annex D.

Obtain System Requirements Specification,
System Safety Requirements Specification
System Architecture Description and System

Safety Plan for the system

Identify all the safety functions allocated to the
software

Reviewall safety functions allocated to the

software and determine the Software Safety
Integrity Level

Produce the Software Requirements
Specification and the Software Architecture

Specification

Design, develop and verify/test the software
according to the Software Quality Assurance
Plan, Software Safety Integrity Level and the

Software Lifecycle

Perform the Software Validation and hand
over to system engineers

Operationallife of the system

Software Maintenance

Figure 1 — Illustrative Software Route Map

BS EN 50128:2011
EN 50128:2011

BS EN 50128:2011
EN 50128:2011 - 10-

1 Scope

1.1 This European Standard specifies the process and technical requirements for the development of
software for programmable electronic systems for use in railway control and protection applications. It is
aimed at use in any area where there are safety implications. These systems can be implemented using
dedicated microprocessors, programmablelogic controllers, multiprocessordistributed systems,larger scale
central processor systemsor other architectures.

1.2 This European Standard is applicable exclusively to software and the interaction between software and
the system of whichit is part.

1.3 This European Standard is not relevant for software that has been identified as having no impact on
safety, i.e. software of which failures cannot affect any identified safety functions.

1.4 This European Standard applies to all safety related software used in railway control and protection
systems,including

- application programming,

- operating systems,

- support tools,

= firmware.

Application programming comprises high level programming, low level programming and special purpose

programming (for example: Programmable logic controller ladderlogic).

1.5 This European Standard also addressesthe use of pre-existing software and tools. Such software may
be used,if the specific requirements in 7.3.4.7 and 6.5.4.16 on pre-existing software andfortools in 6.7 are
fulfilled.

1.6 Software developed according to any version of this European Standard will be considered as compliant
and not subject to the requirements on pre-existing software.

1.7 This European Standard considers that modern application design often makes use of generic software

that is suitable as a basis for various applications. Such generic software is then configured by data,
algorithms, or both, for producing the executable software for the application. The general Clauses 1 to 6 and
9 of this European Standard apply to generic software as well as for application data or algorithms. The

specific Clause 7 applies only for generic software while Clause 8 provides the specific requirements for

application data or algorithms.

1.8 This European Standard is not intended to address commercial issues. These should be addressed as
an essential part of any contractual agreement. All the clauses of this European Standard will need careful
consideration in any commercial situation.

1.9 This European Standard is not intended to be retrospective. It therefore applies primarily to new
developments and only applies in its entirety to existing systemsif these are subjected to major modifications.
For minor changes, only 9.2 applies. The assessor has to analyse the evidences provided in the software

documentation to confirm whether the determination of the nature and scope of software changes is
adequate. However, application of this European Standard during upgrades and maintenance of existing

softwareis highly recommended.

BS EN 50128:2011

-11- EN 50128:2011

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced

document(including any amendments) applies.

EN 50126-1:1999 Railway applications — The specification and demonstration of Reliability, Availability,
Maintainability and Safety (RAMS) — Part 1: Basic requirements and generic process

EN 50129:2003 Railway applications - Communication, signalling and processing systems —
Safety related electronic systemsfor signalling

EN ISO 9000 Quality management systems — Fundamentals and vocabulary (ISO 9000:2005)

EN ISO 9001 Quality management systems — Requirements (ISO 9001:2008)

ISO/IEC 90003:2004 Software engineering — Guidelines for the application of ISO 9001:2000 to computer
software

ISO/IEC 9126 series Software engineering — Product quality

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposesof this document, the following terms and definitions apply.

3.1.1
assessment
processof analysis to determine whether software, which mayinclude process, documentation, system,

subsystem hardware and/or software components, meets the specified requirements and to form a
judgementas to whetherthe softwareisfit for its intended purpose. Safety assessment is focused on but not

limited to the safety properties of a system

3.1.2
assessor
entity that carries out an assessment

3.1.3
commercialoff-the-shelf (COTS) software
software defined by market-driven need, commercially available and whosefitness for purpose has been
demonstrated by a broad spectrum of commercial users

3.1.4
component

a constituent part of software which has well-defined interfaces and behaviour with respect to the software
architecture and design andfulfils the following criteria:

— itis designed according to “Components” (see Table A.20);

— it covers a specific subset of software requirements;

- itis clearly identified and has an independentversion inside the configuration management system oris
a part of a collection of components (e. g. subsystems) which have an independentversion

BS EN 50128:2011
EN 50128:2011 #125

3.1.5
configuration manager
entity that is responsible for implementing and carrying out the processes for the configuration management
of documents, software and related tools including change management

3.1.6
customer

entity which purchasesa railway control and protection system including the software

3.1.7
designer
entity that analyses and transforms specified requirements into acceptable design solutions which have the
required safety integrity level

3.1.8
entity

person, group or organisation whofulfils a role as defined in this European Standard

3.1.9
error, fault

defect, mistake or inaccuracy which could result in failure or in a deviation from the intended performance or
behaviour

3.1.10
failure
unacceptable difference between required and observed performance

3.1.11
fault tolerance
built-in capability of a system to provide continued correct provision of service as specified, in the presence of

a limited number of hardware or software faults

3.1.12
firmware
software stored in read-only memory or in semi-permanent storage such as flash memory, in a waythatis
functionally independentof applicative software

3.1.13
generic software
software which can be usedfor a variety of installations purely by the provision of application-specific data

and/or algorithms

3.1.14
implementer

entity that transforms specified designs into their physical realisation

3.1.15
integration
process of assembling software and/or hardware items, according to the architectural and design
specification, and testing the integrated unit

3.1.16
integrator

entity that carries out software integration

3.1.17
pre-existing software
software developed prior to the application currently in question, including COTS (commercial off-the shelf)

and open source software

3.1.18
open source software
source code available to the general public with relaxed or non-existent copyright restrictions

BS EN 50128:2011
- 13 - EN 50128:2011

3.1.19
programmable logic controller

solid-state control system which has a user programmable memory for storage of instructions to implement

specific functions

3.1.20
project management
administrative and/or technical conductof a project, including safety aspects

3.1.21
project manager
entity that carries out project management

3.1.22
reliability
ability of an item to perform a required function under given conditions for a given period of time

3.1.23
robustness

ability of an item to detect and handle abnormal situations

3.1.24
requirements manager

entity that carries out requirements management

3.1.25
requirements management
the process of eliciting, documenting, analysing, prioritising and agreeing on requirements and then

controlling change and communicating to relevant stakeholders. It is a continuous process throughout a

project

3.1.26
risk

combination of the rate of occurrence of accidents and incidents resulting in harm (caused by a hazard) and
the degree of severity of that harm

3.1.27
safety
freedom from unacceptablelevels of risk of harm to people

3.1.28
safety authority
body responsible for certifying that safety related software or services comply with relevant statutory safety

requirements

3.1.29
safety function
a function that implements a part or whole of a safety requirement

3.1.30
safety-related software
software which performssafety functions

3.1.31
software
intellectual creation comprising the programs, procedures, rules, data and any associated documentation
pertaining to the operation of a system

3.1.32
software baseline
complete and consistent set of source code, executable files, configuration files, installation scripts and

documentation that are needed for a software release. Information about compilers, operating systems, pre-
existing software and dependenttools is stored as part of the baseline. This will enable the organisation to

BS EN 50128:2011
EN 50128:2011 - 14 -

reproduce defined versions and be the input for future releases at enhancements or at upgrade in the
maintenance phase

3.1.33
software deployment
transferring, installing and activating a deliverable software baseline that has already been released and
assessed

3.1.34
softwarelife-cycle
those activities occurring during a period of time that starts when software is conceived and ends whenthe
software is no longer available for use. The softwarelifecycle typically includes a requirements phase, design
phase,test phase, integration phase, deployment phase and a maintenance phase

3.1.35
software maintainability
capability of the software to be modified; to correct faults, improve performanceorotherattributes, or adaptit
to a different environment

3.1.36
software maintenance
action, or set of actions, carried out on software after deployment with the aim of enhancing or correctingits
functionality

3.1.37
software safety integrity level
classification number which determines the techniques and measuresthat have to be applied to software

NOTE Safety-related software has beenclassified into five safety integrity levels, where 0 is the lowest and 4 the highest.

3.1.38
supplier
entity that designs and builds a railway control and protection system including the software or parts thereof

3.1.39
system safety integrity level
classification numberwhichindicates the required degree of confidence that an integrated system comprising
hardware and software will meetits specified safety requirements

3.1.40

tester
an entity that carries out testing

3.1.41
testing
process of executing software under controlled conditions as to ascertain its behaviour and performance
comparedto the corresponding requirements specification

3.1.42
tool class T1
generates no outputs which can directly or indirectly contribute to the executable code (including data) of the
software

NOTE 11 examples include: a text editor or a requirement or design support tool with no automatic code generation capabilities;
configuration control tools.

3.1.43
tool class T2
supports the test or verification of the design or executable code, where errors in the tool can fail to reveal
defects but cannot directly create errors in the executable software

NOTE T2 examplesinclude: a test harness generator; a test coverage measurementtool; a static analysis tool.

BS EN 50128:2011
- 15 - EN 50128:2011

3.1.44
tool class T3
generates outputs which can directly or indirectly contribute to the executable code (including data) of the
safety related system

NOTE T3 examples include: a source code compiler, a data/algorithms compiler, a tool to change set-points during system
operation; an optimising compiler where the relationship between the source code program and the generated object code is not
obvious; a compiler that incorporates an executable run-time package into the executable code.

3.1.45
traceability
degree to which relationship can be established between two or more products of a development process,
especially those having a predecessor/successor or master/subordinate relationship to one another

3.1.46
validation
process of analysis followed by a judgment based on evidence to determine whether an item (e.g. process,
documentation, software or application) fits the user needs,in particular with respect to safety and quality and
with emphasis on the suitability of its operation in accordanceto its purposeinits intended environment

3.1.47
validator
entity that is responsible for the validation

3.1.48
verification
process of examination followed by a judgment based on evidence that output items (process,
documentation, software or application) of a specific development phasefulfils the requirements of that
phase with respect to completeness, correctness and consistency

NOTE Verification is mostly based on document reviews (design, implementation, test documents etc.).

3.1.49
verifier
entity that is responsible for one or more verification activities

3.2 Abbreviations

For the purposesof this document, the following abbreviations apply.

ASR Assessor

COTS Commercialoff-the-shelf

DES Designer

HR Highly Recommended

IMP Implementer

INT Integrator

JSD Jackson System Development Method

M Mandatory

MASCOT Modular Approachto Software Construction, Operation and Test

NR Not Recommended

PM Project Manager

R Recommended

RAMS Reliability, Availability, Maintainability and Safety

BS EN 50128:2011
EN 50128:2011 - 16 -

RQM Requirements Manager

SDL Specification and Description Language

SFC Sequential Function Charts

SIL Safety Integrity Level

SOM Service Oriented Modeling

SSADM Structured Systems Analysis & Design Methodology

TST Tester

V&V Verification and Validation

VAL Validator

VER Verifier

4 Objectives, conformanceandsoftware safety integrity levels

4.1 The allocation of safety-related system functions to software, as well as software interfaces, shall be
identified in the system documentation. The system in which the software is embeddedshall be fully defined
with respect to the following:

- functions and interfaces;

- application conditions;

- configuration or architecture of the system;

- hazardsto be controlled;

- safety integrity requirements;

- apportionment of requirements and allocation of SIL to software and hardware;

— timing constraints

NOTE Theallocation of safety integrity requirements may lead to different SIL for well-separated software and hardware parts of a
subsystem. This allocation depends on the contribution of the software and hardware parts of the subsystem to the safety-related
functions and on the mechanismsforthe failure mitigation including the separation of function with different SIL.

4.2 The software safety integrity shall be specified as one offive levels, from SIL 0 (the lowest) to SIL 4 (the

highest).

4.3 The required software safety integrity level shall be decided and assessed at system level, on the basis
of the system safety integrity level and the level of risk associated with the use of the software in the system.

4.4 At least the SILO requirements of this European Standard shall be fulfilled for the software part of
functions that have a safety impact below SIL 1. This is because uncertainty is present in the evaluation of
the risk, and evenin the identification of hazards. In the face of uncertainty it is prudent to aim for a low level
of safety integrity, represented by SIL 0, rather than none.

4.5 To conform to this European Standard it shall be shown that each of the requirements has been

satisfied to the software safety integrity level defined and therefore the objective of the sub-clause in question
has been met.

4.6 Where a requirement is qualified by the words "to the extent required by the software safety integrity
level", this indicates that a range of techniques and measuresshall be usedto satisfy that requirement.

4.7 Where 4.6 is applied, tables from normative Annex A shall be used to assist in the selection of
techniques and measures appropriate to the software safety integrity level. The selection shall be

BS EN 50128:2011

- 1 - EN 50128:2011

documented in the Software Quality Assurance Plan or in another document referenced by the Software

Quality Assurance Plan. Guidanceto these techniquesis given in the informative Annex D.

4.8 If a technique or measure which is ranked as highly recommended (HR)in the tables is not used, then

the rationale for using alternative techniques shall be detailed and recorded either in the Software Quality

Assurance Plan or in another document referenced by the Software Quality Assurance Plan. This is not

necessary if an approved combination of techniques given in the corresponding table is used. The selected

techniques shall be demonstrated to have been applied correctly.

4.9 If a technique or measure is proposed to be used that is not contained in the tables then its

effectiveness and suitability in meeting the particular requirement and overall objective of the sub-clause shall

be justified and recorded in either the Software Quality Assurance Plan or in another documentreferenced by

the Software Quality Assurance Plan.

4.10 Compliance with the requirements of a particular sub-clause andtheir respective techniques and

measures detailed in the tables shall be verified by the inspection of documents required by this European

Standard. Where appropriate, other objective evidence, auditing and the witnessing of tests shall also be

taken into account.

5 Software managementand organisation

5.1 Organisation, roles and responsibilities

5.1.1 Objective

5.1.1.1. To ensurethat all personnel who have responsibilities for the software are organised, empowered

and capable offulfilling their responsibilities.

5.1.2 Requirements

5.1.2.1 Asa minimum, the supplier shall implement the parts of EN ISO 9001 dealing with the organisation

and managementof the personnel and responsibilities.

5.1.2.2 Responsibilities shall be compliant with the requirements defined in Annex B.

5.1.2.3. The personnel assignedto the roles involved in the developmentor maintenanceof the software

shall be named and recorded.

5.1.2.4 An Assessorshall be appointed by the supplier, the customeror the Safety Authority.

5.1.2.5 The Assessorshall be independent from the supplier or, at the discretion of the Safety Authority, be

part of the supplier’s organisation or of the customer’s organisation.

5.1.2.6 The Assessorshall be independentfrom the project.

5.1.2.7. The Assessorshall be given authority to perform the assessmentof the software.

5.1.2.8 The Validator shall give agreement/disagreementfor the software release.

5.1.2.9 Throughout the Software Lifecycle, the assignmentof roles to persons shall be in accordance with

5.1.2.10 to 5.1.2.14, to the extent required by software SIL.

BS EN 50128:2011
EN 50128:2011 - 18 -

Fe ee ee SERS SRE Ee: NE ee SEN SO. OR RO|

1 - '
1 | PM | I
1 | ggg
I I i i I

SIL3 & SIL41 | ——— 2 :
| RQM, DES, IMP | | INT, TST | VER | VAL i?
leaseaSeeeeaaa--!1

| az
I PM | I
I | - oe . | I

I : :
SIL1 & SIL2, 4 i i

| RQM,DES, IMP INT, TST = VER, VAL!
_____-ILL2...>'

FL oz. zz jo. nnnn j [ns [jo jonon7

I . | 1

I PM | I
I a nn I

I
SILO 1 | a

I| RQM, DES, IMP _ INT, TST,VER, VAL |
seesae =eel

Key 7 ; :

|
|

| can be the same person

|

l I can be the same organization

shall report to the Project Manager

nnnnnauunnnuen
can report to the Project Manager

| — shall not report to the Project Manager
|
|

| PM Project Manager ASR Assessor

RQM Requirements Manager Ne Integrator

TST Tester

DES Designer VER Verifier

IMP Implementer VAL Validator

| independence requirements

Figure 2 — Illustration of the preferred organisational structure

NOTE Figure 2 is onlyillustrative for the preferred organisational structure.

| NOTE For the role of the Configuration Manager, see Table B.10, there are no |

1
1 | 1
1 | ASR 1

Ieee1

, t
I - I| ase ||
_______I

ey
1 I
1 ASR 1
1 I

BS EN 50128:2011
-19- EN 50128:2011

5.1.2.10 The preferred organisational structure for SIL 3 and SIL is:

a) Requirements Manager, Designer and Implementerfor a software component can be the sameperson.
b) Requirements Manager, Designer and Implementer for a software component shall report to the Project

Manager.
c) Integrator and Tester for a software component can be the sameperson.
d) Integrator and Tester for a software componentcan report to the Project Manageror to the Validator.
e) Verifier can report to the Project Managerorto the Validator.
f) Validator shall not report to the Project Manageri.e. the Project Manager shall have no influence on the

validator’s decisions but the validator informs the Project Manager abouthis decisions.
g) A person who is Requirements Manager, Designer or Implementerfor a software componentshall neither

be Tester nor Integrator for the same software component.
h) A person whois Integrator or Tester for a software componentshall neither be Requirements Manager,

Designer nor Implementerfor the same software component.
i) A person whois Verifier shall neither be Requirements Manager, Designer, Implementer, Integrator,

Tester nor Validator.
j) A person whois Validator shall neither be Requirements Manager, Designer, Implementer, Integrator,

Tester norVerifier.
k) A person whois Project Manager can additionally perform the roles of Requirements Manager, Designer,

Implementer, Integrator, Tester or Verifier providing that the requirements for the independence between
these additional roles are respected.

|) Project Manager, Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and

Validator can belong to the same organization.
m) The assessor shall be independent and organisationally independent from the roles of Project Manager,

Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and Validator.

However, the following options may apply:

n) A person whois Validator may also perform the role of Verifier, but still maintaining independence from
the Project Manager.In this case the Verifier’s output documents shall be reviewed by another competent
person with the samelevel of independence asthe Validator. This organisational option shall be subject to
Assessor's approval.

0) A person whois Verifier may also perform the role of Integrator and Tester, in which case the role of
Validator shall check the adequacy of the documented evidence from integration and testing with the
specified verification objectives, hence maintaining two levels of checking within the project organisation.

5.1.2.11 The preferred organisational structure for SIL 1 and SIL 2 is:

a) Requirements Manager, Designer and Implementer for a software component can be the same person

andshall report to the Project Manager.

b) Integrator and Tester for a software component can be the same person.

c) Integrator and Tester for a software componentcanreport to the Project Managerorto the Validator.
d) Verifier and Validator can be the same person.
e) Verifier and Validator can report to the Project Manager.

f) A person who is Requirements Manager, Designer or Implementer for a software componentshall be
neither Tester nor Integrator for the same software component.

g) A person whois Integrator or Tester for a software component shall neither be Requirements Manager,
Designer nor Implementerfor the same software component.

h) A person whois Verifier or Validator shall neither be Requirements Manager, Designer, Implementer,
Integrator nor Tester.

i) A person who is a Project Manager can additionally perform the roles of Requirements Manager,
Designer, Implementer, Integrator, Tester, Verifier or Validator provided that the requirements for the
independence betweenthese additional roles are respected.

j) Project Manager, Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and
Validator can belong to the same organization.

k) The assessor shall be independent and organisationally independent from the roles of Project Manager,
Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and Validator.

BS EN 50128:2011
EN 50128:2011 -20-

However, the following options can apply:

|) A person whois Verifier may also perform the role of Integrator and Tester, in which case the role of
Validator shall include reviewing the Verifier’s output documents hence maintaining two levels of checking
within the project organisation.

m)A person whois Validator may also perform the role of Verifier, Integrator and Tester. In this case the
Verifier's output documents shall be reviewed by another competent person with the same level of
independenceasthe Validator. This organisational option shall be subject to Assessor’s approval.

5.1.2.12 The preferred organisational structure for SIL is:

a) Requirements Manager, Designer and Implementer for a software component can be the same person
and shall be managed by the Project Manager.

b) Integrator, Tester, Verifier and Validator for a software component can be the sameperson.
c) Integrator, Tester, Verifier and Validator can be managed by the Project Manager.
d) A person who is Requirements Manager, Designer or Implementer for a software component shall be

neither Tester nor Integrator for the same software component. =
e) A person whois Verifier or Validator shall neither be Requirements Manager, Designer, nor Implementer.
f) A person whois Project Manager can additionally perform the roles of Requirements Manager, Designer,

Implementer, Integrator, Tester, Verifier or Validator providing that the requirementsfor the independence
betweenthese additional roles are respected.

g) Project Manager, Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and
Validator can belong to the sameorganization.

h) The assessor shall be independent and organisationally independentfrom the roles of Project Manager,
Requirements Manager, Designer, Implementer, Integrator, Tester, Verifier and Validator.

However, the following alternatives can apply:

i) Requirements Manager, Designer, Implementer, Integrator and Tester can be the same person.
j) The Validator and Verifier can also be the same person;
k) A person whois Verifier or Validator shall neither be Requirements Manager, Designer, nor Implementer.

5.1.2.13 The roles Requirements Manager, Designer and Implementer for one component can perform the
roles Tester and Integrator for a different component.

5.1.2.14 The roles of the Verifier and the Validator shall be defined at the project level and shall remain
unchanged throughout the developmentproject.

5.2 Personnel competence

5.2.1 Objectives

5.2.1.1 To ensure that all personnel who haveresponsibilities for the software are competent to discharge
those responsibilities by demonstrating the ability to perform relevant tasks correctly, efficiently and

consistently to a high quality and under varying conditions.

5.2.2 Requirements

5.2.2.1 The key competencies required for each role in the software developmentare defined in Annex B. If
additional experience, capabilities or qualifications are required for a role in the softwarelife cycle, these shall

be defined in the Software Quality Assurance Plan.

5.2.2.2 Documented evidence of personnel competence, including technical knowledge, qualifications,
relevant experience and appropriate training, shall be maintained by the supplier's organisation in order to
demonstrate appropriate safety organisation.

5.2.2.3 The organisation shall maintain procedures to manage the competence of personnel to suit
appropriate roles in accordanceto existing quality standards.

BS EN 50128:2011
-21- EN 50128:2011

5.2.2.4 Onceit has been proved to the satisfaction of an assessor or by a certification that competence has

been demonstrated for all personnel appointed in various roles, each individual will need to show continuous

maintenance and development of competence. This could be demonstrated by keeping a logbook showing
the activity is being regularly carried out correctly, and that additional training is being undertaken in

accordancewith EN [SO 9001 and ISO/IEC 90003:2004, 6.2.2 “Competence, awareness and training".

§.3 Lifecycle issues and documentation

§.3.1 Objectives

5.3.1.1 To structure the developmentof the software into defined phases and activities.

5.3.1.2 To record all information pertinent to the software throughout the lifecycle of the software.

§.3.2 Requirements

5.3.2.1 A lifecycle model for the development of software shall be selected. It shall be detailed in the

Software Quality Assurance Plan in accordance with 6.5.

Two examplesoflifecycle models are shown in Figure 3 and Figure 4.

5.3.2,2 Thelifecycle model shall take into account the possibility of iterations n and between phases.

5.3.2.3 Quality Assurance procedures shall run in parallel with lifecycle activities and use the same

terminology.

5.3.2.4 The Software Quality Assurance Pian, Software Verification Plan, Software Validation Plan and

Software Configuration Management Plan shall be drawn up at the start of the project and maintained
throughout the software developmentlife cycle.

5.3.2.5 All activities to be performed during a phase shail be defined and planned prior to the

commencementof the phase.

5.3.2.6 All documents shall be structured to allow continued expansion in parallel with the development

process.

5.3.2.7 For each document, traceability shall be provided in terms of a unique reference number and a

defined and documentedrelationship with other documents.

§.3.2.8 Each term, acronym or abbreviation shail have the same meaning in every document.If, for historical
reasons,this is not possible, the different meanings shall be listed and the references given.

5.3.2.9 Except for documents relating to pre-existing software (see 7.3.4.7), each documentshall be written

according to the following rules:

- it shall contain or implement all applicable conditions and requirements of the preceding document with
whichit has a hierarchical relationship;

~ it shall not contradict the preceding document.

5.3.2.10 Each item or concept shall be referred to by the same nameor description in every document.

5.3.2.11 The contents of all documents shall be recorded in a form appropriate for manipulation, processing

and storage.

§.3.2.12 When documents which are produced by independent roles are combined into a single document,
the relation to the parts produced by any independentrole shall be traced within the document.

BS EN 50128:2011
EN 50128:2011 -22-

5.3.2.13 Documents may be combined or divided in accordance with 5.3.2.12. Some development steps
may be combined,divided or, when justified, eliminated, at the discretion of the Project Managerand with the
agreement of the Validator.

5,3.2.14 Where anyalternative lifecycle or documentation structure is adopted it shall be established that it
meets all the objectives and requirements of this European Standard.

DESIGN AND TEST DOCUMENTS VERIFICATION ACTIVITIES PHASE

 System Requirements Specification
System Safety Requirements Specification
System Architecture Description
System Safety Plan and V&V Plan

 Overall Software Test
Specification

Software Requirements
Specification

 Software Requirements

Software Requirements Verification

Software Architecture Specification Software Architecture

Software Architecture Verification

Software Design Specification
Software Interfaces Specification

Software, Software/Hardware
integration Test Specification

Software Design

Software. Design Verification

Software Component

Design Specification

Lo

Software Component
Test Specification Software Component Design

Software Component Design Verification

Software Source Cade and

suppotting documentation Component Implementation
and Testing

Softwi nent Test Report tee naeoftware Component Test Repo Source Code Verification

Software integration Test Report

Software Integration
Software/Hardware Integration Test
Report

Overall Software Test Report

m Software Validation Software Validation

Software Deployment Documents Software Deployment

Software Maintenance Documents Software Maintenance

Software assessmentis an externat activity and
can be performed during the wholelife-cycle

Figure 3 - Hiustrative Development Lifecycle 1

BS EN 50128:2011

- 23 - EN 50128:2011

:
System Development Phase (external) Ian. 7 u
= [Software Maintenance Phase (9.2)

System Requirements Specilicalion

System Safety Requirements Specification
System Architecture Description

System Salety Plan Plan

|Software Maintenance Records

‚Software Change Records

|SoNware Assessment Plan

Software Assessment Report
Software Requirements Phase (7.2) :

Software Validation Phase (7.7)
Isoftware Requirements Specification

Overall Sofiware Test Specification Overall Soliware Test Report
N - Soltware Validation Report
‚Software Requirements Verification Report |

Software Planning Phase a

Software Quality Assurance Plan Sofia Ancts & Design Phat?.s)
Soflware Configuration ManagementPlan

Sofiware Verification Plan
Soliware Validation Plan

Software MaintenancePlan

Software Architecture Specification Software Integration Phase (7.6)

Software Design Specification
Software Interface Specification

Software Integration Test Specification
‚Software’Hardware Integration Test

'Specification

—>Soltware Integration Test Report |

| Software Hardware Integration Test Report |

\Software Integration Verification Report

Software Architecture and Design

Verification Report

N
|Softw are Component Design Phase (7.4

= ‘Software Compunent Testing Phase (7.5)

Sofware Component Design Specification
Software ComponentTest Specilication Sallmare Compiinenit Test Report

 |Soltware Source Code Verification Report Software Component Design Verification

[Report
Software Component Implementation Phase (7.5)

Software Source Code & Supporting Documentation

Figure 4 — Illustrative DevelopmentLifecycle 2

6 Software assurance

6.1 Software testing

6.1.1 Objective

6.1.1.1 The objective of software testing, as performed by the Tester and/or Integrator, is to ascertain the

behaviour or performance of software against the corresponding test specification to the extent achievable by
the selected test coverage.

6.1.2 Input documents

1) All necessary System, Hardware and Software Documentation as specified in the Software Verification
Plan.

a

BS EN 50128:2011
EN 50128:2011 24 =

6.1.3 Output documents

1) Overall Software Test Specification

2) Overall Software Test Report

3) Software Integration Test Specification

4) Software Integration Test Report

5) Software/Hardware Integration Test Specification

6) Software/HardwareIntegration Test Report

7) Software Component Test Specification

8) Software Component Test Report

6.1.4 Requirements

6.1.4.1 Tests performed by other parties such as the Requirements Manager, Designer or Implementer,if
fully documented and complying with the following requirements, may be acceptedbythe Verifier.

6.1.4.2 Measurement equipment used for testing shall be calibrated appropriately. Any tools, hardware or
software, used for testing shall be shownto be suitable for the purpose.

6.1.4.3 Software testing shall be documented by a Test Specification and a Test Report, as defined in the
following.

6.1.4.4 Each Test Specification shall documentthe following:

a) test objectives;

b) test cases, test data and expected results;

c) types of tests to be performed;

d) test environment, tools, configuration and programs;

e) test criteria on which the completion of the test will be judged;

f) the criteria and degree of test coverage to be achieved;

g) the roles and responsibilities of the personnel involved in the test process;

h) the requirements which are covered bythe test specification;

|
i) the selection and utilisation of the software test equipment;

6.1.4.5 A Test Report shall be produced asfollows:

a) the Test Report shall mention the Tester names, state the test results and whether the test objectives and
test criteria of the Test Specification have been met. Failures shall be documented and summarized;

b) test cases and their results shall be recorded, preferably in a machine-readable form for subsequent
analysis;

c) tests shall be repeatable and, if practicable, be performed by automatic means;

d) test scripts for automatic test execution shall be verified;

e) the identity and configuration of all items involved (hardware used, software used, equipment used,
equipmentcalibration, as well as version information of the test specification) shall be documented;

f) an evaluation of the test coverage and test completion shall be provided and any deviations noted.

BS EN 50128:2011
- 25 - EN 50128:2011

6.2 Software verification

6.2.1 Objective

6.2.1.1 The objective of software verification is to examine and arrive at a judgment based on evidence that
output items (process, documentation, software or application) of a specific development phasefulfil the
requirements and plans with respect to completeness, correctness and consistency. These activities are
managedby the Verifier.

6.2.2 Input documents

1) All necessary System, Hardware and Software Documentation.

6.2.3 Output documents

1) Software Verification Plan

2) Software Verification Report(s)

3) Software Quality Assurance Verification Report

6.2.4 Requirements

6.2.4.1 Verification shall be documentedby at least a Software Verification Plan and one or more (process-
related) Verification Reports.

6.2.4.2 A Software Verification Plan shall be written, under the responsibility of the Verifier, on the basis of
the necessary documentation.

Requirements from 6.2.4.3 to 6.2.4.9 refer to the Software Verification Plan.

6.2.4.3 The Software Verification Plan shall describe the activities to be performed to ensure proper
verification and that particular design or otherverification needs are suitably providedfor.

6.2.4.4 During development (and depending uponthe size of the system) the plan may be sub-divided into a
numberof child documents and be addedto, as the detailed needsofverification becomeclearer.

6.2.4.5 The Software Verification Plan shall documentall the criteria, techniques and tools to be usedin the
verification process. The Software Verification Plan shall include techniques and measures chosen from
Table A.5, Table A.6, Table A.7 and Table A.8. The selected combination shall be justified as a set satisfying
4.8, 4.9 and 4.10.

6.2.4.6 The Software Verification Plan shall describe the activities to be performed to ensure correctness
and consistency with respectto the input to that phase. These include reviewing, testing and integration.

6.2.4.7 In each development phase it shall be shown that the functional, performance and safety
requirements are met.

6.2.4.8 The results of each verification shall be retained in a format defined or referenced in the Software
Verification Plan.

6.2.4.9 The Software Verification Plan shall address the following:

a) the selection of verification strategies and techniques (to avoid undue complexity in the assessmentof the
verification and testing, preference shall be given to the selection of techniques which are in themselves
readily analysable);

b) selection of techniques from Table A.5, Table A.6, Table A.7 and Table A.8;

ss

BS EN 50128:2011
EN 50128:2011 - 26 -

c) the selection and documentation of verification activities;

d) the evaluation of verification results gained;

e) the evaluation of the safety and robustness requirements;

f) the roles and responsibilities of the personnelinvolvedin the verification process;

g) the degree of the functional based test coverage required to be achieved;

h) the structure and content of each verification step, especially for the Software Requirement Verification
(7.2.4.22), Software Architecture and Design Verification (7.3.4.41, 7.3.4.42), Software Components
Verification (7.4.4.13), Software Source Code Verification (7.5.4.10) and Integration Verification (7.6.4.13)
in a waythatfacilitates review against the Software Verification Plan.

6.2.4.10 A Software Quality Assurance Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the input documents from 6.2.2.

The requirement in 6.2.4.11 refers to the Software Quality Assurance Verification Report.

6.2.4.11. Once the Software Verification Plan has been established, verification shall address

a) that the Software Verification Plan meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 6.2.4.3 to 6.2.4.9,

b) the internal consistency of the Software Verification Plan.

The results shall be recorded in a Software Quality AssuranceVerification Report.

6.2.4.12 Any Software Verification Reports shall be written, under the responsibility of the Verifier, on the
basis of the input documents. These reports can be partitioned for clarity and convenience, and shall follow
the Software Verification Plan. The requirementin 6.2.4.13 refers to the Software Verification Reports.

6.2.4.13 Each Software Verification Report shall documentthe following:

a) the identity and configuration of the items verified, as well as the Verifier names;

b) items which do not conform to the specifications;

c) components, data, structures and algorithms poorly adapted to the problem;

d) detected errors or deficiencies;

e) the fulfilment of, or deviation from, the Software Verification Plan (in the event of deviation the Verification
Report shall explain whether the deviationis critical or not);

f) assumptionsif any;

g) asummary ofthe verification results.

BS EN 50128:2011
“27: EN 50128:2011

6.3 Software validation

6.3.1 Objective

6.3.1.1 The objective of software validation is to demonstrate that the processes andtheir outputs are such
that the software is of the defined software safety integrity level, fulfils the software requirements andis fit for
its intended application. This activity is performed bythe Validator.

6.3.1.2 The main validation activities are to demonstrate by analysis and/or testing that all the software
requirements are specified, implemented, tested andfulfilled as required by the applicable SIL, and to
evaluate the safety criticality of all anomalies and non-conformities based on the results of reviews, analyses
andtests.

6.3.2 Input documents

All system, hardware and software documentation as specified in this European Standard.

6.3.3 Output documents

1) Software Validation Plan

2) Software Validation Report

3) Software Validation Verification Report

6.3.4 Requirements

6.3.4.1 The Software Validation activities shall be developed and performed, with their results evaluated, by

a Validator with an appropriate level of independenceas defined in 5.1.

6.3.4.2 Validation shall be documented with, at least, a Software Validation Plan and a Software Validation

Report, as defined in the following.

6.3.4.3 A Software Validation Plan shall be written, under the responsibility of the Validator, on the basis of
the input documents.

Requirements from 6.3.4.4 to 6.3.4.6 refer to the Software Validation Plan.

6.3.4.4 The Software Validation Plan shall include a summary justifying the validation strategy chosen.
Thejustification shall include consideration, according to the required software safety integrity level, of

a) manual or automated techniquesorboth,

b) static or dynamic techriquesor both,

c) analytical or statistical techniques or both,

d) testing in a real or simulated environmentor both.

6.3.4.5 The Software Validation Plan shall identify the steps necessary to demonstrate the adequacy of any
Software Specification in fulfilling the safety requirements set out in the System Safety Requirements
Specification.

6.3.4.6 The Software Validation Plan shall identify the steps necessary to demonstrate the adequacy of the
Overall Software Test Specification as a test against the Software Requirements Specification.

6.3.4.7 A Software Validation Report shall be written, under the responsibility of the Validator, on the basis of
the input documents.

Requirements from 6.3.4.8 to 6.3.4.11 refer to the Software Validation Report.

BS EN 50128:2011
EN 50128:2011 - 28 -

6.3.4.8 The results of the validation shall be documented in the Software Validation Report.

6.3.4.9 The Validator shall check that the verification process is complete.

6.3.4.10 The Software Validation Report shall fully state the software baseline that has beenvalidated.

6.3.4.11 The Validation Report shall clearly identify any known deficiencies in the software and the impact
these may have onthe useof the software.

6.3.4.12 A Software Validation Verification Report shall be written, under the responsibility of the Verifier, on
the basis of the input documents from 6.3.2.

Requirements from 6.3.4.13 to 6.3.4.14 refer to the Software Validation Verification Report.

6.3.4.13 Once the Software Validation Plan has been established, verification shalladdress

a) that the Software Validation Plan meets the general requirements for readability and traceability in 5.3.2.7
to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 6.3.4.4 to 6.3.4.6,

b) the internal consistency of the Software Validation Plan.

6.3.4.14 Once the Software Validation Report has been established, verification shall address

a) that the Software Validation Report meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 6.3.4.8 to 6.3.4.11
and 7.7.4.7 to 7.7.4.11,

b) the internal consistency of the Software Validation Report.

The results shall be recorded in a Software Validation Verification Report.

6.3.4.15 The Validator shall be empowered to require or perform additional reviews, analyses andtests.

6.3.4.16 The software shall only be released for operation after authorisation by the Validator.

6.3.4.17 Simulation and modelling may be used to supplementthe validation process.

6.4 Software assessment

6.4.1 Objective

6.4.1.1 To evaluate that the lifecycle processes and their outputs are such that the software is of the defined
software safety integrity levels 1-4 andis fit for its intended application.

6.4.1.2 For SIL 0 software, requirements of this standard shall be fulfilled but where a certificate stating
compliance with EN ISO 9001 is available, no assessmentwill be required.

6.4.2 Input documents

1) System Safety Requirements Specification

2) Software Requirements Specification

3) All other documents necessary to carry out the assessmentprocess.

BS EN 50128:2011
- 29 - EN 50128:2011

6.4.3 Output documents

1) Software AssessmentPlan

2) Software Assessment Report

3) Software AssessmentVerification Report

6.4.4 Requirements

6.4.4.1 The assessment of the software shall be carried out by an Assessor who is independent as

described in 5.1.2.6 and 5.1.2.7.

6.4.4.2 Software with a Software Assessment Report from another Assessordoes not have to be an object
of anew assessment. The assessor shall check that the softwareisfit for its intended use within the intended
environment, and that the former assessmentstated the software has achieved a safety integrity level at least

equalto the required level.

6.4.4.3 The Assessorshall have accessto all project-related documentation throughout the development
process.

6.4.4.4 A Software AssessmentPlan shall be written, under the responsibility of the Assessor, on the basis

of the input documents from 6.4.2. Where appropriate, an existing documented generic Software
Assessment Plan or procedure may be used. The requirementin 6.4.4.5 refers to the Software Assessment
Plan.

6.4.4.5 The Software AssessmentPlan shall include the following scope:

a) aspects with which the assessmentdeals;

b) activities throughout the assessmentprocess and their sequential link to engineering activities;

c) documents to be takeninto consideration;

d) statements on pass/fail criteria and the way to deal with non-conformance cases;

e) requirements with regard to content and form of the Software Assessment Report.

6.4.4.6 A Software AssessmentVerification Report shall be written, under the responsibility of the Verifier,
on the basis of the input documents from 6.4.2.

The requirementin 6.4.4.7 refers to the Software AssessmentVerification Report.

6.4.4.7 Once the Software Assessment Plan has been established, verification shall address

a) that the Software Assessment Plan meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 6.4.4.5,

b) the internal consistency of the Software AssessmentPlan.

The results shall be recorded in a Software AssessmentVerification Report.

6.4.4.8 The Assessor shall assess that the software of the system is fit for its intended purpose and
respondscorrectly to safety issues derived from the System Safety Requirements Specification.

6.4.4.9 The Assessor shall assess if an appropriate set of techniques from Annex A, suitable for the
intended development, has been selected and applied in accordanceto the required safety integrity level.

Moreover, the assessor shall consider the extent to which each technique from Annex is applied, i.e.
whetherit is appliedto all or to only part of the software, and also look for evidencethatit is properly applied.

BS EN 50128:2011
EN 50128:2011 - 30 -

6.4.4.10 The Assessor shall assess the configuration and change management system and the evidences
onits use and application.

6.4.4.11 The Assessorshall review the evidence of the competencyof the project staff according to Annex B
and shall assess the organisation for the software development according to 5.1.

6.4.4.12 For any software containing safety-related application conditions, the Assessor shall check for

noted deviations, non-compliances to requirements and recorded non-conformities if these have an impact
on safety, and make a judgment whetherthejustification from the project is acceptable. The result shall be
stated in the assessmentreport.

6.4.4.13 The Assessorshall assessthe verification and validation activities and the supporting evidence.

6.4.4.14 The Assessorshall agree the scope and contents of the Software Validation Plan. This agreement
shall also make a statement concerning the presence of the Assessorduring testing.

6.4.4.15 The Assessor may carry out audits and inspections (e.g. witnessing tests) throughout the entire

development process. The Assessor may askfor additional verification and validation work.

NOTE It is of advantage to involve the Assessorearly in the project.

6.4.4.16 A Software Assessment Report shall be written under the responsibility of the Assessor.
Requirements from 6.4.4.17 to 6.4.4.19 refer to the Software Assessment Report.

6.4.4.17 The Software Assessment Report shall meet the requirements of the Software Assessment Plan
and provide a conclusion and recommendations.

6.4.4.18 The Assessor shall record his/her activities as a consistent base for the Software Assessment

Report. These shall be summarised in the Software Assessmentreport.

6.4.4.19 The Assessorshall identify and evaluate any non-conformity with the requirements of this European
Standard and judge the impacton the final result. These non-conformities and their judgments shall be listed

in the Software Assessment Report.

6.5 Software quality assurance

6.5.1 Objectives

6.5.1.1 To identify, monitor and control all those activities, both technical and managerial, which are

necessary to ensure that the software achieves the quality required. This is necessary to provide the required
qualitative defence against systematic faults and to ensure that an audit trail can be established to allow

verification and validation activities to be undertaken effectively.

6.5.1.2 To provide evidence that the above activities have been carried out.

6.5.2 Input documents

All the documents available at each stage of the lifecycle.

6.5.3 Output documents

1) Software Quality Assurance Plan

2) Software Configuration ManagementPlan, if not available at system level

3) Software Quality Assurance Verification Report

BS EN 50128:2011
-31- EN 50128:2011

6.5.4 Requirements

6.5.4.1 All the plans shall be issued at the beginning of the project and updated during thelifecycle.

6.5.4.2 The organisations taking part in the software development shall implement and use a Quality
Assurance System compliant with EN ISO 9000, to support the requirements of this European Standard.
EN ISO 9001 certification is highly recommended.

6.5.4.3 A Software Quality Assurance Plan shall be written, under the responsibility of the Verifier, on the

basis of the input documents from 6.5.2.

The requirements from 6.5.4.4 to 6.5.4.6 refer to the Software Quality Assurance Plan.

6.5.4.4 A Software Quality Assurance Plan shall be written and shall be specific to the project. It shall
implement the requirements of 6.5.4.5.

6.5.4.5 Asa minimum,the following items shall be specified or referenced in the Software Quality Assurance
Plan.

a) Definition ofthe life-cycle model:

1) activities and elementary tasks consistent with the plans, e.g. Safety Plan, that have been
established at the System level;

2) entry and exit criteria of each activity;

3) inputs and outputs of eachactivity;

4) major quality activities;

5) the entity responsible for each activity.

b) Documentation structure.

c) Documentation control:

1) roles involved for writing, checking and approval;

2) scopeofdistribution;

3) archiving.

d) Tracking and tracing of deviations.

e) Methods, measuresandtools for quality assurance according to the allocated safety integrity levels (refer
to Annex A).

f) Justifications, as defined in 4.7 to 4.9, that each combination of techniques or measures selected

according to Annex A is appropriate to the defined software safety integrity level.

Some of the Software Quality Assurance Plan required information may be contained in other documents,
such as a separate Software Configuration Management Plan, a Maintenance Plan, a Software Verification
plan and a Software Validation Plan. The sub-clausesof the Software Quality Assurance Plan shall reference
the documents in which the information is contained. In any case the content of each sub-clause of the
Software Quality Assurance Plan shall be specified either directly or by reference to another document.

The referenced documents shall be reviewed in order to ensure they provide all the required information and
that they fully address the requirements of this European Standard.

BS EN 50128:2011
EN 50128:2011 - 32 -

6.5.4.6 Quality assurance activities, actions, documents, etc. required by all normative sub-clausesof this

European Standard shall be specified or referenced in the Software Quality Assurance Plan and tailored to

the specific project.

6.5.4.7. A Software Quality Assurance Verification Report shall be written, under the responsibility of the

Verifier, on the basis of the input documentsfrom 6.5.2.

The requirementin 6.5.4.8 refers to the Software Quality AssuranceVerification Report.

6.5.4.8 Once the Software Quality Assurance Plan has beenestablished, verification shall address

a) that the Software Quality Assurance Plan meets the general requirements for readability and traceability in

5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirementsin 6.5.4.4 to 6.5.4.6,

b) the internal consistency of the Software Quality Assurance Plan.

The results shall be recorded in a Software Quality AssuranceVerification Report. ~

6.5.4.9 Each planning document shall have a paragraph specifying details about its own updating throughout

the project: frequency, responsibility, method.

6.5.4.10 Each software documentand deliverable shall be placed under configuration control from the time

ofits first release.

6.5.4.11 Changesto all items under Configuration Management Control shall be authorised and recorded.

6.5.4.12 In addition to software development, the Configuration Management System shall also cover the

software development environment used during thefull lifecycle.

This extension, necessary for the reproducibility of the development and for the maintenanceactivities, shall

include all the tools, translators, data and test files, parameterisation files, and supporting hardware

platforms.

6.5.4.13 The supplier shall establish, document and maintain procedures for control of the external

suppliers, including

- methods and relevant records to ensure that software provided by external suppliers adheres to

established requirements. Previously developed software shall be assured to be compliant with the

required software safety integrity level and dependability. New software shall be developed and

maintained in conformity with the Software Quality Assurance Plan of the Supplier or with a specific

Software Quality Assurance Plan prepared by the external supplier in accordance with the Software

Quality Assurance Plan of the Supplier,

- methods and relevant records to ensure that the requirements provided to the External Supplier are

adequate and complete.

6.5.4.14 Traceability to requirements shall be an important consideration in the validation of a safety-related

system and meansshall be provided to allow this to be demonstrated throughoutall phasesofthelifecycle.

6.5.4.15 Within the context of this European Standard, and to a degree appropriate to the specified software

safety integrity level, traceability shall particularly address

a) traceability of requirements to the design or other objects whichfulfil them,

b) traceability of design objects to the implementation objects which instantiate them,

c) traceability of requirements and design objects to the tests (component, integration, overall test) and

analysesthat verify them.

Traceability shall be the subject of configuration management.

BS EN 50128:2011
- 33 - EN 50128:2011

6.5.4.16 In special cases, e.g. pre-existing software or prototyped software, traceability may be established
after the implementation and/or documentation of the code, but prior to verification/validation. In these cases,

it shall be shown that verification/validation is as effective as it would have been with traceability overall
phases.

6.5.4.17 Objects of requirements, design or implementation that cannot be adequately traced shall be

demonstrated to have no bearing uponthe safety or integrity of the system.

6.6 Modification and change control

6.6.1 Objectives

6.6.1.1 To ensure that the software performs as required, preserving the software safety integrity and

dependability when modifying the software.

6.6.1.2 These objectives are managed by the Configuration Manager.

6.6.2 Input documents

1) Software Quality Assurance Plan

2) Software Configuration ManagementPlan

3) All relevant design, development and analysis documentation

4) Change Requests

5) Change impact analysis and authorisation

6.6.3 Output documents

1) All changed input documents

2) Software Change records (see 9.2.4.11)

3) New Configuration records

6.6.4 Requirements

6.6.4.1 The Change ManagementProcessshall define at least the following aspects:

a) the documentation needed for problem reporting and/or corrective actions, with the aim of giving feedback
to the responsible management;

b) analysis of the information collected in the problem reportsto identify its causes;

c) the practices to be followed for reporting, tracking and resolving problems identified both during the

development phase and during software maintenance;

d) the specific organisational responsibilities with regard to development and software maintenance;

e) how to apply controls to ensure that corrective actions are taken and that they are effective;

f) impact analysis of the effect of the changes on the software component under developmentor already
delivered;

g) impact analysis shall state the re-verification, re-validation and re-assessment necessary for the change;

h) where multiple changes are applied, the impact analysis shall consider the cumulative impact;

NOTE Several changes may cumulatively require a complete re-test.

i) authorisation before implementation.

BS EN 50128:2011
EN 50128:2011 - 34 -

6.6.4.2 All changes shall initiate a return to an appropriate phase of the lifecycle. All subsequent phases
shall then be carried out in accordance with the procedures specified for the specific phases in accordance
with the requirements in this European Standard.

6.7 Support tools and languages

6.7.1 Objectives

6.7.1.1 The objective is to provide evidence that potential failures of tools do not adversely affect the
integrated toolset output in a safety related manner that is undetected by technical and/or organisational
measures outside the tool. To this end, software tools are categorised into three classes namely, T1, T2 & T3
respectively (see definitions in 3.1).

When tools are being used as a replacement for manual operations, the evidence of the integrity of tools
output can be adduced by the same processsteps asif the output was done in manual operation. These
process steps might be replaced by alternative methods if an argumentation on the integrity of tools outputis
given andtheintegrity level of the software is not decreased by the replacement.

6.7.2 Input documents

Tools specification or manual.

6.7.3 Output documents

Tools validation report (when needed see 6.7.4.4 or 6.7.4.6).

6.7.4 Requirements

6.7.4.1 Software tools shall be selected as a coherentpart of the software developmentactivities.

NOTE Appropriate tools to support the development of software should be used in order to increase the integrity of the software by
reducing thelikelihood of introducing or not detecting faults during the development. Examples of tools relevant to the phasesof the
software developmentlifecycle include

a) transformation ortranslation tools that convert a software or design representation (e.g. text or a diagram) from one
abstraction level to another: design refinementtools, compilers, assemblers,linkers, binders, loaders and code generation
tools,

b) verification and validation tools such asstatic code analysers, test coverage monitors, theorem proving assistants, simulators
and model checkers,

c) diagnostic tools used to maintain and monitor the software under operating conditions,

d) infrastructure tools such as development support systems,

€)

_

configuration control tools such as version control tools,

f) application data tools that produce or maintain data which are required to define parameters and toinstantiate system
functions e.g. function parameters, instrument ranges, alarm and trip levels, output states to be adopted at failure,
geographical layout.

The selected tools should be able to cooperate. In this context, tools cooperateif the outputs from onetool have suitable content and
format for automatic input to a subsequent tool, thus minimizing the possibility of introducing human error in the reworking of
intermediate results.

Tools shall be selected and demonstrated to be compatible with the needsof the application.

The availability of suitable tools to supply the services that are necessary overthe wholelifetime of the software shall be considered.

6.7.4.2 The selection of the tools in classes T2 and T3 shall be justified (see 7.3.4.12). The justification shall
include the identification of potential failures which can beinjectedinto the tools output and the measuresto
avoid or handle suchfailures.

6.7.4.3 All tools in classes T2 and T3 shall have a specification or manual which clearly defines the
behaviourof the tool and anyinstructions or constraints on its use.

6.7.4.4 For each tool in class T3, evidence shall be available that the output of the tool conforms to the
specification of the outputor failures in the output are detected. Evidence may be based on the samesteps

BS EN 50128:2011
- 35 - EN 50128:2011

necessary for a manual process as a replacementfor the tool and an argumentpresentedif these steps are
replaced byalternatives (e. g. validation of the tool). Evidence may also be based on

a) a suitable combination of history of successful use in similar environments and for similar applications
(within the organisation or other organisations),

b) tool validation as specified in 6.7.4.5,

c) diverse redundant codewhich allows the detection and control offailures resulting in faults introduced by a
tool,

d) compliance with the safety integrity levels derived from the risk analysis of the process and procedures

including the tools,

e) other appropriate methods for avoiding or handling failures introduced bytools.

NOTE 1 A version history may provide assurance of maturity of the tool, and a record of the errors / ambiguities associated withits
use in the environment.

NOTE 2 The evidencelisted for T3 may also be used for T2 tools in judging the correctnessof their results.

6.7.4.5 The results of tool validation shall be documented covering the following results:

a) arecord of the validation activities;

b) the version of the tool manual being used;

c) the tool functions being validated;

d) tools and equipmentused;

e) the results of the validation activity; the documentedresults of validation shall state either that the software

has passed the validation or the reasonsforits failure;

f) test cases and their results for subsequent analysis;

g) discrepancies between expected and actual results.

6.7.4.6 Where the conformance evidence of 6.7.4.4 is unavailable, there shall be effective measures to

controlfailures of the executable safety related software that result from faults that are attributable to the tool.

NOTE 1 An example is the generation of diverse redundant code which allows the detection and controlof failures resulting in faults
introducedbya translator.

NOTE 2 As an example,the fitness for purpose of a non-trusted compiler can bejustified as follows.

The object code produced by the compiler has been subjected to a combination of tests, checks and analyses which are capable of
ensuring the correctness of the code to the extentthatit is consistent with the target Safety Integrity Level. In particular, the following
applies to all tests, checks and analyses.

- Testing has been shown to have a sufficiently high coverage of the implemented code. If there is any code unreachable bytesting,
it has been shownby checksor analyses that the function concerned is executed correctly when the codeis reached onthetarget.

- Checks and analyses have been applied to the object code and shown to be capable of detecting the types of errors which might
result from a defect in the compiler.

- No moretranslation with the compiler has taken place after testing, checking and analysis.

- If further compilation ortranslation is carried out, all tests, checks and analyseswill be repeated.

BS EN 50128:2011
EN 50128:2011 - 36 -

6.7.4.7 The software or design representation (including a programming language) selected shall

a) have a translator which has been evaluated forfitness for purpose including, where appropriate, evaluated

againstthe international or national standards,

b) match the characteristics of the application,

c) contain features that facilitate the detection of design or programmingerrors,

d) support features that match the design method.

A programming languageis one of a class of representations of software or design. A Translator converts a

software or design representation (e.g. text or a diagram) from one abstraction level to anotherlevel.
Examples of Translators include: design refinement tools, compilers, assemblers, linkers, binders, loaders

and code generationtools.

The evaluation of a Translator may be performed for a specific application project, or for a class of
applications. In the latter case all necessary information on the tool regarding the intended and appropriate
use of the tool shall be available to the user of the tool. The evaluation of the tool for a specific project may

then be reduced to checking general suitability of the tool for the project and complianceto the “specification
or manual” (i.e. proper use of the tool). Proper use might include additional verification activities within the
specific project.

A validation suite may be used to evaluate the fitness for purpose of a Translator according to defined
criteria, which shall include functional and non-functional requirements. For the functional Translator
requirements, dynamic testing may be a main validation technique. If possible an automatic testing suite shall
be used.

6.7.4.8 Where 6.7.4.7 cannot be fully satisfied, the fitness for purpose of the language, and any additional
measures which addressanyidentified shortcomings of the language shall be justified and evaluated.

NOTE See NOTE2 from 6.7.4.6.

6.7.4.9 Where automatic code generation or similar automatic translation takes place, the suitability of the
automatic Translator for safety-related software development shall be evaluated at the point in the
developmentlifecycle where development support tools are selected.

6.7.4.10 Configuration managementshall ensure that for tools in classes T2 and T3,only justified versions

are used.

6.7.4.11 Each new version of a tool that is used shall be justified (see Table 1). This justification may rely on

evidence provided for an earlier version if sufficient evidence is provided that

a) the functional differences (if any) will not affect tool compatibility with the rest of the toolset,

b) the newversionis unlikely to contain significant new, unknownfaults.

NOTE Evidence that the new versionis unlikely to contain significant new unknown faults may be based on a credible identification
of the changes made, and on an analysis of the verification and validation actions performed.

6.7.4.12 The relation between the tool classes and the applicable sub-clausesis defined within Table 1.

BS EN 50128:2011
230 = EN 50128:2011

Table 1 - Relation between tool class and applicable sub-clauses

Applicable sub-clauses

6.7.4.1, 6.7.4.2, 6.7.4.3, 6.7.4.10, 6.7.4.11

6.7.4.1, 6.7.4.2, 6.7.4.3, 6.7.4.4, 6.7.4.5 or

6.7.4.6, 6.7.4.7, 6.7.4.8, 6.7.4.9, 6.7.4.10, 6.7.4.11

7 Generic software development

7.1 Lifecycle and documentation for generic software

7.1.1 Objectives

7.1.1.1 To provide a description of the software itself, from the higher levels of abstraction down to the
detailed refinements, in order to create a frame for the demonstration of the achieved safety as well as for

future maintenance actions.

7.1.2 Requirements

7.1.2.1 To the extent required by the software safety integrity level, the documentslisted in Table A.1 shall
be producedfor a generic software.

7.1.2.2 The sequence of deliverable documents as they are described in Table A.1 reflects an ideal linear
waterfall model. This model is however not intendedto be a referencein the sense of schedule and linkage of

activities, as it would usually be difficult to achieve a strict compliance in practice. Phases can overlap but
verification and validation activities shall demonstrate the consistency of inputs and outputs (documents and

software) within and between the phases.

However, the main purpose of the documentation foreseen is to provide a description of the softwareitself,
from the higher levels of abstraction down to the detailed refinements, in order to create a framefor the
demonstration of the achieved safety as well as for future maintenanceactions.

7.2 Software requirements

7.2.1 Objectives

7.2.1.1 To describe a complete set of requirements for the software meeting all System and Safety
Requirements and provide a comprehensive set of documents for each subsequent phase.

7.2.1.2 To describe the Overall Software Test Specification.

7.2.2 Input documents

1) System Requirements Specification

2) System Safety Requirements Specification

3) System Architecture Description

4) External Interface Specifications (e.g. Software/Software Interface Specification, Software/Hardware
Interface Specification)

BS EN 50128:2011
EN 50128:2011 - 38 -

5) Software Quality Assurance Plan

6) Software Validation Plan

7.2.3 Output documents

1) Software Requirements Specification

2) Overall Software Test Specification

3) Software Requirements Verification Report

7.2.4 Requirements

7.2.4.1 A Software Requirements Specification shall be written, under the responsibility of the Requirements
Manager, on the basis of the input documents from 7.2.2.

The requirements from 7.2.4.2 to 7.2.4.15 refer to the Software Requirements Specification.

7.2.4.2 The Software Requirements Specification shall express the required properties of the software being
developed. These properties, which are all (except safety) defined in ISO/IEC 9126 series, shall include

a) functionality (including capacity and response time performance),

b) robustness and maintainability,

c) safety (including safety functions and their associated software safety integrity levels),

d) efficiency,

e) usability,

f) portability.

7.2.4.3 The software safety integrity level shall be derived as defined in Clause 4 and recorded in the
Software Requirements Specification.

7.2.4.4 To the extent required by the software safety integrity level, the Software Requirements Specification
shall be expressed and structured in such a waythatit is

a) complete, clear, precise, unequivocal, verifiable, testable, maintainable and feasible,

b) traceable backto all the input documents.

BS EN 50128:2011
- 39- EN 50128:2011

7.2.4.5 The Software Requirements Specification shall include modes of expression and descriptions which

are understandable to the responsible personnelinvolved in thelife cycle of the software.

7.2.4.6 The Software Requirements Specification shall identify and documentall interfaces with any other
system, either within or outside the equipment under control, including operators, wherever a direct

connection exists or is planned.

7.2.4.7 All relevant modesof operation shall be detailed in the Software Requirements Specification.

7.2.4.8 All relevant modes of behaviour of the programmableelectronics,in particular failure behaviour, shall

be documentedorreferenced (e.g. system level documentation) in the Software Requirements Specification.

7.2.4.9 Any constraints between the hardware and the software shall be documented or referenced (e.g.

system level documentation) in the Software Requirements Specification.

7.2.4.10 To the extent required by the description of system documentation, the Software Requirements

Specification shall consider the software self-checking and the hardware checking by the software. Software

self-checking consists of the detection and reporting by the softwareof its own failures and errors.

7.2.4.11 The Software Requirements Specification shall include requirements for the periodic testing of
functions to the extent required by the System Safety Requirements Specification.

7.2.4.12 The Software Requirements Specification shall include requirements to enable all safety functions

to be testable during overall system operation to the extent required by the System Safety Requirements
Specification.

7.2.4.13 All functions to be performed by the software, especially those related to achieving the required

system safety integrity level, shall be clearly identified in the Software Requirements Specification.

7.2.4.14 Any non-safety functions which the software is required to perform shall be clearly identified in the

Software Requirements Specification.

7.2.4.15 The Software Requirements Specification shall be supported by techniques and measures from
Table A.2. The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.2.4.16 An Overall Software Test Specification shall be written, under the responsibility of the Tester, on the

basis of the Software Requirements Specification.

The requirements from 7.2.4.17 to 7.2.4.19 refer to the Overall Software Test Specification.

7.2.4.17 The Overall Software Test Specification shall be a description of the tests to be performed on the
completed software.

7.2.4.18 The Overall Software Test Specification shall choose techniques and measures from Table A.7.

The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.2.4.19 The Overall Software Test Specification shall identify for each required function the test cases
including

a) the required input signals with their sequencesandtheir values,

b) the anticipated output signals with their sequences and their values,

c) the test successcriteria, including performance and quality aspects.

oe

BS EN 50128:2011
EN 50128:2011 - 40 -

7.2.4.20 A Software Requirements Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the System Safety Requirements Specification, Software Requirements Specification,

Overall Software Test Specification and Software Quality Assurance Plan.

Requirements from 7.2.4.21 to 7.2.4.22 refer to the Software Requirements Verification Report. _

7.24.21 The Software Requirements Verification Report shall be written in accordance to the generic
requirements established for all the Verification Reports (see 6.2.4.13).

7.2.4.22 Once the Software Requirements Specification has been established, verification shall address

a) the adequacy of the Software Requirements Specification in fulfilling the requirements set out in the

System Requirements Specification, the System Safety Requirements Specification and the Software

Quality Assurance Plan,

b) that the Software Requirements Specification meets the general requirements for readability and
traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 7.2.4.2
to 7.2.4.15,

c) the adequacy of the Overall Software Test Specification as a test against the Software Requirements
Specification,

d) the definition of any additional activity in order to demonstrate the correct coverage of not testable

requirements,

e) the internal consistency of the Software Requirements Specification,

f) the adequacy of the Software Requirements Specification in fulfilling or taking into account the constraints

between hardware and software.

The results shall be recorded in a Software Requirements Verification Report.

7.3 Architecture and Design

7.3.1 Objectives

7.3.1.1 To develop a software architecture that achieves the requirements of the software.

7.3.1.2 To identify and evaluate the significance of hardware/softwareinteractions for safety.

7.3.1.3 To choose a design methodif one has not been previously defined.

7.3.1.4 To design software of a defined software safety integrity level from the input documents.

7.3.1.5 To ensure that the resultant system and its software will be readily testable from the outset.
Asverification and test will be a critical element in the validation, particular consideration shall be given to

verification and test needs throughout the implementation.

7.3.2 Input documents

1) Software Requirements Specification

7.3.3 Output documents

1) Software Architecture Specification

2) Software Design Specification

3) Software Interface Specifications

BS EN 50128:2011
A = EN 50128:2011

4) Software Integration Test Specification

5) Software/HardwareIntegration Test Specification

6) Software Architecture and Design Verification Report

7.3.4 Requirements

7.3.4.1 A Software Architecture Specification shall be written, under the responsibility of the Designer, on the
basis of the Software Requirements Specification.

Requirements from 7.3.4.2 to 7.3.4.14 refer to the Software Architecture Specification.

7.3.4.2 The proposed software architecture shall be established and detailed in the Software Architecture
Specification.

7.3.4.3 The Software Architecture Specification shall consider the feasibility of achieving the Software

Requirements Specification at the required software safety integrity level.

NOTE The Software Architecture should minimise the size and complexity of the safety part of the application.

7.3.4.4 The Software Architecture Specification shall identify, analyse and detail the significance of all
hardware/software interactions.

7.3.4.5 The Software Architecture Specification shall identify all software components and for these
componentsidentify

a) whether these components are new orexisting,

b) whether these components have been previously validated andif so their validation conditions,

c) the software safety integrity level of the component.

7.3.4.6 Software componentsshall

a) cover a defined subset of software requirements,

b) be clearly identified and independently versioned inside the configuration management system.

7.3.4.7 The use of pre-existing software shall be subject to the following restrictions.

a) Forall software safety integrity levels the following information shall clearly be identified and documented:

- the requirements that the pre-existing software is intendedto fulfil;

- the assumptions.about the environmentof the pre-existing software;

- interfaces with other parts of the software.

b) Forall software safety integrity levels the pre-existing software shall be included in the validation process
of the whole software.

c) For software safety integrity levels SIL 3 or SIL 4, the following precautions shall be taken:

- an analysis of possible failures of the pre-existing software and their consequences on the whole
software shall be carried out;

- a strategy shall be defined to detectfailures of the pre-existing software and to protect the system
from thesefailures;

l
a
n
n
n

BS EN 50128:2011
EN 50128:2011 42

- the verification and validation process shall ensure

1) that the pre-existing softwarefulfils the allocated requirements,

2) that failures of the pre-existing software are detected and the system where the pre-existing
softwareis integrated into is protected from thesefailures,

3) that the assumptions about the environmentof the pre-existing software arefulfilled.

d) The pre-existing software shall be accompanied by a sufficiently precise (e.g. limited to the used
functions) and complete description (i.e. functions, constraints and evidence). The description shall

include hardware and/or software constraints of which the integrator shall be aware and take into

consideration during application. In particular it forms the vehicle for informing the integrator of what the
software was designedfor, its properties, behaviour and characteristics.

NOTE Statistical evidence may be usedin the validation strategy of the pre-existing software.

7.3.4.8 The use of existing verified software components developed according to this European Standard in
the design is to be preferred whereverpossible. -

7.3.4.9 Where the software consists of componentsof different software safety integrity levels then all of the
software components shall be treated as belonging to the highest of these levels unless there is evidence of

independence betweenthe higher software safety integrity level components and the lower software safety
integrity level components. This evidence shall be recorded in the Software Architecture Specification.

7.3.4.10 The Software Architecture Specification shall describe the strategy for the software development to

the extent required by the software safety integrity level. The Software Architecture Specification shall be
expressed and structured in such a waythatit is

a) complete, consistent, clear, precise, unequivocal, verifiable, testable, maintainable and feasible,

b) traceable back to the Software Requirements Specification.

7.3.4.11 Measures for handling faults shall be included in the Software Architecture Specification in order to
achieve the balance between the fault avoidance and fault handling strategies.

7.3.4.12 The Software Architecture Specification shall justify that the techniques, measures and tools

chosen form a set which satisfies the Software Requirements Specification at the required software safety
integrity level.

7.3.4.13 The Software Architecture Specification shall take into account the requirements from 8.4.8 when

the software is configured by applications data or algorithms.

7.3.4.14 The Software Architecture Specification shall choose techniques and measures from Table A.3.

The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.3.4.15 The size and complexity of the developed software architecture shall be balanced.

7.3.4.16 Prototyping may be usedin any phaseto elicit requirements or to obtain a more detailed view on

requirements and their consequences.

7.3.4.17 Code from a prototype may be usedin the target system onlyif it is demonstrated that the code and
its development and documentationfulfils this European Standard.

7.3.4.18 A Software Interface Specification for all Interfaces between the components of the software and

the boundary of the overall software shall be written, under the responsibility of the Designer, on the basis of
the Software Requirements Specification and the Software Architecture Specification.

The requirementin 7.3.4.19 refers to the Software Interface Specification.

BS EN 50128:2011
- 43 - EN 50128:2011

7.3.4.19 The description of interfaces shall address

a) pre/post conditions,

b) definition and description of all boundary valuesforall specified data,

c) behaviour when the boundary value is exceeded,

d) behaviour whenthe valueis at the boundary,

e) for time-critical input and output data:

1) time constraints and requirements for correct operation,

2) managementof exceptions.

f) allocated memory for the interface buffers and the mechanisms to detect that the memory cannot be

allocated or all buffers are full, where applicable,

g) existence of synchronization mechanisms between functions (see e).

All data from and to the interfaces shall be defined for the whole range of values defined by the type of the
data, including the ranges which are not used whenprocessedbythe functions:

a) definition and description of all equivalence classesforall specified data and each software function using
them,

b) definition of unused or forbidden equivalence classes.

NOTE Thedata typeincludesthe following:

1) input parameters and output results of functions and/or procedures;

2) data specified in telegrams or communication packets;

3) data from the hardware.

7.3.4.20 A Software Design Specification shall be written, under the responsibility of the Designer, on the
basis of the Software Requirements Specification, the Software Architecture Specification and the Software
Interface Specification.

Requirements from 7.3.4.21 to 7.3.4.24 refer to the Software Design Specification.

7.3.4.21 The input documents shall be available, although not necessarily finalised, prior to the start of the
design process.

7.3.4.22 The Software Design Specification shall describe the software design based on a decomposition
into components with each component having a Software Component Design Specification and a Software
ComponentTest Specification.

7.3.4.23 The Software Design Specification shall address

a) software components traced back to software architecture and their safety integrity level,

b) interfaces of software components with the environment,

c) interfaces between the software components,

d) data structures,

e) allocation and tracing of requirements on components,

f) main algorithms and sequencing,

g) error reporting mechanisms.

BS EN 50128:2011

EN 50128:2011 - 44 -

7.3.4.24 The Software Design Specification shall choose techniques and measures from Table A.4. The

selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.3.4.25 Coding standards shall be developed and specify

a) good programmingpractice, as defined by Table A.12,

b) measures to avoid or detect errors which can be made during application of the language and are not

detectable during the verification (see 7.5 and 7.6). Such failures are derived by analysis overall features

of the language,

c) procedures for source code documentation.

7.3.4.26 The selection of a coding standard shall be justified to the extent required by the software safety

integrity level.

7.3.4.27 The coding standards shall be used for the developmentof all software. and be referenced in the

Software Quality Assurance Plan.

7.3.4.28 In accordance with the required software safety integrity level the design method chosen shall

possessfeatures that facilitate

a) abstraction, modularity and other features which control complexity,

b) the clear and precise expression of

1) functionality,

2) information flow between components,

3) sequencing andtime related information,

4) concurrency,

5) data structure and properties,

c) human comprehension,

d) verification and validation,

e) software maintenance.

7.3.4.29 A Software Integration Test Specification shall be written, underthe responsibility of the Integrator,

on the basis of the Software Requirements Specification, the Software Architecture Specification, the

Software Design Specification and the Software Interface Specifications.

The requirements from 7.3.4.30 to 7.3.4.32 refer to the Software Integration Test Specification.

7.3.4.30 The Software Integration Test Specification shall be written in accordance with the generic

requirements established for a Test Specification (see 6.1.4.4).

7.3.4.31 The Software Integration Test Specification shall address the following:

a) it shall be shown that each software component provides the specified interfaces for the other

components by executing the components together,

b) it shall be shownthat the software behaves in an appropriate manner whentheinterfaceis subjected to

inputs which are out of specification;

c) the required input data with their sequences and their values shall be the base of the test cases;

d) the anticipated output data with their sequences and their values shall be the basis of the test cases;

BS EN 50128:2011
- 45 - EN 50128:2011

e) it shall be shown which results of the componenttest (see 7.5.4.5 and 7.5.4.7) are intended to be reused
for the software integration test.

7.3.4.32 The Software Integration Test Specification shall choose techniques and measures from Table A.5.
The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.3.4.33 A Software/Hardware Integration Test Specification shall be written, under the responsibility of the
integrator, on the basis of the System Design Description, the Software Requirements Specification, the

Software Architecture Specification and the Software Design Specification.

The requirements from 7.3.4.34 to 7.3.4.39 refer to the Software/Hardware Integration Test Specification.

7.3.4.34 A Software/Hardware Integration Test Specification should be created early in the development
lifecycle, in order that integration testing may be properly directed and that particular design or other

integration needs may be suitably provided for. Depending upon the size of the system, the

Software/Hardware Integration Test Specification may be subdivided during development into a number of

child documents and be naturally added to, as the hardware and software designs evolve and the detailed
needsof integration becomeclearer.

7.34.35 The Software/Hardware Integration Test Specification shall distinguish between those activities

which can be carried out by the supplier on his premises and those that require access to the user's site.

7.3.4.36 The Software/Hardware Integration Test Specification shall address the following:

a) it shall be shown that the software runs in a proper way on the hardware using the hardware via the
specified hardware interfaces;

b) it shall be shown that the software can handle hardware faults as required;

c) the required timing and performance shall be demonstrated;

d) the required input data with their sequences and their values shall be the basis of the test cases;

e) the anticipated output data with their sequences and their values shail be the basis of the test cases;

f) it shall be shown which results of the component test (see 7.5.4.5) and of the software integration test
(see 7.6.4.3) are intended to be reused for the software/hardwareintegration test.

7.3.4.37 The Software/HardwareIntegration Test Specification shall documentthe following:

a) test cases and test data;

b) types of tests to be performed;

c) test environmentincluding tools, support software and configuration description;

d) test criteria on which the completion of the test will be judged.

7.3.4.38 The Software/Hardware integration Test Specification shall be written in accordance with the
generic requirements established for a Test Specification (see 6.1.4.4).

7.3.4.39 The Software/Hardware Integration Test Specification shall choose techniques and measures from

Table A.5. The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.3.4.40 A Software Architecture and Design Verification Report shall be written, under the responsibility of
the Verifier, on the basis of the Software Requirements Specification, Software Architecture Specification,

Software Design Specification, Software Integration Test Specification and Software/Hardware Integration
Test Specification.

The requirements from 7.3.4.41 to 7.3.4.43 refer to the Software Architecture and Design Verification Report.

BS EN 50128:2011
EN 50128:2011 =46 =

7.3.4.41. The Software Architecture and Design Verification Report shall be written in accordance with the
generic requirements established for a Verification Report (see 6.2.4.13).

7.3.4.42 After the Software Architecture, Interface and Design Specifications have been established,

verification shall address

a) the internal consistency of the Software Architecture, Interface and Design Specifications,

b) the adequacy of the Software Architecture, Interface and Design Specifications in fulfilling the Software

Requirements Specification with respect to consistency and completeness,

c) that the Software Architecture Specification meets the general requirements for readability and traceability
in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.16 as well as the specific requirements in 7.3.4.1 to 7.3.4.14,

d) that the Software Interface Specification meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.16 as well as the specific requirementsin 7.3.4.18 to 7.3.4.19,

e) that the Software Design Specification meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.16 as well as the specific requirements in 7.3.4.20 to 7.3.4.24,

f) the adequacy of the Software Architecture Specification and the Software Design Specification in taking
into account the hardware and software constraints.

The results shall be recorded in a Software Architecture and Design Verification Report.

7.3.4.43 After the Software Integration and Software/Hardware Integration Test Specifications have been

established, verification shall address

a) that the Software Integration Test Specification meets the general requirements for readability and
traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.16, as well as the specific requirements in
7.3.4.29 to 7.3.4.32,

b) that the Software/Hardware Integration Test Specification meets the general requirements for readability
and traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.16, as well as the specific requirements in
7.3.4.33 to 7.3.4.39.

The results shall be recorded in a Software Architecture and Design Verification Report.

7.4 Componentdesign

7.4.1 Objectives

7.4.1.1 To develop a software componentdesign that achieves the requirements of the Software Design

Specification to the extent required by the software safety integrity level.

7.4.1.2 To develop a software componenttest specification that achieves the requirements of the Software
ComponentDesign Specification to the extent required by the software safety integrity level.

7.4.2 Input documents

1) Software Design Specification

7.4.3 Output documents

1) Software Component Design Specification

2) Software ComponentTest Specification

3) Software Component Design Verification Report

BS EN 50128:2011
- 47 - EN 50128:2011

7.4.4 Requirements

7.4.4.1 For each component, a Software Component Design Specification shall be written, under the
responsibility of the Designer, on the basis of the Software Design Specification.

Requirements from 7.4.4.2 to 7.4.4.6 refer to the Software Component Design Specification.

7.4.4.2 For each software component, the following information shall be available

“ author,

- configuration history, and

- short description.

The configuration history shall include a precise identification of the current and all previous versions of the

component, specifying the version, date and author, and a description of the changes made from the

previous version.

7.4.4.3. The Software Component Design Specification shall address

a) identification of all lowest software units (e.g. subroutines, methods, procedures) traced back to the upper

level,

b) their detailed interfaces with the environment and other components with detailed inputs and outputs,

c) their safety integrity level without any further apportionment within the componentitself,

d) detailed algorithms and data structures.

Each Software Component Design Specification shall be self consistent and allow transforming into code of
the corresponding components.

7.4.4.4 Each Software Component Design Specification shall be readable, understandable and testable.

7.4.4.5 The size and complexity of each developed Software Componentshall be balanced.

7.4.4.6 The Software Component Design Specification shall choose techniques and measures from Table
A.4. The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.4.4.7 For each component, a Software Component Test Specification shall be written, under the
responsibility of the Tester, on the basis of the Software Component Design Specification.

The requirements from 7.4.4.8 to 7.4.4.10 refer to the Software ComponentTest Specification.

BS EN 50128:2011
EN 50128:2011 "AB -

7.4.4.8 The Software Component Test Specification shall be written in accordance with the generic

requirements established for a Test Specification (see 6.1.4.4).

7.4.4.9 A Software Component Test Specification shall be produced against which the componentshall be
tested. These tests shall show that each component performs its intended function. The Software

ComponentTest Specification shall define and justify the required criteria and degree of test coverage to the
extent required by the software integrity level. Tests shall be designed so astofulfil three objectives:

a) to confirm that the component performsits intended functions (black box testing);

b) to check how the internal parts of the componentinteract to carry out the intended functions (black/white

box testing);

c) to confirm that all parts of the componentare tested (white box testing).

7.4.4.10 The Software Component Test Specification shall choose techniques and measures from Table

A.5. The selected combination shall be justified as a set satisfying 4.8 and 4.9.

7.4.4.11 A Software Component Design Verification Report shall be written, under the responsibility of the

Verifier, on the basis of the Software Design Specification, Software Component Design Specification and

Software Component Test Specification.

Requirements from 7.4.4.12 to 7.4.4.13 refer to the Software Component Design Verification Report.

7.4.4.12 The Software Component Design Verification Report shall be written in accordancewith the generic

requirements established for a Verification Report (see 6.2.4.13).

7.4.4.13 After each Software Component Design Specification has been established, verification shall

address

a) the adequacy of the Software Component Design Specification in fulfilling the Software Design

Specification,

b) that the Software Component Design Specification meets general requirements for readability and

traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17, as well as the specific requirements in 7.4.4.1

to 7.4.4.6,

c) the adequacy of the Software Component Test Specification as a set of test cases for the Software

ComponentDesign Specification,

d) that the Software Component Test Specification meets the general requirements for readability and

traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17, as well as the specific requirements in 7.4.4.7

to 7.4.4.10,

e) the decomposition of the Software Design Specification into software components and the Software

ComponentDesign Specification with reference to

1) feasibility of the performance required,

2) testability for further verification, and

3) maintainability to permit further evolution.

The results shall be recorded in a Software ComponentDesign Verification Report.

BS EN 50128:2011
-49- EN 50128:2011

7.5 Component implementation and testing

7.5.1 Objectives

7.5.1.1 To achieve software which is analysable, testable, verifiable and maintainable. Componenttesting is
also included in this phase.

7.5.2 Input documents

1) Software Component Design Specification

2) Software Component Test Specification

7.5.3 Output documents

1) Software Source Code and supporting documentation

2) Software Component Test Report

3) Software Source Code Verification Report

7.5.4 Requirements

4

7.5.4.1 The Software Source Code shall be written under the responsibility of the Implementer on the basis
of the Software Component Design Specification. Requirements from 7.5.4.2 to 7.5.4.4 refer to the software
source code.

7.5.4.2 The size and complexity of the developed source code shall be balanced.

7.5.4.3 The Software Source Code shall be readable, understandable and testable.

7.5.4.4 The Software Source Code shall be placed under configuration control before the commencementof
documented testing.

7.54.5 A Software Component Test Report shall be written, under the responsibility of the Tester, on the
basis of the Software Component Test Specification and the Software Source Code.

Requirements from 7.5.4.6 to 7.5.4.7 refer to the Software Component Test Report.

7.5.4.6 The Software Component Test Report shall be written in accordance with the generic requirements
established for a Test Report (see 6.1.4.5).

7.5.4.7 The Software Component Test Report shall include the following features.

a) A statement of the test results and whether each component has met the requirements of its Software
Component Design Specification.

b) A statement of test coverage shall be provided for each component, showing that the required degree of
test coverage has been achievedforall required criteria.

7.5.4.8 A Software Source Code Verification Report shail be written, under the responsibility of the verifier,
on the basis of the Software Component Design Specification, the Software Component Test Specification
and the Software Source Code.

Requirements from 7.5.4.9 to 7.5.4.10 refer to the Software Source Code Verification Report.

—— -

BS EN 50128:2011
EN 50128:2011 - 50 -

7.5.4.9 The Software Source Code Verification Report shall be written in accordance with the generic
requirements established for a Verification Report (see 6.2.4.13).

7.5.4.10 After the Software Source Code and the Software Component Test Report have beenestablished,
verification shall address

a) the adequacy of the Software Source Code as an implementation of the Software Component Design
Specification,

b) the correct use of the chosen techniques and measures from Table A.4 as a set satisfying 4.8 and 4.9,

c) determining the correct application of the coding standards,

d) that the Software Source Code meets the general requirements for readability and traceability in 5.3.2.7 to

5.3.2.10 and in 6.5.4.14 to 6.5.4.17, as well as the specific requirements in 7.5.4.1 to 7.5.4.4,

e) the adequacy of the Software Component Test Report as a record of the tests carried out in accordance

with the Software ComponentTest Specification. “

The results shall be recorded in a Software Source Code Verification Report.

7.6 Integration

7.6.1 Objectives

7.6.1.1 To carry out software and software/hardwareintegration.

7.6.1.2 To demonstrate that the software and the hardware interact correctly to perform their intended
functions.

7.6.2 Input documents

1) Software/Hardware Integration Test Specification

2) Software Integration Test Specification

7.6.3 Output documents

1) Software Integration Test Report

2) Software/Hardware Integration Test Report

3) Software Integration Verification Report

7.6.4 Requirements

7.6.4.1 The integration of software components shall be the process of progressively combining individual
and previously tested components into a composite whole in order that the components interfaces and the

assembled software may be adequately proven prior to system integration and system test.

7.6.4.2 During software/hardware integration any modification or change to the integrated system shall be
subject to an impact study which shall identify all components impacted and the necessary reverification

activities.

7.6.4.3 A Software Integration Test Report shall be written, under the responsibility of the Integrator, on the
basis of the Software Integration Test Specification.

Requirements from 7.6.4.4 to 7.6.4.6 refer to the Software Integration Test Report.

BS EN 50128:2011
915 EN 50128:2011

7.6.4.4 The Software Integration Test Report shall be written in accordance with the generic requirements
established for a Test Report (see 6.1.4.5).

7.6.4.5 A Software Integration Test Report shall be producedasfollows:

a) a Software Integration Test Report shall be produced stating the test results and whether the objectives
and criteria of the Software Integration Test Specification have been met. If there is a failure, the
circumstancesforthe failure shall be recorded;

b) test cases and their results shall be recorded, preferably in machine readable form for subsequent
analysis;

c) tests shall be repeatable and, if practicable, be performed by automatic means;

d) the Software Integration Test Report shall document the identity and configuration of all the items
involved.

7.6.4.6 The Software Integration Test Report shall demonstrate the correct use of the chosen techniques
and measures from Table A.6 as a set satisfying 4.8 and 4.9.

7.6.4.7 A Software/Hardware Integration Test Report shall be written, under the responsibility of the
integrator, on the basis of the Software/Hardware Integration Test Specification.

Requirements from 7.6.4.8 to 7.6.4.10 refer to the Software/Hardware Integration Test Report.

7.6.4.8 The Software/Hardware Integration Test Report shall be written in accordance with the generic
requirements established for a Test Report (see 6.1.4.5).

7.6.4.9 A Software/Hardware Integration Test Report shall be producedasfollows:

a) the Software /Hardware Integration Test Report shall state the test results and whetherthe objectives and
criteria of the Software/Hardware Integration Test Specification have been met.If there is a failure, the

circumstances of the failure shall be recorded;

b) test cases and their results shall be recorded, preferably in a machine-readable form for subsequent
analysis;

c) the Software/Hardware Integration Test Report shall documentthe identity and configuration of all items
involved.

7.6.4.10 The Software/Hardware Integration Test Report shall demonstrate the correct use of the chosen
techniques and measuresfrom Table A.6 as a setsatisfying 4.8 and 4.9.

7.6.4.11 A Software Integration Verification Report shall be written, under the responsibility of the Verifier, on
the basis of the Software .and Software/Hardware Integration Test Specifications and the corresponding test
reports.

Requirements from 7.6.4.12 to 7.6.4.13 refer to the Software Integration Verification Report.

7.6.4.12 The Software Integration Verification Report shall be written in accordance with the generic
requirements established for a Verification Report (see 6.2.4.13).

7.6.4.13 After the Software Integration Test Report and the Software/HardwareIntegration Test Report have
been established, verification shall address

a) the adequacyof the Software Integration Test Report as a record of the tests carried out in accordance
with the Software Integration Test Specification,

b) whether the Software Integration Test Report meets the requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17, as well as the specific requirements in 7.6.4.3 to 7.6.4.6,

BS EN 50128:2011
EN 50128:2011 -52-

c) the adequacy of the Software/Hardware Integration Test Report as a record of the tests carried outin

accordance with the Software/Hardware Integration Test Specification,

d) whether the Software/Hardware Integration Test Report meets the general requirements for readability

and traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17, as well as the specific requirements in

7.6.4.7 to 7.6.4.10.

7.7 Overall Software Testing / Final Validation

7.7.1 Objectives

7.7.1.1 To analyse and test the integrated software and hardware to ensure compliance with the Software

Requirements Specification with particular emphasis on the functional and safety aspects according to the

software safety integrity level and to check whetherit is fit for its intended application.

7.7.2 Input documents

1) Software Requirements Specification

2) Overall Software Test Specification

3) Software Verification Plan

4) Software Validation Plan

5) All Hardware and Software Documentation including intermediate verification results

6) System Safety Requirements Specification

7.7.3 Output documents

1) Overall Software Test Report

2) Software Validation Report

3) Release Note

7.7.4 Requirements

7.7.4.1 An Overall Software Test Report shall be written, under the responsibility of the Tester, on the basis

of the Overall Software Test Specification.

Requirements from 7.7.4.2 to 7.7.4.4 refer to the Overall Software Test Report.

7.7.4.2 The Overall Software Test Report shall be written in accordance with the generic requirements

established for a Test Report (see 6.1.4.5).

7.7.4.3 The Validator shall specify and perform supplementary tests on his discretion or have them

performed by the Tester. While the Overall Software Tests are mainly based onthe structure of the Software

Requirements Specification, the added value the Validator shall contribute, are tests which stress the system

by complex scenarios reflecting the actual needsof the user.

77.4.4 The results of all tests and analyses shall be recorded in a Overall Software Test Report.

7.7.4.5 The software shall be exercised either by connection to real items of hardware or actual systems

with whichit would interface in operation, or by simulation of input signals and loads driven by outputs. It shall

be exercised under conditions present during normal operation, anticipated occurrences and undesired

conditions requiring system action. Where simulated inputs or loads are usedit shall be shown that these do

notdiffer significantly from the inputs and loads encountered in operation.

NOTE Simulated inputs or loads might replace inputs or loads whichare only present at system levelorin faulty modes.

BS EN 50128:2011
- 53 - EN 50128:2011

7.7.4.6 A Software Validation Report shall be written, under the responsibility of the Validator, on the basis of
the Software Validation Plan.

Requirements from 7.7.4.7 to 7.7.4.11 refer to the Software Validation Report.

7.7.4.7 The Software Validation Report shall be written in accordance with the generic requirements
established for the Validation Report (see 6.3.4.7 to 6.3.4.11).

7.7.4.8 Once integration is finished and overall software testing and analysis are complete, a Software

Validation Report shall be produced asfollows:

a) it shall state whether the objectives andcriteria of the Software Validation Plan have been met. Deviations
to the plan shall be recorded andjustified;

b) it shall give a summary statement on the tests results and whether the whole software onits target

machinefulfils the requirements set out in the Software Requirements Specification;

c) an evaluation of the test coverage on the requirements of the Software Requirements Specification shall

be provided;

d) an evaluation of other verification activities in accordance to the Software Verification Plan and Report
shall be done together with a check that requirements tracing is fully performed and covered;

e) if the Validator produces own test cases not given to the Tester the Software Validation Report shall

document these in accordance with 6.3.4.7 to 6.3.4.11.

7.7.4.9 The Software Validation Report shall contain the confirmation that each combination of techniques or

measures selected according to Annex A is appropriate to the defined software safety integrity level. It shall
contain an evaluation of the overall effectiveness of the combination of techniques and measures adopted,
taking account of the size and complexity of the software produced and taking into account the actual results
of testing, verification and validation activities.

7.7.4.10 The following shall be addressedin the Software Validation Report:

a) documentation of the identity and configuration of the software;

b) statement of appropriate identification of technical support software and equipment;

c) statementof appropriate identification of simulation models used;

d) statement about the adequacy of the Overall Software Test Specification;

e) collection and keeping track of any deviations found;

f) review and evaluation of all deviations in termsof risk (impact);

g) a statement that the project has performed appropriate handling of corrective actions in accordance with
the change management process and procedures and with a clear identification of any discrepancies

found;

h) statementof eachrestriction given by the deviations in a traceable way;

i) a conclusion whether the softwareis fit for its intended application, taking into account the application
conditions and constraints.

BS EN 50128:2011
EN 50128:2011 + 64s

7.7.4.11 Any discrepancies found, including detected errors and non-compliances with this European
Standard or with any of the software requirements or plans, as well as constraints and limitations, shall be

clearly identified in a separate sub-clause of the Software Validation Report, evaluated regarding the safety

integrity level and included in any Release Note which accompaniesthe delivered software.

7.7.4.12 A Release Note which accompaniesthe delivered software shall include all restrictions in using the

software. Theserestrictions are derived from

a) the detected errors,

b) non-complianceswith this European Standard,

c) degree offulfilment of the requirements,

d) degree offulfilment of any plan.

8 Development of application data or algorithms: systems configured by application data

or algorithms

8.1 Objectives

8.1.1 A characteristic feature in many railway systems is the need to design eachinstallation to meet the

individual requirements for a specific application. A system configured by application data and/or by

application algorithms allows approved generic software to be customised with the individual requirements for

each specific application.

The objective for the development of application data is the correct deriving of the data from the given

installation and the check of the intended behaviour, followed by an assessment of the used development

processforthat application data.

The requirements for the developmentof application algorithms are the same as the development of generic

software as described in Clauses 1-7 and 9.

A typical example is a system whosegeneric software is pre-configured for a generic railway application by a

set of application algorithms, and whichis then further configured to each specific installation by instantiation

and interconnection of the application algorithms and by a set of configuration data. For instance, the

signalling principles of an interlocking system (e.g. signal management, point management) may be

implementedby a set of application algorithms.

Application data typically take the form of parameter values or descriptions (identity, type, location, etc.) of

external objects. Application algorithms may take the form of e.g. function block diagrams, state charts and

relay ladder diagrams, which determine the desired responseof the system according toits inputs, its current

state and specific parameter values. Application algorithms include logical connections and operations to be

executed.

The application data/algorithms are usually produced using dedicated tools. They may be expressed in

tabular or diagrammatic formats, which can be interpreted or compiled into executable codes often after

conversion into source codes handled via specialised languages (with syntax and semantics).

The customisation of systems through configurability gives the designer different degrees of control over the

detailed software functionality.

BS EN 50128:2011
~ 55 - EN 50128:2011

8.1.2 The procedures and the tools used for their development shali be appropriate to the system safety

integrity level as determined by the function for which they are developed.

8.1.3 The sub-clauses below describe the requirements for the initial development of a configurable system

and for the subsequent developmentof each set of application-specific data/algorithms.

8.2 Input documents

1) Software Requirements Specification of generic software

2) Software Architecture Specification of generic software

3) Application conditions of the generic software and application tools

4) User manuais of the generic software and application tools

8.3 Output documents

1) Application Preparation Plan

2) Application Requirements Specification

3) Application Architecture and Design

4) Application Test Specification

5) Application Test Report

6) Application Preparation Verification Report

7) Source Code of Application Data/Aigorithms

8) Application Data/Algoritnms Verification Report

8.4 Requirements

8.4.1 Application Development Process

84.1.1 An Application Preparation Plan shall be written, under the responsibility of the Requirements

Manageror Designer, on the basis of the input documents from 8.2.

The requirements from 8.4.1.2 to 8.4.1.11 refer to the Application Preparation Plan.

8.4.1.2 An Application Preparation Pian shall be produced in order to define and detail the application

developmentprocess, including all the activities, deliverables and roles in charge of them.It can be produced

either for each specific application or for a class of specific applications,i.e. for a generic application.

8.4.1.3 The Application Preparation Plan shall define a documentation structure for the application

preparation process.

8.4.1.4 The Application Preparation Plan shall choose techniques and measures from Table A.11. The

selected combination shall be justified as a set satisfying 4.8 and 4.9.

8.4.1.5 The Application Preparation Plan shall specify the procedures and application tools (with their

classification based on 6,7) to be usedin the application development process.

BS EN 50128:2011
EN 50128:2011 - 56 -

8.4.1.6 The Application Preparation Plan shall include verification and validation activities to ensure that the
application data/algorithms are complete, correct and compatible with each other and with the generic

application, and to provide evidence that the application conditions of the generic application are met. These
verification and validation activities and evidence can be replaced by verification and validation performed on
the tools that produce the application data/algorithms. The results are gathered together in the Application
Preparation Verification Report and the Application Test Report.

8.4.1.7. The Application Preparation Plan shall include verification and validation activities to ensure that the

application tools and the generic software are compatible with each other and with the specific application,
and to provide evidence that their application conditions are met.

8.4.1.8 A risk analysis shall be carried out covering the application development process, including the

application tools and procedures, in order to validate the Application Preparation Plan and to meet the

required software safety integrity level. The Application Preparation Plan shall include the risk analysis.

8.4.1.9 The Application Preparation Plan shall specify the requirements for the independence betweenstaff
carrying outverification, validation and preparation tasks according to 5.1.

NOTE Data preparation activities are carried out by application designers.

8.4.1.10 The Application Preparation Plan shall define a tool class for any hardware orsoftware tools used in
the application preparationlifecycle.

8.4.1.11 Where possible, the Application Preparation Plan shall call for notations for specifying requirements

and design whichare familiar to applications engineers. VWhere new notations are introduced, the necessary
user documentation shall be provided, as well as training where appropriate.

8.4.1.12 An Application Data/Algorithms Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the input documents from 8.2.

The requirementin 8.4.1.13 refers to the Application Data/Algorithms Verification Report.

8.4.1.13 Once the Application Preparation Plan has been established, verification shall address

a) that the Application Preparation Plan meets the general requirements for readability and traceability in

5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 8.4.1.2 to 8.4.1.11,

b) the internal consistency of the Application Preparation Plan.

The results shall be recorded in an Application Data/Algorithms Verification Report.

8.4.1.14 The implementation of the Application Preparation Plan shall be verified and validated for each
specific application.

8.4.2 Application Requirements Specification

8.4.2.1 An Application Requirements Specification shall be written, under the responsibility of the

Requirements Manager, on the basis of the input documents from 8.2.

The requirements from 8.4.2.2 to 8.4.2.3 refer to the Application Requirements Specification.

BS EN 50128:2011
-57- EN 50128:2011

8.4.2.2 The requirements for the specific application shall include the requirements which are specific to the
installation under consideration (e.g. track layout, signal locations, speed limits for a signalling system), as

well as a recap or reference to the application conditions of the generic software and the application tools,
and the standards with which the application shall comply (e.g. signalling principles for a signalling system).

8.4.2.3 The requirements related to the application data and algorithms processed by the generic software

of the system shall be specified at this stage.

8.4.2.4 An Application Data/Algorithms Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the input documents from 8.2.

The requirementin 8.4.2.5 refers to the Application Data/Algorithms Verification Report.

8.4.2.5 Once the Application Requirements Specification has been established, verification shall address

a) that the Application Requirements Specification meets the general requirements for readability and
traceability in 5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 8.4.2.2
to 8.4.2.3,

b) the internal consistency of the Application Requirements Specification.

The results shall be recorded in an Application Data/Aigorithms Verification Report.

8.4.3 Architecture and Design

The quantity and type of the generic hardware and software components to be used in the specific application

shail be specified. The location of components, application data and algorithms in the specific application
architecture shall be defined. The application data and algorithms processed by the generic software shall be

designed at this stage.

8.4.4 Application Data/Algorithms Production

8.4.4.1 The application development process shall include the production and compilation of the source
code of the generic and specific data/algorithms, as well as verification and testing activities related to this
production. The use of diagrammatic languages is recommended for producing the source code of
application algorithms. Refer to the Table A.16.

8.4.4.2 An Application Test Report shall be written, under the responsibility of the Tester, on the basis of the
input documents from 8.2.

The requirementin 8.4.4.3 refers to the Application Test Report.

8.4.4.3 The Application Test Report shall document the correct and complete execution of the tests defined
in Application Test Specification.

8.4.4.4 The Application Preparation Verification Report shall

a) document every activity performed to ensure correctness and completeness of data/algorithm and their
coherencywith application principles and specific application architecture,

b) evaluate compatibility of data/algorithms with generic application.

8.4.4.5 An Application Test Specification shall be written, under the responsibility of the Tester, on the basis
of the input documents from 8.2.

The requirement in 8.4.4.6 refers to the Application Test Specification.

BS EN 50128:2011
EN 50128:2011 - 58 -

8.4.4.6 The Application Test Specification shall specify tests to be carried out at intermediate orfinal stage
of data/algorithms preparation, in order to ensure

a) coherency and completenessof data/algorithms with respect to application principles,

b) coherency and completenessof data/algorithms with respect to specific application architecture.

8.4.4.7 An Application Data/Algorithms Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the input documents from 8.2.

The requirementin 8.4.4.8 refers to the Application Data/AlgorithmsVerification Report.

8.4.4.8 Once the Application Test Specification has been established, verification shall address

a) that the Application Test Specification meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 8.4.4.6,

=

b) the internal consistency of the Application Test Specification.

The results shall be recorded in an Application Data/AlgorithmsVerification Report.

8.4.5 Application Integration and Testing Acceptance

8.4.5.1 For some systems the application data/algorithms can be integrated with the generic hardware and
software for a factory test before installation on the target system. This may not be necessary where a
sufficient degree of confidence can be obtained by other means. The application shall then be installed on the
target system, and integration tests within the complete installation shall be carried out. Finally the target
system shall be commissioned asa fully operational system, and a final acceptance processofthe target
system in the complete installation shall be carried out. The Application Test Report shall document the
correct and complete execution of tests defined in the Application Test Specification. The Application
Preparation Verification Report shall check the completeness and correctnessof tests performed on the
completeinstallation.

8.4.5.2 An Application Test Specification shall be written, under the responsibility of the Tester, on the basis
of the input documentsfrom 8.2.

The requirementin 8.4.5.3 refers to the Application Test Specification.

8.4.5.3 The Application Test Specification shall specify tests to be carried out to ensure

a) correct integration of data/algorithms on generic hardware and software,if needed,

b) correct integration of data/algorithms with complete installation.

8.4.5.4 An Application Data/Algorithms Verification Report shall be written, under the responsibility of the
Verifier, on the basis of the input documents from 8.2.

The requirementin 8.4.5.5 refers to the Application Data/Algorithms Verification Report.

8.4.5.5 Once the Application Test Specification has been established, verification shall address that the
Application Test Specification meets the specific requirements in 8.4.5.3.

8.4.6 Application Validation and Assessment

Validation and assessmentactivities shall audit the performance of each stageof the life-cycle.

BS EN 50128:2011

- 59 - EN 50128:2011

8.4.7 Application preparation procedures and tools

8.4.7.1 For each new type of system configured by application data/algorithms, specific procedures and
tools shall be developed to allow the application development process specified in 8.4.1 to be applied to

installations of the new system. Development of these tools shall be carried out in accordance with this

European Standard in parallel with the generic software and hardware for the system. The verification,
validation and assessmentactivities shall ensure that the data preparation tools and the generic software are
compatible.

8.4.7.2 Any compilation process shall be validated and assessed. It shall be noted that specialised compilers
are usually necessary for the data and algorithm conversion.

8.4.7.3 All application data/algorithms and associated documentation for each specific application shall be
subject to the software deployment requirements as specified in 9.1.

8.4.7.4 All application data/algorithms and associated documentation shall be subject to the software
maintenance requirements specified in 9.2.

8.4.7.5 All application data/algorithms and associated documentation shall be placed under configuration

management according to the requirements specified in 6.5 and 6.7. The configuration management of

application data/algorithms can be separate from the generic software part.

8.4.7.6 The Application Verification Report demonstrate the coverage and enforcement of the application
conditions of the generic software and application tools.

8.4.8 Development of Generic Software

8.4.8.1 Development of the generic software, which supports the execution of application data/algorithms,
shall comply with the requirements in 7.1 to 7.7 of this European Standard. The following additional
requirements shall also be observed.

8.4.8.2 The types or classes of function which can be configured by application data/algorithms in each
system and subsystem shall be identified in the Software Requirements Specification documents of the

generic software. The safety integrity level allocated to functions will determine the standards to be applied to

the subsequent developmentof the application data/ algorithmsforall installations of the system.

8.4.8.3 During the design of the generic software the detailed interfaces between the generic software and
the application data/algorithms shall be specified, unless this has already been specified at an earlier phase

of the lifecycle, for example as a result of a requirement to use an existing application-specific language.

8.4.8.4 A rigid separation between the generic software and the application data/algorithms shall be
enforced, i.e. it shall be possible to recompile and update either the generic software or the application

data/algorithms without needing to update the other, unless there has been a changeto the defined interface
between the generic software and the application data/algorithms. Likewise, the applications specific

data/algorithms shall be separated from the application-generic data/algorithms.

8.4.8.5 The change control procedures shall ensure that any amendmentto the generic software may only
be installed after it has been established that either the revised software is compatible with the original
application data/algorithmsor the application data/algorithms have been revised.

8.4.8.6 Care shall be taken in the verification process and validation test phase of the generic software in
orderto assurethat all relevant combinations of data and algorithms are considered.

If all relevant combinations of data and algorithms have not been considered in the verification, testing and
validation process of the generic software, it shall be clearly identified as a limit of use of the generic

software. A complementto verification, testing and validation process of the generic software shall be
performed when somedata oralgorithms are defined beyondthislimit.

FO

BS EN 50128:2011

EN 50128:2011 - 60 -

8.4.8.7 The generic software shall be designed to detect corrupted application data/algorithms wherethis is
feasible.

8.4.8.8 The designers shall publish the Release Note of the generic software and application tools by the
Overall Software Testing/Final Validation phase of the generic software and application tools. The contents of

these documents shall be subjectto verification and validation activities.

The following topics shall be addressed in the document “Application conditions of the generic software and
application tools’:

1) references to the user manuals of the generic software and application tools;

2) any constraints on the application data/algorithms e.g. imposed architecture or coding rules to meet the

safety integrity levels.

9 Software deployment and maintenance

9.1 Software deployment

9.1.1 Objective

9.1.1.1 To ensure that the software performs as required, preserving the required software safety integrity

level and dependability whenit is deployed in the final environmentof application.

9.1.2 Input documents

All design, development and analysis documents relevant to the deployment.

9.1.3 Output documents

1) Software Release and Deployment Plan

2) Software Deployment Manual

3) Release Notes

4) Deployment Records

5) Deployment Verification Report

9.1.4 Requirements

9.1.4.1 The deployment shall be carried out under the responsibility of the project manager.

9.1.4.2 Before delivering a software release, the software baseline shall be recorded and kept traceable

under configuration management control. Pre-existing software and software developed according to a

previous version of this European Standard shall also be included.

9.1.4.3 The software release shall be reproducible throughoutthe baselinelifecycle.

9.1.4.4 A Release Note shall be written, under the responsibility of the Designer, on the basis of the input

documents from 9.1.2.

The requirementin 9.1.4.5 refers to the Release Note.

9.1.4.5 A Release Note shall be provided that defines

a) the application conditions which shall be adheredto,

BS EN 50128:2011
=61- EN 50128:2011

b) information of compatibility among software components and betweensoftware and hardware,

c) all restrictions in using the software (see 7.7.4.12).

9.1.4.6 A Software Deployment Manual shall be written on the basis of the input documents from 9.1.2.

The requirementin 9.1.4.7 refers to the Software Deployment Manual.

9.1.4.7 The Software Deployment Manual shall define proceduresin order to correctly identify and install a
software release.

9.1.4.8 In case of incremental deployment(i.e., deployment of single components),it is highly recommended
for SIL 3 and SIL 4, and recommended for SIL 1 and SIL 2, that the software is designed to includefacilities
which assurethat activation of incompatible versions of software componentsis excluded.

9.1.4.9 Configuration management shall ensure that no harm results from the co-presence of different
versions of the same software components whereit cannot be avoided.

9.1.4.10 A rollback procedure(i.e., capability to return to the previous release) shall be available when
installing a new software release.

9.1.4.11 The software shall have embedded self-identification mechanisms,allowing its identification at the
loading process and after loading into the target. The self-identification mechanism should indicate version
information for the software and any configuration data as well as the productidentity.

NOTE The data within the code, containing the information about the software release, is recommended to be
protected through coding (see Table A.3 “Error Detecting Codes’).

9.1.4.12 A Deployment Record shall be written on the basis of the input documents from 9.1.2.

The requirementin 9.1.4.13 refers to the Software Deployment Record.

9.1.4.13 A Deployment Record shall give evidence that intended software has beenloaded,by inspection of
the embeddedself-identification mechanisms (see 9.1.4.11). This record shall be stored among the delivered
system related documentslike otherverifications and is part of the commissioning and acceptance.

9.1.4.14 The deployed software shall be traceable to delivered installations.

NOTE This is of special importance whencritical faults are discovered and need to be corrected in more than one
installation.

9.1.4.15 Diagnostic information shall be provided by the software, as part of fault monitoring.

9.1.4.16 A Deployment Verification Report shall be written, under the responsibility of the Verifier, on the
basis of the input documents from 9.1.2.

Requirements from 9.1.4.17 to 9.1.4.19 refer to the DeploymentVerification Report.

9.1.4.17 Once the Software Deployment Manual has beenestablished, verification shall address

a) that the Software Deployment Manual meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirementsin 9.1.4.7,

b) the internal consistency of the Software Deployment Manual.

9.1.4.18 Once the Deployment Record has beenestablished, verification shall address

a) that the Deployment Record meets the general requirements for readability and traceability in 5.3.2.7 to
5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 9.1.4.13,

b) the internal consistency of the Deployment Record.

BS EN 50128:2011
EN 50128:2011 - 62 -

9.1.4.19 Once the Release Note has beenestablished,verification shall address

a) that the Release Note meets the general requirements for readability and traceability in 5.3.2.7 to 5.3.2.10
and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 9.1.4.5,

b) the internal consistency of the Release Note.

The results shall be recorded in a DeploymentVerification Report.

9.1.4.20 Measures shall be included in the software package to prevent or detect errors occurring during
storage, transfer, transmission or duplication of executable code or data. The executable codeis

recommendedto be coded (see Table A.3 “Error Detecting Codes’) as part of checking the integrity of the
codein the load process.

9.2 Software maintenance

9.2.1 Objective

9.2.1.1 To ensure that the software performs as required, preserving the required software safety integrity
level and dependability when making corrections, enhancements or adaptations to the software itself. See
also 6.6 “Modification and changecontrol” of this European Standard and phase 13 “Modification and retrofit”
in EN 50126-1.

9.2.2 Input documents

All relevant design, development and analysis documents

9.2.3 Output documents

1. Software Maintenance Plan

2. Software Change Records

3. Software Maintenance Records

4. Software MaintenanceVerification Report

9.2.4 Requirements

9.2.4.1 Although this European Standard is not intended to be retrospective, applying primarily to new
developments and only applying in its entirety to existing software if these are subjected to major

modifications, 9.2 concerning software maintenance applies to all changes, even those of a minor nature.

However, application of the whole this European Standard during upgrades and maintenance of existing
software is highly recommended.

9.2.4.2 For any software safety integrity level, the supplier shall, before starting work on any change, decide
whether the maintenance actions are to be considered as major or minor or whether the existing
maintenance methods for the system are adequate. The decision shall be justified and recorded by the

supplier and shall be submitted to the Assessor’s evaluation.

9.2.4.3 Maintenanceshall be carried out in accordance with the guidelines contained in ISO/IEC 90003.

9.2.4.4 Maintainability shall be designed as an inherent aspect of the software, in particular by following the
requirements of 7.3, 7.4 and 7.5. ISO/IEC 9126 series shall also be employed in order to implement and

verify a minimum level of maintainability.

9.2.4.5 A Software Maintenance Plan shall be written on the basis of the input documentsfrom 9.2.2.

The requirement 9.2.4.6 refers to the Software MaintenancePlan.

BS EN 50128:2011
- 63 - EN 50128:2011

9.2.4.6 Procedures for the maintenance of software shall be established and recorded in the Software
Maintenance Plan. These proceduresshall also address

a) control of error reporting, error logs, maintenance records, change authorisation and software/system
configuration and the techniques and measures in Table A.10,

b) verification, validation and assessmentof any modification,

c) definition of the Authority which approves the changed software, and

d) authorisation for the modification.

9.2.4.7 A Software Maintenance Record shall be written on the basis of the input documents from 9.2.2.

The requirementin 9.2.4.8 refers to the Software Maintenance Record.

9.2.4.8 A Software Maintenance Record shall be established for each Software Item before its first release,
andit shall be maintained. In addition to the requirements of ISO/IEC 90003:2004 for "Maintenance Records
and Reports" (see ISO/IEC 90003:2004, section “Maintenance”), this Record shall also include

a) referencesto all the Software Change Recordsfor that software item,

b) change impact assessment,

c) test cases for components, including revalidation and regression testing data, and

d) software configuration history.

9.2.4.9 A Software Change Record shall be written on the basis of the input documents from 9.2.2.

The requirementin 9.2.4.10 refers to the Software Change Record.

9.2.4.10 A Software Change Record shall be established for each maintenance activity. This record shall
include

a) the modification or change request, version, nature of fault, required change and source for change,

b) an analysis of the impact of the maintenance activity on the overall system, including hardware, software,
human interaction and the environment and possible interactions,

c) the detailed specification of the modification or change carried out, and

d) revalidation, regression testing and re-assessmentof the modification or change to the extent required by
the software safety integrity level. The responsibility for revalidation can vary from project to project,
according to the software safety integrity level. Also the impact of the modification or change on the process
of revalidation can be confined to different system levels (only changed components,all identified affected
components, the complete system). Therefore the Software Validation Plan shall address both problems,
according to the software safety integrity level. The degree of independence of revalidation shall be the same
as that for validation.

9.2.4.11 A Software Maintenance Verification Report shall be written, under the responsibility of the Verifier,
on the basis of the input documents from 9.2.2.

Requirements from 9.2.4.12 to 9.2.4.14 refer to the Software Maintenance Verification Report.

9.2.4.12 Once the Software Maintenance Plan has been established, verification shall address

a) that the Software Maintenance Plan meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirements in 9.2.4.6,

b) the internal consistency of the Software Maintenance Plan.

BS EN 50128:2011
EN 50128:2011 - 64 -

9.2.4.13 Once the Software Maintenance Record has been established, verification shall address

a) that the Software Maintenance Record meets the general requirements for readability and traceability in
5.3.2.7 to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirementsin 9.2.4.8,

b) the internal consistency of the Software Maintenance Record.

9.2.4.14 Once the Software Change Record has beenestablished, verification shall address

a) that the Software Change Record meets the general requirements for readability and traceability in 5.3.2.7

to 5.3.2.10 and in 6.5.4.14 to 6.5.4.17 as well as the specific requirementsin 9.2.4.10,

b) the internal consistency of the Software Change Record.

9.2.4.15 The maintenanceactivities shall be carried out following the Software Maintenance Plan.

9.2.4.16 The techniques and measuresfrom Table A.10 shall be chosen. The selected combination shall be
justified as a set satisfying 4.8 and 4.9.

9.2.4.17 Maintenance shall be performed with at least the same level of expertise, tools, documentation,

planning and managementasforthe initial developmentof the software. This shall apply also to configuration

management, change control, documentcontrol, and independenceof involved parties.

9.2.4.18 External supplier control, problem reporting and corrective actions shall be managed with the same
criteria specified in the relevant paragraphs of the Software Quality Assurance (6.5) as for new software
development.

9.2.4.19 For each reported problem or enhancementa safety impact analysis shall be made.

9.2.4.20 For software under maintenance, mitigation actions proportionate to the identified risk shall be

taken in order to ensure the overall integrity of the system whilst the reported problems are investigated and
corrected.

BS EN 50128:2011
- 65 - EN 50128:2011

Annex A
(normative)

Criteria for the Selection of Techniques and Measures

The clauses of this European Standard are associated within this annex to the clause tables (see A.1, Table
A.1 to Table A.11) to illustrate the means of achieving conformance. There exist lower level tables as well,

the detailed tables (see A.2, Table A.12 to Table A.23), which expand upon certain entries in the clause
tables. For example, “Modelling” in Table A.2 is expanded upon in Table A.17. There also exists an

informative Annex D whichis referred to from the clause tables.

With each technique or measurein the tables there is a requirement for each software safety integrity level
(SIL). In this version of the document, the requirements for software safety integrity levels 1 and 2 are the

samefor each technique. Similarly, each technique has the same requirements at software safety integrity
levels 3 and 4. These requirements can be

'M' this symbol meansthat the use of a technique is mandatory,

'HR' this symbol means that the technique or measure is Highly Recommended for this safety integrity
level. If this technique or measure is not used thenthe rationale for using alternative techniquesshall
be detailed in the Software Quality Assurance Plan or in another ‘document referenced by the
Software Quality Assurance Plan,

'R' this symbol meansthat the technique or measure is Recommendedforthis safety integrity level. This
is a lower level of recommendation than an 'HR' and such techniques can be combined to form part
of a package,

- this symbol meansthat the technique or measure has no recommendation for or against being used,

'NR' this symbol means that the technique or measure is positively Not Recommendedfor this safety

integrity level. If this technique or measure is used then the rationale behind usingit shall be detailed
in the Software Quality Assurance Plan or in another document referenced by the Software Quality

AssurancePlan.

The combination of techniques or measures are to be stated in the Software Quality Assurance Plan or in
another document referenced by the Software Quality Assurance Plan with one or more techniques or

measures being selected unless the notes attached to the table makes other requirements. These notes can

include reference to approved techniques or approved combinations of techniques. If such techniques or

combinations of techniques, including all respective mandatory techniques, are used, then the Assessorshall
accept them as valid and shall only be concerned that they have been correctly applied. If a different set of
techniquesis used and canbejustified, then the Assessor mayfind this acceptable.

BS EN 50128:2011
EN 50128:2011 ~ 66 -

A.1 Clauses tables

Table A.1- Lifecycle Issues and Documentation (5.3)

DOCUMENTATION

Planning

1. Software Quality Assurance Plan

2. Software Quality Assurance Verification Report

3. Software Configuration Management Plan
 7

4. Software Verification Plan

5. Software Validation Plan

Software requirements

6. Software Requirements Specification

7. Overall Software Test Specification

8. Software Requirements Verification Report

Architecture and design

SIL 3

Z
/
i
Z
I
I
I

A}
A

wz
x A

Z
I
i
z
I
I
ı
z

2
1
9
2
1
0

zZ Aa

SIL 4

L
Z
L
/
i
I
/
l
I

2
1
|
2
|
9
0

x= a
x a

<=
x
i
}

2
2
1
%

o
n
y

“e
y

9. Software Architecture Specification HR HR

10. Software Design Specification HR HR

11. Software Interface Specifications HR HR

12. Software Integration Test Specification HR HR

13. Software/Hardware Integration Test Specification HR HR

14. Software Architecture and Design Verification Report HR HR

Component Design

15. Software Component Design Specification

16. Software Component Test Specification

17. Software Component Design Verification Report

Component Implementation and Testing

18. Software Source Code and supporting documentation

19. Software Component Test Report

20. Software Source CodeVerification Report

integration

a x= a

I a I a

I
I
I

3
3

a a I a =x a

Z
I
i
Z
I
i
I

Ai
A,

aA

HR

= a

<= X
x= a

zZ A
zZ a

x a

21. Software integration Test Report

22. Software/Hardware Integration Test Report

23. Software Integration Verification Report

Overall Software Testing / Final Validation

r
i
t a

i
j
t Al zZ A

<= A}
a

zZ ı
%

r
i
t

A
l
i
a x= a

I
zZ

x a

a A
zZ

x
2

a
zZ A

24. Overail Software Test Report HR HR HR HR HR

25. Software Validation Report HR HR HR HR HR

26. Tools Validation Report R HR HR HR HR

27. Release Note HR HR HR HR HR

BS EN 50128:2011

- 67 - EN 50128:2011

SIL 3

Table A.1— Lifecycle Issues and Documentation (5.3) (continued)

DOCUMENTATION SIL 0

Systems configured by application data/ algorithms

na
En

i H

i H

H

i H

H

PR
BC

SIL1 SIL2 SIL 4

29. Application Preparation Plan (see NOTE 2)

31. Application Architecture and Design (see NOTE 2)

32. Application Preparation Verification Report

33. Application Test Report

34. Source Code of Application Data/Algorithms

I AHR
HR
HR

VertcationHR
deployment|
DeploymentPianR
Manual|
NotesCR

. oR
|
oR

H

R ln

43. Software Maintenance Records

44. Software Maintenance Verification Report

Software assessment

R

R

R

R

R

R

R

R

R

R

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR HR HR

HR HR HR

HR HR HR

HR HR

HR HR HR

HR HR HR

HR HR HR

HR HR HR

HR HR HR

HR HR HR

R HR HR

R HR HR

HR HR HR

HR HR HR

HR HR HR

HR HR HR

HR HR HR

45. Software Assessment Plan R HR HR HR

46. Software Assessment Report R HR | HR HR HR

NOTE1 According to 5.3.2.11 and 5.3.2.12, documents can be combined differently.

NOTE 2 Documents 29, 30 and 31 being HR or R depends on the importance defined in the process and wherethe verification

takes place. E.g. data may only be neededto beverified but tested in the system domain while more functional properties need both

test and verification. In this case HR has been marked but can be optional R.

BS EN 50128:2011

EN 50128:2011 - 68 -

Table A.2 — Software Requirements Specification (7.2)

Formal Methods (based on a mathematical po]=RYORAR AR

An

=—EerereRA.17

PRRf]rR|r|
PRRRk[oR]

Structured methodology

. Decision Tables

Requirements:

1) The Software Requirements Specification shall include a description of the problem in natural language

and any necessary formal or semiformal notation.

2) Thetable reflects additional requirements for defining the specification clearly and precisely. One or more

of these techniquesshall be selected to satisfy the Software Safety Integrity Level being used.

BS EN 50128:2011
- 69 - EN 50128:2011

Table A.3 — Software Architecture (7.3)

TECHNIQUE/MEASURE SIL3 SIL4

1. Defensive Programming

SILO SIL1 SIL2

zZ a ae A ec A ak AD.14

D.26

D.19

D.19

D.24

D.47

D.16

D.44

. Fault Detection & Diagnosis HR

. Error Correcting Codes

ac A Z a. Error Detecting Codes

. Failure Assertion Programming HR

. Safety Bag Techniques

= a zo A. Diverse Programming

. Recovery Block

Zz A Zz A Zz A. Backward Recovery

= a z=
.
AD.30

D.46

D.36
= A = A0. Forward Recovery

11. Retry Fault Recovery Mechanisms

12. Memorising Executed Cases
z a z A Zz a Zz a13. Artificial Intelligence — Fault Correction

= A = AZz A Zz ADAZ

D.25

D.31

D.33

D.33

D.38

D.28

Table

A.17

D:52

Table

A.17

14. Dynamic Reconfiguration of software

15. Software Error Effect Analysis

I
/
I
I

a
|
%

Z
I
|
I

ak
e

ac
Be

A
a

a
a

a

16. Graceful Degradation

17. Information Hiding

x A Z A Z A x= A18. Information Encapsulation

19. Fully Defined Interface

20. Formal Methods

21. Modelling

a a 7 aHR

=E a = A

Oo
oO

=
a

a a oe A

oe a ae a a A ae a22. Structured Methodology

x A =E a

a A

23. Modelling supported by computer aided design

and specification tools

Requirements: 1) Approved combinations of techniques for Software Safety Integrity Levels 3 and 4 are as follows:

a) 1,7, 19, 22 and one from 4, 5, 12 or 21;

b) 1,4, 19, 22 and one from 2, 5, 12, 15 or 21.

2) Approved combinations of techniques for Software Safety Integrity Levels 1 and 2 are as follows: 1, 19,
22 and one from 2, 4, 5, 7, 12, 15 or 21.

3) Some of these issues maybe defined at the system level.

4) Error detecting codes may be used in accordance with the requirements of EN 50159.

 NOTE Technique/measure 19 is for External Interfaces.

BS EN 50128:2011

EN 50128:2011 - 70-

Table A.4- Software Design and Implementation (7.4)

A.17

3. Structured methodology D.52 eect

4. Modular Approach D.38

5. Components Table
A.20

6. Design and Coding Standards Table
A.12

|
=

a

aT

Sots

JB
SE
or

—
a
L

W
o

HRStructured Programming D.53

10. Programming Language Table
A.15

D.35

Table

A.22

D.57

Mu

x
=E

Ei
SE

S
E
E

ok
a

Al
A
l
A
)
|
A
!
D

a

ELanguage Subset
o
O

i)

12. Object Oriented Programming

E13. Procedural programming

14. Metaprogramming

Requirements:
1) An approved combination of techniques for Software Safety Integrity Levels 3 and 4 is 4, 5, 6, 8 and one

from 1 or 2.

2) An approved combination of techniques for Software Safety Integrity Levels 1 and 2 is 3, 4, 5, 6 and one

from 8, 9 or 10.

3) Metaprogrammingshall be restricted to the production of the code of the software source before
compilation.

BS EN 50128:2011
“11 EN 50128:2011

Table A.5 — Verification and Testing (6.2 and 7.3)

TECHNIQUE/MEASURE SILO SIL1 SIL2 SIL3

Formal Proof D.29

SIL 4

1 =e
2. Static Analysis Table

A.19

3. Dynamic Analysis and Testing Table

A.13

enTor
5. Traceability

Software Error Effect Analysiss BE
7. Test Coverage for code Table

A.21

Functional/ Black-box Testing
A.14

8

9. Performance Testing Table
A.18

10. Interface Testing

Requirements:

An A

HR

HR

M

HR

HR

HR

RH

RReR

PR{[R[R
arer|
®RHR

EIGIER

1) For software Safety Integrity Levels 3 and 4, the approved combination of techniquesis 3, 5, 7,8 and

one from 1,2. 0r6.

2) For Software Safety Integrity Level 1 and 2, the approved combinations of techniquesis 5 together with

onefrom 2, 3 or 8.

NOTE1 Techniques/measures1, 2, 4, 5, 6 and 7 are for verification activities.

NOTE 2 Techniques/measures3, 8, 9 and 10 are for testing activities.

Table A.6 - Integration (7.6)

TECHNIQUE/MEASURE Ref SIL 0 sıL2 sıL3 sıLa

HR HR HR

IL 1

1. Functional and Black-box Testing Table HR HR

A.14

A.18

Table A.7 - Overall Software Testing (6.2 and 7.7)

1. Performance Testing Table HR
A.18

2. Functional and Black-box Testing Table HR HR

A.14

3. Modelling Table

A.17

Requirement:

1) For Software Safety Integrity Level 1 and 2 an approved combination of techniquesis 1 and 2.

BS EN 50128:2011
EN 50128:2011 -T2-

Table A.8 - Software Analysis Techniques (6.3)

H

H

ln

2. Dynamic Software Analysis - Dun

PRRR
p=RitRR
P=trier

1. Static Software Analysis R

R

3. Cause Consequence Diagrams

4. Event Tree Analysis

5. Software Error Effect Analysis

Requirement:

cu
=

1) One or more of these techniques shall be selected to satisfy the Software Safety Integrity Level being
used.

Table A.9 —- Software Quality Assurance(6.5)

Compliant with EN ISO 9001 Mm

RI
ou
IM

7

4

2

3. Compliant with ISOAEC 90003

4

R

7

7

Requirement:

a
cu
<a
<a
m
m

RRKR
Mmm
PRRR
pmomMm
mwmMMw
PRHRHR
PRARAR

1) This table shall be applied to different roles and all phases.

Table A.10 - Software Maintenance (9.2)

nm

|
daran For2[merermm

BS EN 50128:2011
- 73 - EN 50128:2011

Table A.11 - Data Preparation Techniques(8.4)

TECHNIQUE/MEASURE sıLo sı.ı sıLa sıL3 sıLa

1. Tabular Specification Methods

. Application specific language2 0.69
3. Simulation

4

PRRi]RR
PRRRR
IRHRHRHR

Functionaltestnga2mMomomom
CheckistsfoRRHRow

|RIRR
PRHRHRHR
p==aR
PRORORAR

Requirements:

H

H

H

R

R

R

HR

 1) For Software Safety Integrity Level 1 and 2 an approved combination of techniquesis 1 and 4.

2) For Software Safety Integrity Level 3 and 4 the approved combinations of techniques are 1, 4,5 and 7 or

2,3 and 6.
 NOTE The description of the reference D.29 is on programswhile technique 8 in this context applies to formal proof of the correctness

of data.

A.2 Detailed tables

Table A.12 - Coding Standards

1. Coding Standard HR

Coding Style Guide HR

. No Dynamic Objects

R

HR
HR
fa
[=]

. Limited Use of Pointers pots-

. Limited Use of Recursion fps=

De

R

2

3

4. No DynamicVariables

5

6

7 . No Unconditional Jumps

8. Limited size and complexity of Functions, D.38 H
Subroutines and Methods

9. Entry/Exit Point strategy for Functions, D.38 H HR HR HR
Subroutines and Methods

9. Limited numberof subroutine parameters eRRRR

Requirement:

1) Itis accepted that techniques 3, 4 and 5 may be present as part of a validated compiler or translator.

HR

HR

HR

R

HR

HR

HR

HR

HR

HR

IM

OR

HR

HR

HR

HR

R

BS EN 50128:2011
EN 50128:2011 -74-

Table A.13 - Dynamic Analysis and Testing

TECHNIQUE/MEASURE

1. Test Case Execution from Boundary Value D.4
Analysis

sıLı sıL2 SIL 4

er
3. Test Case Execution from Error Seeding fp2i-RR

4. Performance Modelling ol-RR

5. Equivalence Classes and Input Partition Testing fps}RRR

6. Structure-Based Testing foso{-rRR

Requirement:

1) The analysis for the test cases is at the sub-system level and is based on the specification and/or the
specification and the code. *

Table A.14 ~ Functional/Black Box Test

1. Test Case Execution from Cause Consequence

Diagrams

anapanoaRRmr
4. Equivalence Classes and Input Partition Testing |p.1sRHRHRHRHR

5. Process Simulation

Requirement:

1) The completeness of the simulation will depend upon the extent. of the software safety integrity level,
complexity and application.

BS EN 50128:2011
= 5i- EN 50128:2011

Table A.15 — Textual Programming Languages

IBETTIETSEETEIETEIETTE
anfolReTomfmomIm
EEEICEfefoeoe |
mnTourmL

D.35

6. BASIC D.54

7. Assembler D.54

8 CH D.54
D.35

JAVA D.54
D.35

10. StatementList D.54

Requirements:

x
Z
i
z
Z

A
A HR

a

ee a Pd a z
i
z

A)
w

1) The selection of the languages shall be based on the requirements given in 6.7 and 7.3.

2) There is no requirementto justify decisions taken to exclude specific programming languages.

NOTE 1. Forinformation on assessing the suitability of a programming language see entry in D.54 ‘Suitable Programming Languages’.

NOTE 2 If a specific languageis not in the table,it is not automatically excluded. It should, however, conform to D.54.

NOTE 3 Run-time systems associated with selected languages which are necessary to run application programs should still be

justified for usage according to the Software Safety Integrity Level.

Table A.16 — Diagrammatic Languagesfor Application Algorithms

Feerwanemessuneer[ane[oer[ona[ses[oer

Digamıporea|R|e|e
2 Senvena FunctonnoneLosmereroR
faagreearaIRer
SennPoserreerm

BS EN 50128:2011

EN 50128:2011 - 76 -

Table A.17 — Modelling

TECHNIQUE/MEASURE Ref sıLo sıLı sıL2 sıL3

1. Data Modelling

2. Data Flow Diagrams

3. Control Flow Diagrams 0.66

4. Finite State Machines or State Transition BE

SIL 4

Diagrams

RRm
IRm
IRm

RR
TacssoleIRRe
nennolIRRT
ModelingoeIRRAR
PrioyonganmaennelIRlate]

IR
11. Sequence Diagrams

Requirements:

HR

HR

HR

HR

HR

HR

HR

HR

HR

HR

1) A modelling guideline shall be defined and used.

2) Atleast one of the HR techniques shall be chosen.

Table A.18 — Performance Testing

[FecHwGuEmEAsuRETreTswofser[swz]sus[sua]
Tascnmal.RR]
andDas—HRwRARHR
Reauremans[neo][er[m[er

Table A.19 — Static Analysis

Boundanyvatıeanayannal.RR [m|e
RR
nassoearermer

Povo[|re
Poze[|Rk

HR

4. Data Flow Analysis D.10

5. Error Guessing D.20

BS EN 50128:2011

Dh = EN 50128:2011

Table A.20 - Components

anoo|dL
Encapsiston[osR[er[m[mer

RRIRIR
rerDe

3. Parameter NumberLimit

4. Fully Defined Interface

Requirement:

1) Information Hiding and encapsulation are only highly recommendedif there is no general strategy for

data access.

NOTE

 Technique/measure4 is for Internal Interfaces.

Table A.21 — Test Coverage for Code

CHR
2. Branch oR

PRHR
P|RR

conditonso=oRRAR
-RR
IR

HR

BC
Bu

Requirements:

1) For every SIL, a quantified measure of coverage shall be developed for the test undertaken. This can

support the judgment on the confidence gainedin testing and the necessity for additional techniques.

HR

HR

HR

HR

HR

2) For SIL 3 or 4 test coverage at componentlevel should be measured according to the following:

- 2and3;or

- 2and4;or

- 5

or test coverage at integration level should be measured according to one or moreof 2, 3, 4 or 5.
3) Other test coverage criteria can be used, given that this can be justified. These criteria depend on the

software architecture (see Table A.3) and the programming language (see Table A.15 and Table A. 16).
4) Any codewhichit is not practicable to test shall be demonstrated to be correct using a suitable technique,

e.g. static analysis from Table A.19.
 NOTE1 Statement coverage is automatically achieved by items2 to 5.

 NOTE 2 The test coverage criteria in this table are used for structure-based (code-based, white box) testing.

Techniques/measuresfor functional (specification-based, black box) testing are given in Table A.14.
 NOTE 3 A high percentage of coverageis usually difficult to achieve. The use of test case execution from boundary values (D.4)

and equivalence classes and input partition testing (D.18) can enable a sufficient coverage to be achieved with a smaller numberof

tests.

 NOTE 4 The difference between 2 and 3 dependsin practice on the level of the programming language and the use of compound

conditions. When single conditions are used only, for example as a result of compilation, 2 and 3 are consideredidentical.

BS EN 50128:2011

EN 50128:2011 = 78 =

Table A.22 — Object Oriented Software Architecture

TECHNIQUE/MEASURE Ref sito sı.ı sıL2 sıL3
1. Traceability of the conceptof the application

domain to the classesof the architecture

2. Use of suitable frames, commonly used

combinations of classes and design patterns

3. Object Oriented Detailed Design Table H

A.23

1) When using existing frames and design patterns, the requirements of pre-existing software apply to

Requirement:

these frames and patterns.

SIL 4

HR

HR

HR

HR

R HR

NOTE 1 The object-oriented approach presents information differently from procedural approaches, the following list contains

recommendations that need specific consideration:

- understanding class hierarchies, and identification of the software function(s) that will be executed upon the invocation of a given

method(including when using an existing classlibrary);

- structure-based testing (Table A.13).

Traceability from application domain to class architecture is less important.

NOTE 2 For a part of the intended software a frame might exist from pre-existing software that has successfully solved a similar
task and that is well known to the development personnel. Then use of that frame is recommended.

Table A.23 — Object Oriented Detailed Design

TECHNIQUE/MEASURE

1. Classes should have only one objective

2. Inheritance used only if the derived classis a
refinementof its basic class

Pret[suo[ss]sue]sus]are

Inte=

=

OR HPT
=eT
Del

R HRH

HR HR

H R4. Overriding of operations (methods) understrict
control

5. Multiple inheritance used only for interface
classes

6. Inheritance from unknownclasses

Requirements:

H HR HR

N

1) One classis characterized by having one responsibility, i.e. taking care of closely connected data and
the operations on these data.

2) Care is required to avoid circular dependencies betweenobjects.

BS EN 50128:2011

= 19 EN 50128:2011

Annex B
(normative)

Key software roles and responsibilities

Table B.1: Requirements Manager

Table B.2: Designer

Table B.3: Implementer

Table B.4: Tester

Table B.5: Verifier

Table B.6: Integrator

Table B.7: Validator

Table B.8: Assessor

Table B.9: Project Manager

Table B.10: Configuration Manager

Table B.1 — Requirements ManagerRole Specification

Role: Requirements Manager

Responsibilities:

1. shall be responsible for specifying the software requirements

shall own the Software Requirements Specification

shall establish and maintain traceability to and from system level requirements

BP
©

N

shall ensure the specifications and software requirements are under change and configuration

managementincluding state, version and authorisation status

5. shall ensure consistency and completenessin the Software Requirements Specification (with reference

to user requirements and final environmentof application)

shall develop and maintain the software requirement documents

Key competencies:
shall be competentin requirements engineering

shall be experiencedin application’s domain

shall be experienced in safety attributes of application’s domain

shall understand the overall role of the system and the environmentof application

shall understand analytical techniques and outcomes

shall understand applicable regulations

N
o

B
m

DD
>

shall understand the requirements of EN 50128

BS EN 50128:2011
EN 50128:2011 -80-

Table B.2 — Designer Role Specification

Role: Designer

Responsibilities:

shail transform specified software requirements into acceptable solutions

shall own the architecture and downstream solutions

shall define or select the design methods and supporting tools

shall apply appropriate design principles and standards

shall develop component specifications where appropriate

shall maintain traceability to and from the specified software requirements

shall develop and maintain the design documentation

1.
2.
3.

4.
5.

6.

7.
8. shall ensure design documents are under change.and configuration control

Key competencies:

shall be competent in engineering appropriate to the application area

shall be competentin safety design principles

shall be competent in design analysis & design test methodologies

shall be able to work within design constraints in a given environment

shall be competent in understanding the problem domain

shall understand all the constraints imposed by the hardware platform, the operating system and the
interfacing systems

shall understand the relevant parts of EN 50128

BS EN 50128:2011
-81- EN 50128:2011

Table B.3 — Implementer Role Specification

Role: Implementer

Responsibilities:

shall transform the design solutions into data/source code/other design representations

shall transform source codeinto executable code/other design representation

shall apply safety design principles

shall apply specified data preparation/coding standards

shall carry out analysis to verify the intermediate outcome

shall integrate software on the target machine

S
o

97
ff
o
Y

=

shall develop and maintain the implementation documents comprising the applied methods,data types,
andlistings

© shall maintain traceability to and from design

shall maintain the generated or modified data/code under change and configuration control

Key competencies:

1. shall be competent in engineering appropriate to the application area

2. shall be competentin the implementation language and supporting tools

3. shall be capable of applying the specified coding standards and programmingstyles

4 shall understand all the constraints imposed by the hardware platform, the operating system and the
interfacing systems

shall understand the relevant parts of EN 50128

BS EN 50128:2011
EN 50128:2011 - 82 -

Table B.4 — Tester Role Specification

Role: Tester

Responsibilities:

1. shall ensure that test activities are planned

2. shall develop the test specification (objectives & cases)

shall ensure traceability of test objectives against the specified software requirements and of test cases
against the specified test objectives

shall ensure that the planned tests are implemented and specified tests are carried out

shall identify deviations from expected results and record them in test reports

shall communicate deviations with relevant change managementbody for evaluation and decision

shall capture outcomesin reports

shall select the software test equipment

Key competencies:

shall be competentin the domain wheretesting is carried out e.g. software requirements, data, code etc.

shall be competentin various test and verification approaches/methodologies and beable to identify the

most suitable methodin a given context

shall be capable of deriving test cases from given specifications

shall have analytical thinking ability and good observationskills

shall understand the relevant parts of EN 50128

BS EN 50128:2011
- 83 - EN 50128:2011

Table B.5 - Verifier Role Specification

Role: Verifier

Responsibilities:
1. shall develop a Software Verification Plan (which mayinclude quality issues) stating what needs

verification and whattype of process (e.g. review, analysis etc.) and test is required as evidence
2. shall check the adequacy (completeness, consistency, correctness, relevance and traceability) of the

documented evidence from review,integration and testing with the specified verification objectives

3. shall identify anomalies, evaluate thesein risk (impact) terms, record and communicate these to relevant

change managementbodyfor evaluation and decision
4. shall manage the verification process (review, integration and testing) and ensure independence of

activities as required
5. shall develop and maintain records on the verification activities

shall develop a Verification Report stating the outcomeofthe verification activities

Key competencies:
1. shall be competent in the domain whereverification is carried out e.g. software requirements, data, code

etc.

 shall be competentin various verification approaches/methodologies and beable to identify the most

suitable method or combination of methodsin a given context
3. shall be capable of deriving the types of verification from given specifications

4. shall have analytical thinking ability and good observation skills

shall understand the relevant parts of EN 50128

BS EN 50128:2011
EN 50128:2011 - 84 -

Table B.6 — Integrator Role Specification

Role: Integrator

Responsibilities:

1. shall manage the integration process using the software baselines

2. shall develop the Software and Software/Hardware Integration Test Specification for software
components based on the Designer's component specifications and architecture stating what the
necessary input components, the sequence of integration activities and the resultant integrated

components are

shall develop and maintain records onthe integration activities

shall identify integration anomalies, record and communicate these to relevant change managementbody

for evaluation and decision

shall develop a componentand overall system integration report stating the outcome of the integration

Key competencies:

shall be competent in the domain where componentintegration is carried out e.g. relevant programming
languages, software interfaces, operating systems, data, platforms, codeetc.

shall be competentin various integration approaches/methodologies and be able to identify the most

suitable method or combination of methodsin a given context

shall be competent in understanding the design and functionality required at various intermediate levels

shall be capable of deriving the types of integration test from a set of integrated functions

shall have analytical thinking ability and good observation skills tending towards the system level

perspective

shall understand the relevant parts of EN 50128

BS EN 50128:2011
- 85 - EN 50128:2011

Table B.7 — Validator Role Specification

Role: Validator

Responsibilities:

shall develop a system understanding of the software within the intended environmentof application

shall develop a validation plan and specify the essential tasks and activities for software validation and
agree this plan with the assessor

shall review the software requirements against the intended environment/use

shall review the software against the software requirements to ensureall of these are fulfilled

shall evaluate the conformity of the software process and the developed software againstthe

requirements of this European Standard including the assigned SIL

shall review the correctness, consistency and adequacyofthe verification and testing

shall check the correctness, consistency and adequacy of test cases and executed tests

shall ensureall validation plan activities are carried out

shall review and classify all deviations in terms of risk (impact), records and submits to the body
responsible for Change Managementand decision making

. Shall give a recommendation on the suitability of the software for intended use and indicate any

application constraints as appropriate

. Shall capture deviations from the validation plan

. shall carry out audits, inspections or reviews on the overall project (as instantiations of the generic

developmentprocess) as appropriate in various phases of development

. Shall review and analyse the validation reports relating to previous applications as appropriate

. shall review that developed solutions are traceable to the software requirements

. shall ensure the related hazard logs and remaining non-conformities are reviewed andall hazards closed

out in an appropriate mannerthrough elimination or risks control/transfer measures

. shall develop a validation report

. shall give agreement/disagreementfor the release of the software

Key competencies:

shall be competentin the domain wherevalidation is carried out

shall be experiencedin safety attributes of application's domain

shall be competentin various validation approaches/methodologies and beable to identify the most
suitable method or combination of methodsin a given context

shall be capable of deriving the types of validation evidence required from given specifications bearing in
mind the intended application

shall be capable of combining different sources and types of evidence and synthesise an overall view
aboutfitness for purpose or constraints and limitations of the application

shall have analytical thinking ability and good observation skills

shall have overall software understanding and perspective including understanding the application
environment

shall understand the requirements of EN 50128

BS EN 50128:2011
EN 50128:2011 - 86 -

Table B.8 — AssessorRole Specification

Role: Assessor

Responsibilities:

shall develop a system understanding of the software within the intended environmentof application

shall develop an assessmentplan and communicate this with the safety authority and the client
organisation (contracting body of the assessor)

shall evaluate the conformity of the software process and the developed software againstthe
requirements of this European Standard including the assigned SIL

shall evaluate the competencyof project staff and organisation for the software development

shall evaluate the verification and validation activities and the supporting evidence

shall evaluate the quality management systems adoptedfor the software development

shall evaluate the configuration and change management system and the evidenceofits use and
application

shall identify and evaluate in termsof risk (impact) any deviations from the software requirementsin the
assessmentreport

shall ensure that the assessmentplan is implemented

. shall carry out safety audits and inspections on the overall development process as appropriate at various
phases of development

. shall give a professional view onthe fitness of the developed softwareforits intended use detailing any
constraints, application conditions and observationsfor risk control as appropriate

12. shall develop an assessmentreport and maintain records on the assessment process

Key competencies:

shall be competent in the domain/technologies where assessmentis carried out

shall have acceptance/licence from a recognised safety authority

shall have / strive to continually gain sufficient levels of experience in the safety principles and the

application of the principles within the application domain

shall be competent to check that a suitable method or combination of methodsin a given context have

been applied

shall be competent in understanding the relevant safety, human resource, technical and quality
managementprocessesin fulfilling the requirements of EN 50128

shall be competent in assessment approaches/methodologies

shall have analytical thinking ability and good observation skills

shall be capable of combining different sources and types of evidence and synthesise an overall view
aboutfitness for purpose or constraints and limitations on application

shall have overall software understanding and perspective including understanding the application

environment

. shall be able to judge the adequacyof all development processes(like quality management, configuration
management, validation and verification processes)

11. shall understand the requirements of EN 50128

BS EN 50128:2011
- Bf - EN 50128:2011

Table B.9 — Project Manager Role Specification

Role: Project Manager

Responsibilities:
1. shall ensure that the quality management system and independencyof roles according to 5.1 are in place

for the project and progress is checked against the plans
2. shall allocate sufficient number of competent resourcesin the project to carry out the essential tasks

including safety activities, bearing in mind the requisite independence of roles
3. shall ensure that a suitable validator has been appointed for the project as defined in EN 50128

4. shall be responsible for the delivery and deploymentof the software and ensure that safety requirements
from the stakeholders are alsofulfilled and delivered

 shall allow sufficient time for the proper implementation and fulfilment of safety tasks

6. shall endorse partial and complete safety deliverables from the development process
shall ensure that sufficient records and traceability is maintained in safety related decision making

 Key competencies:
*

1. shall understand quality, competencies, organisational and managementrequirements of EN 50128

2. shall understand the requirements of the safety process

3. shall be able to weigh different options and understand the impact on safety performanceof a decision or

selected options
4. shall understand the requirements of the software development process

shall understand the requirements of other relevant standards

Table B.10 - Configuration Manager Role Specification

Role: Configuration Manager

Responsibilities:

1. shall be responsible for the software configuration managementplan

2. shall own the configuration management system

3. shall establish that all software components are clearly identified and independently versioned inside the
configuration management system

4. shall prepare Release Notes which includes incompatible versions of software components

Key competencies:

1. shall be competentin software configuration management

2. shall understand the requirements of EN 50128

BS EN 50128:2011

EN 50128:2011 - 88 -

Annex C
(informative)

Documents Control Summary

Table C.1 provides a summaryof the document.

Table C.1 — Documents Control Summary

PHASE DOCUMENTATION

Planning . Software Quality Assurance Plan VAL

2. Software Quality Assurance Verification Report VAL

3. Software Configuration ManagementPlan VER VAL
B.10

4. Software Verification Plan VER P|val

Software Validation Plan

Overall Software Test Specification

5.

Software requirements 6. Software Requirements Specification

7

8 Software Requirements Verification Report

Architecture and 9. Software Architecture Specification DES VAL

design . ae
10. Software Design Specification

11. Software Interface Specifications

12. Software Integration Test Specification

13. Software/Hardware Integration Test Specification 14. Software Architecture and Design Verification

Report

Componentdesign 15. Software Component Design Specification

16. Software Component Test Specification

17. Software Component Design Verification Report

Component 18. Software Source Code and Supporting

implementation and Documentation

testin
a 19. Software Source Code Verification Report

20. Software Component Test Report

Integration 21. Software Integration Test Report

22. Software/Hardware Integration Test Report

23. Software Integration Verification Report

Overall software 24. Overall Software Test Report

testing / Final BR
validation 25. Software Validation Report

26. Tools Validation Report 27. Release Note

BS EN 50128:2011

=89'= EN 50128:2011

Table C.1 — Documents Control Summary (continued)

DOCUMENTATION

Systems configured
by application
data/algorithms 29. Application Preparation Plan

30. Application Test Specification

31. Application Architecture and Design

32. Application Preparation Verification Report

33. Application Test Report VAL

34. Source Codeof Application Data/Algorithms

35. Application Data/Algorithms Verification Report

VAL

VAL

VAL

VAL

VER

39. Deployment Records VAL

VER

a VER

VAL

40. Deployment Verification Report

Software maintenance 41. Software Maintenance Plan VAL

42. Software Chang Records VAL

VAL

VAL

43. Software Maintenance Records

44. Software Maintenance Verification Report

Software assessment 45. Software Assessment Plan

46. Software Assessment Report a No specific role defined.

BS EN 50128:2011
EN 50128:2011 - 90 -

Annex D

(informative)

Bibliography of techniques

D.1 Artificial Intelligence Fault Correction

Aim

To be able to react to possible hazards in a very flexible way by introducing a mix (combination) of methods

and process models and somekind of on-line safety and reliability analysis.

Description

In particular fault forecasting (calculating trends), fault correction, maintenance and supervisory actions may
be supported by Artificial Intelligence-based systemsin a very efficient way in diverse channels of a system,

since the rules might be derived directly from the specifications and checked against these. Certain common
faults which are introduced into specifications by implicitly already having some design and implementation
rules in mind may be avoided effectively by this approach, especially when applying a combination of models

and methodsin a functional or descriptive manner.

The methodsare selected such that faults may be corrected and the effects of failures be minimised, in order

to meet the desired safety and reliability.

D.2 Analysable Programs

Aim

To design a program in a way that program analysis is easily feasible. The program behaviour shall be

testable completely on the basis of the analysis.

Description

The intention is to produce programs which are easy to analyse using static analysis methods. In.order to

achievethis, the rules of structured programming should befollowed, for instance:

- the componentcontrol flow should be composed of structured constructs, that is sequences,iterations

and selection;

= the components should be small;

- the numberof possible paths through a componentis small;

- the individual program parts have to be designed so that they are decoupled asfar as possible;

- the relation between the input and output parameters should be as simple as possible;

- complex calculations should not be used asthe basis of branching and loop decisions;

- branch and loop decisions should be simply related to the component input parameters;

- boundaries betweendifferent types of mappingsshall be simple.

BS EN 50128:2011

=91= EN 50128:2011

D.3 Avalanche/Stress Testing

Aim

To burdenthe test object with an exceptionally high workload in order to show that the test object would stand

normal workloads easily.

Description

There are a variety of test conditions which can be applied for avalanche/stress testing. Some of these test
conditions are listed below:

- if working in a polling mode then the test object gets much more input changes per time unit as under

normal conditions;

- if working on demandsthen the number of demandspertime unit to the test object is increased beyond

normal conditions;

- if the size of a database plays an importantrole thenit is increased beyond normal conditions;

- influential devices are tuned to their maximum speed or lowest speed respectively;

- for the extreme cases,all influential factors, as far as is possible, are put to the boundary conditions at
the sametime.

Under these test conditions the time behaviour of the test object can be evaluated. The influence of load
changes can be observed. The correct dimension of internal buffers or dynamic variables, stacks etc can be

checked.

D.4 Boundary Value Analysis

Aim

To removesoftware errors occurring at parameterlimits or boundaries.

Description

The input domain of the program is divided into a numberof input classes. The tests should cover the

boundaries and extremes of the classes. The tests check that the boundaries in the input domain of the

specification coincide with those in the program. The useof the value zero,in a direct as well as in an indirect

translation, is often error-prone and demandsspecial attention:

= zero divisor:

— non-printing control characters;

- empty stack orlist element;

= null matrix;

- zero table entry.

Normally the boundaries for input have a direct correspondenceto the boundaries for the output range. Test

cases should be written to force the outputto its limited values. Consideralso,if it is possible to specify a test
case which causes output to exceed the specification boundary values.

If output is a sequenceof data, for example a printed table, special attention should be paid to the first and

the last elements andtolists containing none, 1 and 2 elements.

BS EN 50128:2011

EN 50128:2011 - 92 -

D.5 Backward Recovery

Aim

To provide correct functional operation in the presence of one or morefaults.

Description

If a fault has been detected, the system is reset to an earlier internal state, the consistency of which has been

proven before. This method implies saving of the internal state frequently at so-called well defined

checkpoints. This may be doneglobally (for the complete database) or incremental (changes only between

checkpoints). Then the system has to compensate for the changes which havetaken place in the meantime

by using journaling (audit trail of actions), compensation (all effects of these changesare nullified) or external

(manual) interaction.

D.6 Cause Consequence Diagrams

Aim

To model, in a diagrammatic form, the sequence of events that can develop in a system as a consequenceof}

combinations of basic events.

Description

It can be regarded as a combination of fault-tree and event-tree analysis. Starting from a critical event, a

cause-consequencegraphis traced backwards and forwards. In the backwardsdirection it is equivalent to a

fault tree with the critical event as the given top event. In the forward direction the possible consequences

arising from an eventare identified. The graph can contain vertex symbols which describe the conditions for

propagation along different branches from the vertex. Time delays can also be included. These conditions

can also be described with fault trees. The lines of propagation can be combined with logical symbols, to

make the diagram more compact. A set of standard symbols are defined for use in cause consequence

diagrams. The diagrams can be used to compute the probability of occurrence of certain critical

consequences.

D.7 Checklists

Aim

To provide a stimulus to critical appraisal of all aspects of the system rather than to lay down specific

requirements.

Description

A set of questions to be completed by the person performing the checklist. Many of the questions are of a

general nature and the Assessor shall interpret them as seems most appropriate to the particular system

being assessed.

To accommodate wide variations in software and systems being validated, most checklists contain questions

which are applicable to many types of system. As a result there may well be questions in the checklist being

used which are not relevant to the system being dealt with and which should be ignored. Equally there may

be a need, for a particular system, to supplement the standard checklist with questions specifically directed at

the system being dealt with.

In any case it should be clear that the use of checklists dependscritically on the expertise and judgementof

the engineer selecting and applying the checklist. As a result the decisions taken by the engineer, with regard

to the checklist(s) selected, and any additional or superfluous questions, should be fully documented and

justified. The objective is to ensure that the application of the checklists can be reviewed and that the same

results will be achieved unlessdifferent criteria are used.

BS EN 50128:2011

- 93 - EN 50128:2011

The object in completing a checklist is to be as concise as possible. When extensivejustification is necessary

this should be done by reference to additional documentation. Pass, Fail and Inconclusive, or somesimilar

restricted set of tokens should be used to record the results for each question. This conciseness greatly

simplifies the process of reaching an overall conclusion as to the results of the checklist assessment.

D.8 Control Flow Analysis

Aim

To detect poor and potentially incorrect program structures.

Description

Control Flow Analysis identifies suspect areas of code which do not follow good programming practice.

The program is analysed to form a directed graph which can be analysed for

— inaccessible code,for instance, unconditional jumps which leaves blocks of code unreachable,

knotted code, which is well structured code whose control graph is reducible by successive graph

reductions to a single node. Poorly structured code can only be reduced to a knot composed of several

nodes.

D.9 Common CauseFailure Analysis

Aim

To identify potential failures in redundant systems or redundant sub systems which would undermine the

benefits of redundancy because of the appearance of the samefailures in the redundant parts at the same

time.

Description

Computer systems intended to take care of the safety of a plant often use redundancy in hardware and

majority voting. This technique is used to avoid random componentfailures, which would tend to prevent the

correct processing of data in a computer system.

However, somefailures can be commonto more than one component. For example, if a computer system is

installed in one single room, shortcomingsin the air-conditioning might reduce the benefits of redundancy.

The sameis true for other external effects on the computer system suchas:fire, flooding, electromagnetic

interference, plane crashes, and earthquakes. The computer system may also be affected by incidents

related to operation and maintenance. It is essential, therefore, that adequate and well documented

procedures are provided for operation and maintenance. Extensive training of operating and maintenance

personnelis also essential.

Internal effects are also major contributors to Common-Cause Failures (CCF). They can stem from design

errors in common or identical components and their interfaces, as well as ageing of components.

CCF-Analysis has to search the system for such potential common failures. Methods of CCF-Analysis are

general quality control, design reviews,verification and testing by an independent team, and analysis of real

incidents with feedback of experience from similar systems. The scope of the analysis, however, goes

beyond hardware. Evenif ‘diverse software’ is usedin difficult chains of a redundant computer system, there

might be some commonality in the software approaches whichcould give rise to CCF. Errors in the common
specification, for example.

When CCF's do not occur exactly at the same time, precautions can be taken by means of comparison

methods between the redundant chains which should lead to detection of a failure before this failure is

commonto all chains. CCF analysis should take this technique into account.

BS EN 50128:2011

EN 50128:2011 -94--

D.10 Data Flow Analysis

Aim

To detect poor and potentially incorrect program structures.

Description

Data Flow Analysis combines the information obtained from the control flow analysis with information about

which variables are read or written in different portions of code. The analysis can checkfor

_ variables that are read before they are written. This is very likely to be an error, and is certainly bad

programming practice,

= variables that are written more than once without being read. This could indicate omitted code,

= variables that are written but never read. This could indicate redundant code.

There is an extension of data flow analysis known asinformation flow analysis, where the actual data flows

(both within and between procedures) are compared with the design intent. This is normally implemented with

a computerised tool where the intended data flows are defined using a structured commentthat can be read

by the tool.

D.11 Data Flow Diagrams

Aim

To describe the data flow through a program in a diagrammatic form.

Description

Data Flow Diagrams document how data input is transformed to output, with each stage in the diagram

representing a distinct transformation.

The basic components of a data flow diagram include

- functions, represented by.bubbles,

7 data flows, represented by arrows,

- data stores, represented by open boxes,

— input/output, represented by special kinds of boxes.

Data flow diagrams describe howaninputis transformed to an output. They do not, and should not, include

control information or sequencing information. Each bubble can be considered as a stand alone black box

which, as soonasits inputs are available, transforms them to its outputs.

Oneofthe principle advantages of data flow diagramsis that they show transformations without making any

assumptions about how thesetransformations are implemented.

The preparation of data flow diagramsis best approached by considering system inputs and working towards

system outputs. Each bubble shall represent a distinct transformation — its output should, in some way, be

different from its input. There are no rules for determining the overall structure of the diagram and

constructing a data flow diagram is one of the creative aspects of system design. Like all design, it is an

iterative process with early attempts refined in stages to produce the final diagram.

BS EN 50128:2011
- 95 - EN 50128:2011

D.12 Data Recording and Analysis

Aim

To facilitate software process improvement by recording, validating and analysing relevant data from

individual projects and persons. The relevance of the data is determined by the strategic goals of the

organisation. The goals may be directed towards the evaluation of a particular software development method

relative to the claims forit, e.g. with respect to defect prevention effectiveness.

Description

Data recording and analysis constitutes an essential part of software process improvement. The recording of

valid data represents an important part of learning more about the software development process and to

evaluate alternative software development methods.

Detailed records are maintained during a project, both on a project and individual basis. For instance, an
engineer would be required to keep records which could include

- effort expanded onindividual components,

- testing performed on each component,

~ decisions andtheir rationale,

= achievementof project milestones,

- problems and their solutions.

During and at the conclusion of the project these records can be analysed to establish a wide variety of

information. In particular data recording is very important for the maintenance of computer systems as the
rationale for certain decisions made during the development project is not always known by the maintenance

engineers.

Dueto poorplanning, data recording often tends to be over-volumed and out of focus. This can be avoided

by following the principle that data recording should be driven by goals, questions, and metrics of relevance to

whatis strategically important to the organisation.

In order to achieve the desired accuracy, the data recording and validation process should proceed
concurrently with the development, e.g. as part of the configuration control process.

D.13 Decision Tables (Truth Tables)

Aim

To provide a clear and coherentspecification and analysis of complex logical combinations and relationships.

Description

These related methods use two dimensional tables to concisely describe logical relationships between

Boolean program variables.

The conciseness and tabular nature of both methods make them appropriate as a means of analysing
complex logical combinations expressedin code.

Both methodsarepotentially executable if used as specifications.

BS EN 50128:2011

EN 50128:2011 - 96 -

D.14 Defensive Programming

Aim

To produce programs which detect anomalous control flow, data flow or data values during their execution

and react to these in a predetermined and acceptable manner.

Description

Many techniques can be used during programming to check for control or data anomalies. These can be

applied systematically throughout the programming of a system to decreasethelikelihood of erroneous data

processing.

Two overlapping areas of defensive techniques can beidentified. Intrinsic error-safe software is designed to

accommodate its own design shortcomings. These shortcomings may be due to plain error of design or

coding, or to erroneous requirements. Thefollowinglists some of the defensive techniques:

= variables should be range checked;

- where possible, values should be checked for plausibility;

_ parameters to procedures should be type, dimension and range checked at procedure entry.

These first three recommendations help to ensure that the numbers manipulated by the program are

reasonable, both in terms of the program function and physical significance of the variables.

Read-only and read-write parameters should be separated and their access checked. Functions should treat

all parameters as read-only. Literal constants should not be write-accessible. This helps detect accidental

overwriting or mistaken useof variables.

Error tolerant software is designed to ‘expect’ failures in its own environment or use outside nominal or

expected conditions, and behavein a predefined manner. Techniquesinclude the following:

- input variables and intermediate variables with physical significance should be checked for plausibility;

_ the effect of output variables should be checked, preferably by direct Observation of associated system

state changes;

the software should check its configuration. This could include both the existence and accessibility of

expected hardware and ‚also that the software itself is complete. This is particularly important for

maintaining integrity after maintenance procedures.

Some of the defensive programming techniques such as control flow sequence checking, also cope with

externalfailures.

D.15 Coding Standards and Style Guide

Aim

To ensure a uniform layout of the design documents and the produced code, enforce consistent

programming andto enforce a standard design method which avoids errors.

Description

Coding Standards are rules and restrictions on a given programming languageto avoid potential faults which

can be made whenusing that language.

BS EN 50128:2011

=i97 = EN 50128:2011

Coding standard content should include

- languagejustification,

- scope and base standard whenavailable,

NOTE For domain specific languages base standards may not be available.

- procedure for changing the coding standard,

- analysis of the potential faults and recommended treatment,

- restrictions to avoid the faults,

— portability.

Style guidelines deal with issues such as formatting and naming conventions, and although it can be highly

subjective, more than anything style affects the readability of your code. The establishment of a common and

consistent style for a project will facilitate understanding and maintenance of code developed by more than

one programmer, and will make it easier for several people to cooperate in the development of the same

program.

D.16 Diverse Programming

Aim

Detect and mask residual software design faults during execution of a program, in order to prevent safety

critical failures of the system, and to continue operation for high reliability.

Description

In diverse programming a given program specification is implemented N times in different ways. The same

input values are given to the N versions, and the results produced by the N versions are compared. If the

result is considered to be valid, the result is transmitted to the computer outputs.

The N versions can runin parallel on separate computers, alternatively all versions can be run on the same

computer and the results subjected to an internal vote. Different voting strategies can be used on the

N versions depending onthe application requirements.

— If the system hasa safe state, then it is feasible to demand complete agreement(all N agree) otherwise

a fail-safe output value is used. For simple trip systems the vote can be biased in the safe direction. In

this case the safe action would betotrip if either version demandeda trip. This approachtypically uses

only two versions (N = 2).

- For systems with no safe state, majority voting strategies can be employed. For cases where there is no

collective agreement, probabilistic approaches can be used in order to maximise the chanceof selecting

the correct value, for example, taking the middle value, temporary freezing of outputs until agreement

returnsetc.

This technique does not eliminate residual software design faults, but it provides a measure to detect and

maskbefore they can affect safety.

Unfortunately, experiments and analytical studies show that N-version programmingis not always aseffective

as desired. Evenif different algorithms are used, diverse software versionstoo often fail on the same inputs.

Two alternatives to N-version programming are design diversity and functional diversity. Design diversity

involves the use of multiple components, each designed in a different way but implementing the same

function. Functional diversity involves solving the same problem in functionally different ways. Irrespective of

the approach, no effective method to assessthe level of diversity is currently available.

BS EN 50128:2011
EN 50128:2011 - 98 -

D.17 Dynamic Reconfiguration

Aim

To maintain system functionality despite an internal fault.

Description

The logical architecture of the system has to be suchthat it can be mapped onto a subset of the available
resources of the system. The architecture needs to be capable of detecting a failure in a physical resource
and then remapping the logical architecture back onto the restricted resourcesleft functioning. Although the
concept is more traditionally restricted to recovery from failed hardware units, it is also applicable to failed
software units if there is sufficient 'run-time redundancy’ to allow a software re-try or if there is sufficient
redundantdata to isolate the failure.

Although traditionally applied to hardware, this technique is being developed for application to software and,
thus, the total system. It shall be considered at thefirst system design stage.

D.18 Equivalence Classes and Input Partition Testing

Aim

To test the software adequately using a minimum of test data. The test data is obtained by selecting the
partitions of the input domain required to exercise the software.

Description

This testing strategy is based on the equivalence relation of the inputs, which determines a partition of the
input domain.

Test cases are selected with the aim of covering all subsets of this partition. At least one test case is taken
from each equivalenceclass.

There are two basic possibilities for input partitioning which are

- equivalence classes may be defined on the specification. The interpretation of the specification may be
either input oriented, for example the values selected are treated in the same wayoroutput oriented, for
example the set of values leading to the samefunctional result, and

— equivalence classes may be defined on the internal structure of the program. In this case the
equivalence class results are determined from static analysis of the program, for example the set of
values leading to the same path being executed.

D.19 Error Detecting and Correcting Codes

Aim

To detect and correcterrors in sensitive information.

Description

For an information of n bits, a coded block of k bits is generated which enables errors to be detected and
corrected. Different types of code include:

- hamming codes;

_ cyclic codes;

-~ polynomial codes;

- hash codes;

- cryptographic codes.

BS EN 50128:2011
- 99 - EN 50128:2011

D.20 Error Guessing

Aim

To remove common programming errors.

Description

Testing experience andintuition combined with knowledge and curiosity about the system under test may add

some uncategorised test cases to the designed test case set. Special values or combinations of values may

be error-prone. Someinteresting test cases may be derived from inspection checklists. It may also be

considered whether the system is robust enough. Can the buttons be pushed on the front-panel too fast or

too often? What happensif two buttons are pushed simultaneously?

D.21 Error Seeding

Aim

To ascertain whethera set of test cases is adequate.

Description

Some knownerror types are inserted in the program, and the program is executed with the test cases under

test conditions. If only some of the seeded errors are found, the test case set is not adequate. Theratio of

found seeded errors to the total number of seedederrors is an estimate of the ratio of found real errors to

total number errors. This gives a possibility of estimating the number of remaining errors and thereby the

remaining test effort.

Found seedederrors Found real errors

Total numberof Total numberof

seeded errors real errors

The detection of all the seeded errors may indicate either that the test case set is adequate, or that the

seeded errors were too easyto find. The limitations of the method are that, in order,to obtain any usable

results, the error types as well as the seeding positions shall reflect the statistical distribution of real errors.

lf error seeding is used, the location of all errors shall be recorded, and the validator shall ensure that all

seeded errors have been removed before the software release.

D.22 Event Tree Analysis

Aim

To model, in a diagrammatic form, the sequence of events that can develop in a system after aninitiating

event, and thereby indicate how serious consequencescan occur.

Description

Onthe top of the diagram is written the sequence conditions that are relevant in the developmentfollowing

the initiating event whichis the target of the analysis. Starting underthe initiating event, one drawsa line to

the first condition in the sequence. There the diagram branchesoff into a 'yes' and a 'no' branch, describing

how the future developments depend on the condition. For each of these branches,one continuesto the next

condition in a similar way. Not all conditions are, however, relevant for all branches. One continues to the end

of the sequence, and each branchof the tree constructed in this way represents a possible consequence.

The event tree can be used to compute the probability of the various consequences based on the probability

and numberof conditions in the sequence.

BS EN 50128:2011
EN 50128:2011 - 100 -

D.23 Fagan Inspections

Aim

To revealerrors in all phases of the program development.

Description

A ‘formal’ audit on quality assurance documents aimed at finding errors and omissions. The inspection
process consists of five phases; Planning, Preparation, Inspection, Rework and Follow up. Each of these
phaseshasits own separate objective. The complete system development(specification, design, coding and
testing) shall be inspected.

D.24 Failure Assertion Programming

Aim

To detect residual faults during execution of a software program.

Description

The assertion programming method follows the idea of checking a pre-condition (before a sequence of
Statements is executed, the initial conditions are checked for validity) and a post-condition (results are
checked after the execution of a sequenceof statements). If either the pre-condition or the post-condition is
notfulfilled, the processing stops with an error.

For example,

assert <pre-condition>;

action 1;

action x;

assert <post-condition>;

D.25 SEEA - Software Error Effect Analysis

Aim

To identify software components, their criticality; to propose means for detecting software errors and
enhancing software robustness; to evaluate the amount of validation needed on the various software
components.

Description

The analysis is donein three phases.

e Vital software componentsidentification

Determination of the depth of the analysis (at the level of a single instructionline, a groupofinstructions,
a component, etc.) needed for each software component,from its specification.

BS EN 50128:2011
- 101 - EN 50128:2011

e Software error analysis

Theresult of this phaseis a table listing the following information:

- component name;

- error considered;

— consequencesofthe error at the module level:

— consequencesat the system level;

= violated safety criterion;

- errorcriticality;

- proposed error detection means;

- violated criterion if the detection meansis implemented;

- residualcriticality if the detection meansis implemented.

e Synthesis

The synthesis identifies the remaining unsafe scenarios and the validation effort needed given the

criticality of each module.

SEEA,being an in-depth analysis carried out by an independent team, is a powerful bug-finding method.

D.26 Fault Detection and Diagnosis

Aim

To detect faults in a system, which might lead to a failure, thus providing the basis for countermeasuresin

order to minimise the consequencesoffailures.

Description

Fault detection is the process of checking a system for erroneous states (which are caused, as explained

before, by a fault within the (sub)system to be checked). The primary goal of fault detection is to inhibit the

effect of wrong results. A system which delivers either correct results, or no results at all, is called "self

checking".

Fault detection is based on the principles of redundancy (mainly to detect hardware faults) and diversity

(software faults). Some sort of voting is needed to decide on the correctness of results. Special methods

applicable are assertion programming, N-version programming and the safety bag technique and on

hardwarelevel by introducing sensors, control loops, error checking codes,etc.

Fault detection may be achieved by checksin the value domain or in the time domain on different levels,

especially on the physical (temperature, voltage etc.), logical (error detecting codes), functional (assertions)

or external level (plausibility checks). The results of these checks may be stored and associated with the data
affected to allow failure tracking.

Complex systems are composed of subsystems. The efficiency of fault detection, diagnosis and fault

compensation depends on the complexity of the interactions among the subsystems, which influences the

propagation of faults.

Fault diagnosis isolates the smallest subsystem that may be identified. Smaller subsystems allow a more

detailed diagnosis of faults (identification of erroneousstates).

BS EN 50128:2011
EN 50128:2011 - 102 -

D.27 Finite State Machines/State Transition Diagrams

Aim

To define or implement the control structure of a system.

Description

Many systems can be defined in terms of their states, their inputs, and their actions. Thus whenin state S1,
on receiving input | a system might carry out action A and move to state S2. By defining a system's actions
for every input in every state we can define a system completely. The resulting model of the system is called

a Finite State Machine (FSM). It is often drawn as a so-called state transition diagram showing how the
system movesfrom one state to another, or as a matrix in which the dimensionsare state and input and the
matrix cells contain the action and newstate resulting from receipt of the input in the given state.

Where a system is complicated or has a natural structure this can be reflected in a layered Finite State
Machine.

A specification or design expressed as an Finite State Machine can be checked for completeness (the
system shall have an action and newstate for every input in every state), for consistency (only one state
changeis defined for each state/input pair) and reachability (whetheror notit is possible to get from one state

to another by any sequenceof inputs). These are important properties for critical systems and they can be

checked. Tools to support these checksare easily written. Algorithms also exist that allow the automatic

generation of test cases for verifying a Finite State Machine implementation or for animating a Finite State

Machine model.

Several extensions of basic FSMs have been devised to improve the description of complex system

behaviour. So called statecharts add hierarchy, composition (parallelism), inter-level transitions, history
states, etc. A particularly useful feature is the nesting of internal states and transitions, giving the possibility to

reveal or conceal the internal states at need. Statecharts are part of UML (Unified Modeling Language), and

as a result supported by many commercialtools.

D.28 Formal Methods

Aim

"Formal Methods" refer to mathematically rigorous techniques and tools for the specification, design and

verification of software and hardware systems.

Description

"Mathematically rigorous" means that the specifications used in formal methods are well-formed statements

in a mathematical logic and that the formalverifications are rigorous deductionsin that logic (i.e. each step

follows from a rule of inference and hence can be checked by a mechanical process.) The value of formal

methods is that they provide a means to symbolically examine the entire state space of a digital design

(whether hardware or software) and establish a correctness or safety property that is true for all possible

inputs. However, this is rarely done in practice today (except for the critical components of safety critical

systems) because of the enormous complexity of real systems.

Several approaches are used to overcome the astronomically-sized state spaces associated with real

systems:

- apply formal methods to requirements and high-level designs where mostof the details are abstracted

away;

- apply formal methods to only the mostcritical components;

- analyse models of software and hardware where variables are made discrete and ranges drastically

reduced;

BS EN 50128:2011
- 103 - EN 50128:2011

— analyse system modelsin a hierarchical mannerthat enables "divide and conquer";

- automate as muchofthe verification as possible.

Although the use of mathematical logic is a unifying theme across the discipline of formal methods,there is

no single best "formal method". Each application domain requires different modelling methods and different

proof approaches. Furthermore, even within a particular application domain, different phasesofthe life-cycle

maybe best served bydifferent tools and techniques. For example a theorem prover might be best used to

analyse the correctnessof a register transfer level description of a Fast Fourier Transform circuit, whereas

algebraic derivational methods might best be used to analyse the correctness of the design refinements into

a gate-level design. Therefore there are a large numberof formal methods under development throughout

the world.

Several examples of Formal Methods are described in the following subclausesof this bibliography. Thelist

of examples here is not exhaustive. The Formal Methods described are CSP, CCS, HOL, LOTOS, OBJ,

Temporal Logic, VDM, Z Method, B Method and Model Checking.

D.28.1 CSP —- Communicating Sequential Processes

Aim

CSP is a technique for the specification of concurrent software systems, i.e. systems of communicating

processesoperating concurrently.
*

Description

CSP provides a language for the specification of systems of processes and proof for verifying that the

implementation of processes satisfies their specifications (described as a trace — permissible sequencesof

events).

A system is modelled as a network of independent processes. Each processis described in termsofall ofits

possible behaviours. A system is modelled by composing processes sequentially or in parallel. Processes

can communicate (synchronise or exchange data) via channels, the communication only taking place when

both processesare ready. The relative timing of events can be modelled.

The theory behind CSP wasdirectly incorporated into the architecture of the Inmos transputer”’, and the
occam language ?) allows a CSP-specified system to be directly implemented on a network of transputers.

D.28.2 CCS -— Calculus of Communicating Systems

Aim

CCSis a meansfor describing and reasoning about the behaviour of systems of concurrent, communicating

processes.

Inmos wasa british semiconductor company which producedin the 80’s an innovative microprocessorarchitecture intended for
parallel processing, called the transputer. Later Inmos becamepart of SGS-Thomson then STMicroelectronics.

2) occam is a concurrent programming language that is namedafter William of Ockham of Occam's Razor fame.It is the native
programming languageof the Inmostransputer.

BS EN 50128:2011
EN 50128:2011 - 104 -

Description

Similar to CSP, CCS is a mathematical calculus concerned with the behaviour of systems. The system
design is modelled as a network of independent processes operating sequentially or in parallel. Processes
can communicate via ports (similar to CSP's channels), the communication is only taking place when both

processes are ready. Non-determinism can be modelled. Starting from a high-level abstract description of the

entire system (Known as a trace), it is possible to carry out a step-wise refinement of the system into a
composition of communicating processes whosetotal behaviouris that required of the whole system. Equally,
it is possible to work in a bottom up fashion, combining processes and deducing the properties of the

resulting system using inference rules related to the compositionrules.

D.28.3 HOL - Higher Order Logic

Aim

This is a formal languageintended as a basis for hardware specification and verification.

Description

HOL(Higher Order Logic) refers to a particular logic notation and its machine support system, both of which

were developedat the University of Cambridge Computer Laboratory. The logic notation is mostly taken from

Church's Simple Theory of Types and the machine support system is based upon the LCF (Logic of

Computable Functions) system.

D.28.4 LOTOS

Aim

LOTOS is a means for describing and reasoning about the behaviour of systems of concurrent,

communicating processes.

Description

LOTOS (Language for Temporal Ordering Specification) is based on CCS with additional features from the

related algebras CSP and CIRCAL(Circuit Calculus). It overcomes the weakness of CCSin the handling of

data structures and value expressions by combining it with a second component based on the abstract data

type language ACT ONE.Theprocessdefinition component of LOTOS could, however, be used with other
formalisms for the description of abstract data types.

D.28.5 OBJ

Aim

To provide a precise system specification with user feed-back and system validation prior to implementation.

BS EN 50128:2011
- 105 - EN 50128:2011

Description

OBJis an algebraic specification language. Users specify requirements in terms of algebraic equations. The
behavioural, or constructive, aspects of the system are specified in terms of operations acting on abstract

data types (ADT). An ADTis like an Ada ” package where the operator behaviouris visible whilst the
implementation details are ‘hidden’.

An OBJ specification, and subsequent step-wise implementation, is amenable to the same formal proof

techniques as other formal approaches. Moreover, since the constructive aspects of the OBJ specification

are machine-executable, it is straightforward to achieve system validation from the specification itself.

Execution is essentially the evaluation of a function by equation substitution (re-writing) which continues until

specific output value is obtained. This executability allows end-users of the envisaged system to gain a 'view'
of the eventual system at the system specification stage without the need to be familiar with the underlying

formal specification techniques.

As with all other ADT techniques, OBJ is only applicable to sequential systems, or to sequential aspects of

concurrent systems. OBJ has been widely used for the specification of both small and large-scale industrial

applications.

D.28.6 Temporal logic

Aim

Direct expression of safety and operational requirements and formal demonstration that these properties are

preservedin the subsequent developmentsteps.

Description

Standard First Order Predicate Logic contains no conceptof time. Temporal logic extends First Order logic by

adding modal operators (e.g. 'Henceforth' and 'Eventually'). These operators can be used to qualify
assertions about the system. For example, safety properties might be required to hold ‘henceforth’, whilst

other desired system states might be required to be attained 'eventually' from some otherinitiating state.

Temporal formulas are interpreted on sequencesof states (behaviours). What constitutes a 'state' depends

on the chosen level of description. It can refer to the whole system, a system componentor the computer

program. Quantified time intervals and constraints are not handled explicitly in temporal logic. Absolute timing
has to be handled by creating additional time states as part of the state definition.

D.28.7 VDM-— Vienna Development Method

Aim

The systematic specification and implementation of sequential programs.

Description

VDM is a mathematically based specification technique and a techniquefor refining implementations in a way
that allows proof of their correctness with respectto the specification.

9 Adais a structured, statically typed, imperative, wide-spectrum, and object-oriented high-level computer programming language,
extended from Pascal and other languages.

BS EN 50128:2011
EN 50128:2011 - 106 -

The specification technique is model-based in that the system state is modelled in terms of set-theoretic
structures on which are defined invariants (predicates), and operations on that state are modelled by
specifying their pre and post-conditions in terms of the system state. Operations can be proved to preserve

the system invariants.

The implementation of the specification is done by the reification of the system state in terms of data

structures in the target language and by refinement of the operations in terms of a program in the target

language. Reification and refinement steps give rise to proof obligations that establish their correctness.
Whetheror not these obligations are carried out is a choice madebythe designer.

VDMis principally used in the specification stage but can be used in the design and implementation stages

leading to source code. It can only be applied to sequential programs or the sequential processes in
concurrent systems.

D.28.8 Z method

Aim

Z is a specification language notation for sequential systems and a design technique that allows the designer

to proceed from a Z specification to executable algorithms in a waythat allows proofof their correctness with

respectto the specification.

Z is principally used in the specification stage but a method has been devised to go from specification into a

design and an implementation. It is best suited to the developmentof data oriented, sequential systems.

Description

Like VDM, the specification technique is model-based in that the system state is modelled in terms of

set-theoretic structures on which are defined invariants (predicates), and operations on that state are
modelled by specifying their pre and post-conditions in terms of the system state. Operations can be proved
to preserve the system invariants thereby demonstrating their consistency. The formal part of a specification

is divided into schemaswhichallow the structuring of specifications through refinement.

Typically, a Z specification is a mixture of formal Z and informal explanatory text in natural language. (Formal

text on its own can be too terse for easy reading and often its purpose needs to be explained, while the
informal natural language can,easily become vague and imprecise).

Unlike VDM,Z is a notation rather than a complete method. However an associated method (called B) has

been developed which can be used in conjunction with Z.

D.28.9 B method

Aim

Like VDM,the purpose of B method is to model formally a system or software and to prove that the behaviour

of the system or software respects the properties that were made explicit during modelling.

Description

The B modelling calls on mathematical items from the Set theory. On one hand, invariants (i.e. predicates)

define the static properties of the model. On the other hand, operations establish post-conditions, thus
defining its dynamic behaviour. The specification of a complex system or software is made possible by

decomposing the modelinto “machines”tied togetherbylinks of different semantics.

Two main categories of modelling with B formalism can bedistinguished.

BS EN 50128:2011
- 107 - EN 50128:2011

- The former (historically the first), aims at developing software: in this case, the goal is to produce a

program that respects its specification. The model consists of abstract machines (not necessarily

deterministic) and step-by-step refinements of these machines,leading to deterministic implementations
written in a pseudo-codecalled “BO”. This pseudo-code can then be automatically translated into a target

programming language.

- The latter, aims at modelling systems and in this case we talk about “Event B”: the purposeis to specify,

without ambiguity and coherently, a system that fulfils explicit properties. The model takes into account

the system itself and its environment. The dynamics of the system is modelled by “events”, and the
refinement technique is used in order to precise interactions between the system andits environment.

A set of Proof Obligations (logical assertions that are to be formally proved from the hypothesis that were

extracted from the B formal model) is generated automatically. These Proof Obligations guarantee

- the existence of data that fulfil the static and dynamic properties of the model,

~ that the operations (dynamic behaviour of the model) respect the invariant,

- that the refinement of data and operations (and the BO pseudo-code if necessary) does not contradict

the specification written in abstract machines,

that each operation is called within the contextofits pre-condition,

- in the case of software modelling, that the program does terminate (in particular, that each loop

terminates).

Other Proof Obligations, for example verifying integer overflow or underflow, are also generated.

D.28.10 Model Checking

Aim

Given a model of a system, test automatically whether this model meets a given specification.

Description

Model checking is the process of checking whether a given structure is a model of a given logical formula.

The concept is general and applies to all kinds of logics and suitable structures. A simple model-checking

problem is testing whether a given formula in the propositional logic is satisfied by a given structure.

An important class of model checking methods have been developed to algorithmicaily verify formal systems.

This is achieved by verifying if the structure, often derived from a hardware or software design, satisfies a

formal specification, typically a temporal logic formula.

Model checking is most often applied to hardware designs. For software, because of undecidability (see

Computability theory) the approach cannotbe fully algorithmic; typically it may fail to prove or disprove a given

property.
ur

The structure is usually given as a source code description in an industrial hardware description language or

a special-purpose language. Such a program corresponds to a finite state machine,i.e., a directed graph

consisting of nodes (or vertices) and edges. A set of atomic propositions is associated with each node,

typically stating which memory elements are one. The nodes represent states of a system, the edges
represent possible transitions which may alter the state, while the atomic propositions represent the basic

properties that hold at a point of execution.

Formally, the problem can be stated as follows: given a desired property, expressed as a temporal logic

formula p, and a structure M with initial state s, decide if. If M is finite, as it is in hardware, model checking

reduces to a graph search.

BS EN 50128:2011
EN 50128:2011 ~ 108 -

D.29 Formal Proof

Aim

Using theoretical and mathematical models and rules it is possible to prove the correctness of a program or
model without executingit.

Description

A number of assertions are stated at various locations in the program, and they are used as pre and post
conditions to various paths in the program. The proof consists of showing that the program transfers the
preconditions into the post-conditions according to a set of logical rules, and that the program terminates.

Several Formal Methods are described in this bibliography, for instance, CCS, CSP, HOL, LOTOS, OBJ,
Temporal Logic, VDM and Z. The descriptions of these can be found under D.28 'Formai Methods’.

D.30 Forward Recovery

Aim

To provide correct functional operation in the presence of one or more faults.

Description

If a fault has been detected, the current state of the system is manipulated to obtain a state, which will be
consistent sometime later. This concept is especially suited for real-time systems with a small database and
fast rate of change of the internal state. It is assumed, that at least part of the system state may be imposed
onto the environment, and only part of the system states are influenced (forced) by the environment.

D.31 Graceful Degradation

Aim

To maintain the more critical system functions available despite failures by dropping the lesscritical functions.

Description

This technique gives priorities to the various functions to be carried out by the system. The design then
ensures that should there be insufficient resources to carry out all the system functions, then the higher

priority functions are carried out in preference to the lower ones. For example, error and event logging
functions may have lowerpriority than system control functions, in which case system control would continue

if the hardware associated with error logging were tofail.

Another example would be a signalling system where in the event of loss of communication with the control
centre the local lineside equipment automatically sets the available routes for the direction taken by the
highest priority traffic. This would be a graceful degradation because trains on the priority routes would be
able to pass through the area affected by the loss of communication with the control centre, but other
movements, such as shunting movements, would not be possible.

BS EN 50128:2011

- 109 - EN 50128:2011

D.32 Impact Analysis

Aim

To identify the effect that a change or an enhancementto a software will have to other componentsin that

software as well as to other systems.

Description

Prior to a modification or enhancement being performed on the software an analysis shall be undertaken to

identify the impact of the modification or enhancement on the software and to also identify the affected

software systems and components.

After the analysis has been completed a decision is required concerning the reverification of the software

system. This depends on the numberof components affected, the criticality of the affected components and

the nature of the change. The possible decisions are:

a) only the changed componentsto be reverified;

b) all identified affected components are reverified; and

c) the complete system is reverified.

D.33 Information Hiding / Encapsulation

Aim

To increase the robustness and maintainability of software.

Description

Data that is globally accessible to all software components can be accidentally or incorrectly modified by any

of these components. Any changesto these data structures may require detailed examination of the code

and extensive modifications.

Information hiding is a general approach for minimising thesedifficulties. The key data structures are ‘hidden’

and can only be manipulated through a defined set of access procedures. This allows the internal structures

to be modified or further procedures to be added without affecting the functional behaviour of the remaining

software. For example, a named directory might have access proceduresInsert, Delete and Find. The access

proceduresandinternal data structures could be re-written (e.g. to use a different look-up method orto store

the names on a hard disk) without affecting the logical behaviour of the remaining software using these

procedures.

This concept of an abstract data type is directly supported in a number of programming languages, but the

basic principle can be applied whatever programming languageis used.

BS EN 50128:2011

EN 50128:2011 - 110 -

D.34 Interface Testing

Aim

To demonstrate that interfaces of subprograms do not contain any errors or anyerrors that lead to failures in
a particular application of the software orto detect all errors that may be relevant.

Description

Severallevels of detail or completenessof testing are feasible. The most important levels are testing

= all interface variables at their extreme positions,

= all interface variable individually at their extreme values with otherinterface variables at normal values,

= all values of the domain of each interface variable with other interface variables at normal values,

- all values of all variables in combination (this may only be feasible for small interfaces),

- the specified test conditions relevant to each call of each subroutine.

These tests are particularly important if their interfaces do not contain assertions that detect incorrect
parameter values. They are also important after new configurations of pre-existing subprograms have been

generated.

D.35 Language Subset

Aim

To reduce the probability of introducing programming faults and increase the probability of detecting any

remaining faults.

Description

The language is examined to identify programming constructs which are either error-prone ordifficult to
analyse, for example, using static analysis methods. A language subsetis then defined which excludes these

constructs.

D.36 Memorising Executed Cases

Aim

To force the softwareto fail safe if it executes an unlicensed path.

Description

During licensing a record is made ofall relevant details of each program execution. During normal operation
each program execution is compared with the set of the licensed executions.If it differs, a safety action is

taken.

The execution record can be the sequence of the individual decision-to-decision paths (DDpaths) or the
sequenceofthe individual accessesto arrays, records or volumes,or both.

Different methods of storing execution paths are possible. Hash-coding methods can be used to map the

execution sequence onto a single large number or sequence of numbers. During normal operation the

execution path value shall be checked against the stored cases before any output operation occurs.

Since the possible combinations of decision-to-decision paths during one program is very large, it may not be

feasible to treat programs as a whole.In this case, the technique can be applied at componentlevel.

BS EN 50128:2011
-111- EN 50128:2011

D.37 Metrics

Aim

To predict the attributes of programs from properties of the softwareitself rather than from its development or

test history.

Description

These models evaluate somestructural properties of the software and relate this to a desired attribute such
as complexity. Software tools are required to evaluate most of the measures. Some of the metrics which can

be applied are given below:

- Graph Theoretic Complexity: this measure can be applied early in the lifecycle to assess trade-offs, and
is based on the complexity of the program control graph, represented byits cyclomatic number;

- numberof waysto activate a certain component (accessibility): the more a component can be accessed,
the morelikelyit is to be debugged;

- Halstead complexity measures: this measure computes the program length by counting the numberof
operators and operands.It provides a measure of complexity and estimates development resources;

- number of entries and exits per component: minimising the numberof entry/exit points is a key feature of

structured design and programming techniques.

D.38 Modular Approach

Aim

Decomposition of a software into small comprehensible parts in orderto limit the complexity of the software.

Description

A Modular Approach or modularisation contains several rules for the design, coding and maintenance phases

of a software project. These rules vary according to the design method employed during design. Most

methodscontain the following rules:

- amodule/componentshall have a single well defined task or function tofulfil;

- connections between modules/components shall be limited and strictly defined, coherence in one
module/componentshall be strong;

— collections of subprogramsshall be built providing several levels of modules/components;

— subprogramsshall have a single entry and a single exit only;

- modules/components shall communicate with other modules/components via their interfaces. Where
global or commonvariables are used they shall be well structured, access shall be controlled and their

use shall be justified in each instance;

- all module/componentinterfaces shall be fully documented;

- any modules/components interface shall contain the minimum number of parameters necessary for the

modules/components function; and

- aSgsuitable restriction of parameter numbershall be specified, typically 5.

BS EN 50128:2011

EN 50128:2011 - 112 -

D.39 Performance Modelling

Aim

To ensure that the working capacity of the system is sufficient to meet the specified requirements.

Description

The requirements specification includes throughput and response requirements for specific functions,
perhaps combined with constraints on the use of total system resources. The proposed system design is
compared againstthe stated requirements by

— defining a model of the system processes,and their interactions,

- identifying the use of resources by each process, for example, processor time, communications
bandwidth, storage devicesetc),

- identifying the distribution of demands placed upon the system under average and worst-case
conditions,

- computing the mean and worst-case throughput and responsetimesfor the individual system functions.

For simple systems, an analytic solution may be possible whilst for more complex systems, some form of
simulation is required to obtain accurate results.

Before detailed modelling, a simpler ‘resource budget’ check can be used which sums the resources
requirements of all the processes. If the requirements exceed designed system capacity, the design is
infeasible. Even if the design passes this check, performance modelling may show that excessive delays and
response times occur due to resource starvation. To avoid this situation engineers often design systems to
use somefraction (e.g. 50 %) of the total resources so that the probability of resource starvation is reduced.

D.40 Performance Requirements

Aim

To establish that the performance requirements of a software have beensatisfied.

Description

An analysis is performed of both the system and the Software Requirements Specifications to identify all
general and specific, explicit and implicit performance requirements.

Each performance requirement is examinedin turn to determine

- the successcriteria to be obtained,

= whether a measureagainst the successcriteria can be obtained,

- the potential accuracy of such measurements,

- the project stages at which the measurements can be estimated, and

- the project stages at which the measurements can be made.

The practicability of each performance requirement is then analysed in orderto obtain list of performance
requirements, successcriteria and potential measurements. The main objectives are:

a) each performance requirementis associated with at least one measurement;

b) where possible, accurate and efficient measurements are selected which can be used as early in the
developmentprocessas possible;

c) essential and optional performance requirements and successcriteria are identified and

d) where possible, advantage shall be taken of the possibility of using a single measurement for more than
one performance requirement.

BS EN 50128:2011
- 113 - EN 50128:2011

D.41 Probabilistic Testing

Aim

To gain a quantitative figure about the reliability properties of the investigated software. This figure may
addressthe related levels of confidence and significance and

a) a failure probability per demand,

b) a failure probability during a certain period of time, and

c) a probability of error containment.

From these figures other parameters may be derived such as

u probability of failure free execution,

- probability of survival,

= availability,

7 MTBForfailure rate, and

— probability of safe execution.

Description

Probabilistic considerations are either based on a probabilistic test or on operating experience. Usually the

numberof tests cases of observed operating casesis very large.

In order to facilitate testing, usually automatic aids are taken. They concern the details of test data provision
and test output supervision. Large tests are run on large host computers with the appropriate process
simulation periphery. Test data is selected both according to systematic and random view points. Thefirst
concernsthe overall test control, for example, guarantee a test data profile. The random selection takes the
individual test casesin detail.

Individual test harnesses, test executions and test supervisions are determined by the detailed test aims as
described above. Other important conditions are given through the mathematical prerequisites to be fulfilled

in order to enable the test evaluation in view of the intended test aim.

Probabilistic figures about the behaviour of any test object may also be derived from operating experience.
Provided the same conditions are met, the same mathematics can be applied as for the evaluation of test
results.

D.42 Process Simulation

Aim

To test the function of a software, togetherwith its interface to the outside world, without allowing it to modify
the real world in any way.

Description

The creation of a system, for testing purposes only, which mimics the behaviour of the system to be

controlled by the system undertest.

BS EN 50128:2011
EN 50128:2011 - 114 -

The simulation may be software only or a combination of software and hardware.It shall

provide all the inputs of the system undertest which will exist when the system is installed,

— respond to outputs from the system in a way whichfaithfully represents the controlled equipment,

- have provision for operator inputs to provide any perturbations with which the system undertest is
required to cope.

Whensoftware is being tested, the simulation may be a simulation of the target hardware with its inputs and
outputs.

D.43 Prototyping / Animation

Aim

To check the feasibility of implementing the system against the given constraints. To communicate the
specifier's interpretation of the system to the customer,in order to locate misunderstandings.

Description

A sub-set of system functions, constraints, and performance requirements are selected. A prototype is built
using high level tools. At this stage, constraints such as the target computer, implementation language,
program size, maintainability and robustness need not be considered. The prototype is evaluated against the
customer's criteria and the system requirements may be modified in the light of this evaluation.

D.44 Recovery Block

Aim

To increase the likelihood of the program performingits intended function.

Description

Several different program sections are written, often independently, each of which is intended to perform the
same desired function. The final program is constructed from these sections. The first section, called the
primary, is executedfirst. Thisis followed by an acceptancetestof the result it calculates.If the test is passed
then the result is accepted and passed on to subsequentparts of the system.If it fails, any side effects of the
first are reset and the second section, called the first alternative, is executed. This too is followed by an
acceptancetest andis treated asin the first case. A second, third or even morealternatives can be provided
if desired.

D.45 Response Timing and Memory Constraints

Aim

To ensurethat the system will meet its temporal and memory requirements.

Description

The requirements specification for the system and the software includes memory and response requirements

for specific functions, perhaps combined with constraints on the use of total system resources. An analysis is

performed which will identify the distribution demands under average and worst case conditions. This
analysis requires estimates of the resource usage and elapsed time of each system function. These

estimates can be obtained in several ways, for example, comparison with an existing system or the
prototyping and bench-marking oftime critical systems.

BS EN 50128:2011

= 119- EN 50128:2011

D.46 Re-Try Fault Recovery Mechanisms

Aim

To attemptfunctional recovery from a detected fault condition by re-try mechanisms.

Description

In the event of a detected fault or error condition, attempts are madeto recoverthe situation by re-executing

the same code. Recovery by re-try can be as complete as a re-boot and a re-start procedure or a small

re-scheduling and re-starting task, after a software time-out or a task watchdog action. Re-try techniques are

commonly used in communication fault or error recovery and re-try conditions could be flagged from a

communication protocol error (check sum etc.) or from a communication acknowledgement response

time-out.

D.47 Safety Bag

Aim

To protect against residual specification and implementationfaults in software which adversely affect safety.

Description

A safety bag is an external monitor, implemented on an independent computer to a different specification.

This safety bag is solely concerned with ensuring the main computer performs safe, not necessarily correct,
actions. The safety bag continuously monitors the main computer. The safety bag prevents the system from

entering an unsafe state. In addition if it detects that the main computeris entering a potentially hazardous
state, the system has to be brought back to a safe state either by the safety bag or the main computer.

D.48 Software Configuration Management

Aim

Software Configuration management aims to ensure the consistency of groups of developmentdeliverables

as those deliverables change. Configuration Management, in general, applies to both hardware and software
development.

Description

Software Configuration Managementis a technique used throughout development. In essence,it requires the
recording of the production of every version of every "significant" deliverable and of every relationship
between different versions of the different deliverables. The resulting records allow the designer to determine
the effect on other deliverables of a change to one deliverable. In particular, systems or subsystems can be
reliably re-built from consistent sets of componentversions.

D.49 Strongly Typed Programming Languages

Aim

Reducethe probability of faults by using a language which permits a high level of checking by the compiler.

Description

Suchlanguagesusually allow user-defined data types to be defined from the basic language data types (such
as INTEGER, REAL). These types can then be used in exactly the same way asthe basic types, butstrict
checks are imposed to ensure the correct type is used. These checks are imposed over the whole program,
evenif this is built from separately compiled units. The checks also ensure that the number and the type of
procedure arguments match even whenreferenced from separately compiled components.

BS EN 50128:2011
EN 50128:2011 - 116 -

Strongly typed languages also support other aspects of good software engineering practice such as easily

analysable control structures (e.g. IF... THEN ... ELSE, DO... WHILE, etc) which lead to well-structured
programs.

Typical examplesof strongly typed languages are Pascal, Ada and Modula-2.

D.50 Structure Based Testing

Aim

To apply tests which exercise certain subsets of the program structure.

Description

Based on an analysis of the program a set of input data is chosen suchthat a large fraction of selected

program elements are exercised. The program elements exercised can vary depending onthelevel of rigour
required:

- statements: this is the least rigorous test since it is possible to execute all code statements without

exercising both branchesof a conditional statement;

— branches: both sides of every branch should be checked. This may be impractical for some types of

defensive code;

— compound Conditions: every condition in a compound conditional branch (i.e. linked by AND/OR)is

exercised;

- LCSAJ (Linear Code Sequence And Jump): a linear code sequence and jumpis any linear sequence of
code statements including conditional jumps terminated by a jump. Many potential sub-paths will be
infeasible due to constraints on the input data imposed by the execution of earlier code.

- data flow: the execution paths are selected on the basis of data usage for example a path where the
samevariable is both written and read.

- call graph: a program is composed of subroutines which may be invoked from other subroutines. The

call graph is the tree of subroutine invocations in the program. Tests are designed to coverall

invocationsin the tree.

- entire path: execute all possible paths through the code. Complete testing is normally infeasible due to

the very large numberof potential paths.

D.51 Structure Diagrams

Aim

To show thestructure of a program diagrammatically.

Description

Structure Diagramsare a notation which complements Data Flow Diagrams. They describe the programming

system and a hierarchy of parts and display this graphically, as a tree. They document how elements of a

data flow diagram can be implemented asa hierarchy of program units.

A structure chart shows relationships between program units without including any information about the

orderof activation of these units. They are drawn using the following three symbols:

a) arectangle annotated with the nameofthe unit;

b) an arrow connecting these rectangles;

c) a circled arrow, annotated with the name of data passed to and from elements in the structure chart.

Normally, the circled arrow is drawnparallel to the arrow connecting the rectanglesin the chart.

BS EN 50128:2011

117 = EN 50128:2011

From any nontrivial data flow diagram, it is possible to derive a numberof different structure charts.

Structure charts derived from data flow diagrams representa first level structure of the system, where each

box on the structure chart represents a bubble in the data flow diagram. Naturally, deeper levels can be

described using the same technique.

D.52 Structured Methodology

Aim

The main aim of Structured Methodologies is to promote the quality of software development by focusing

attention on the early parts of the life-cycle. The methods aim to achieve this through both precise and

intuitive procedures and notations (assisted by computers) to identify the existence of requirements and

implementation features in a logical order and a structured manner.

Description

A range of Structured Methodologies exist. Some such as SSADM, LBMS are designed for traditional

data-processing and transaction processing functions, while others (MASCOT, JSD, real-time Yourdon) are

more oriented to process-control and real-time applications (which tend to be more safety-critical).

Structured Methodsare essentially "thought tools" for systematically perceiving, and partitioning a problem or

system. Their main features are

— alogical order of thought, breaking a large problem into manageable stages,

- identification of total system, including the environmentas well as the required system,

- decomposition of data and function in the required system,

- checklists, i.e. lists of the sort of things that need definition,

- low intellectual overhead — simple,intuitive, pragmatic.

The supporting notations tend to be precise for identifying problem and system entities (e.g. processes and

data flows), but the processing functions performed by these entities tend to be expressed using informal

notations. However some methods do make partial use of (mathematically) formal notations (for example

JSD makes useof regular expressions: Yourdon, SOM and SDLutilise finite state machines). This precision
not only reduces the scope for misunderstanding,it provides scope for automatic processing.

Another benefit of structured notation is their visibility, enabling a specification or design to be checked

intuitively by a user, against his powerful but unstated knowledge.

D.53 Structured Programming

Aim

To design and implement the software component in a way which makes practical the analysis of the

software component. This analysis should be capable of discovering all significant component behaviour.

Description

The software component should contain the minimum of structural complexity. Complicated branching should

be avoided. Loop constraints and branching should (where possible) be simply related to input parameters.

The software component should be divided into appropriately small modules, and the interaction of these

modules should be explicit. Features of the programming language which encourage the above approach

should be used in preference to other features which are (allegedly) more efficient, except where efficiency

takes absolute priority (e.g. some safety-critical systems).

BS EN 50128:2011
EN 50128:2011 - 118 -

D.54 Suitable Programming languages

Aim

To support the requirements of this European Standard as much as possible, in particular, defensive

programming, strong typing, structured programming and possibly assertions. The programming language
chosen should lead to easily verifiable code with a minimum of effort and facilitate program development,

verification and maintenance.

Description

The language should be fully and unambiguously defined. The language should be useror problem oriented

rather than machine oriented. Widely used languages or their subsets are preferred to special purpose

languages.

In addition to the already referenced features the language should provide for

u block structure,

= translation time checking,

- run time type and array bound checking, and

- parameter checking.

The language should encourage

- the use of small and manageable components,

= restriction of access to data in defined components,

= definition of variable sub-ranges, and

- any othertype of errorlimiting constructs.

It is desirable that the language is supported by a suitable translator, appropriate libraries of pre-existing

components, a debugger and tools for both version control and development.

Features which makeverification difficult and therefore should be avoided are:

— unconditional jumps excluding subroutine calls;

— recursion;

— pointers, heaps or any type of dynamic variables or objects;

= interrupt handling at source codelevel;

- multiple entries or exits of loops, blocks or subprograms;

= implicit variable initialisation or declaration;

- variant records and equivalence; and

- procedural parameters.

Low level languages, in particular assembly languages, present problems due to their machine oriented

nature.

BS EN 50128:2011
- 119 - EN 50128:2011

D.55 Time Petri Nets

Aim

To model relevant aspects of the system behaviour and to assess and possibly improve safety and

operational requirements through analysis and re-design.

Description

Petri nets belong to a class of graph theoretic models which are suitable for representing information and

control flow in systems exhibiting concurrency and asynchronous behaviour.

A Petri net is a network of places and transitions. The places may be 'marked' or 'unmarked'. A transition is

‘enabled’ whenall the input places to it are marked. When enabled, it is permitted (but not obliged) to ‘fire’. If

it fires, the input marks are removed, and each output place from the transition is marked instead.

The potential hazards are represented as particular states (markings) in the model. Extended Petri nets allow

timing features of the system to be modelled. Although ‘classical’ Petri nets concentrate on control flow

aspects, several extensions have been proposedto incorporate dataflow into the model.

D.56 Walkthroughs / Design Reviews

Aim

To detect errors in some productof the development processas soon and as economically as possible.

Description

IEC/TC 56, have published a Guide on Formal Design Reviews, which includes a general description of

formal design reviews, their objectives, details of the various design review types, the composition of a design

review team and their associated duties and responsibilities. The IEC document also provides general

guidelines for planning and conducting formal design reviews, as well as specific details concerning the role

of independent specialists within a design review team.

The IEC recommendthat a "formal design review shall be conducted for all new products/processes, new

applications, and revisions to existing products and manufacturing processes which affect the function,

performance, safety, reliability, ability to inspect maintainability, availability, ability to cost, and other

characteristics affecting the end product/process,users or bystanders".

A code walk through consists of a walk through team selecting a small set of paper test cases, representative

sets of inputs and corresponding expected outputs for the program. The test data is then manually traced
through the logic of the program.

D.57 Object Oriented Programming

Aim

To enable rapid prototyping, to more easily reuse existing software components, to achieve information

hiding, to reduce thelikelihood of errors during the wholelifecycle, to reduce the necessary effort during the

maintenance phase, to break down complex problems into more easily manageable small problems, to

reduce the dependencies between software components,to create more easily extendible applications.

BS EN 50128:2011

EN 50128:2011 - 120 -

Description

Object oriented programming is a fundamentally new way of thinking about software based on abstractions
that exist in the real world rather than based on computational abstractions. Object oriented programming

organises software as a collection of objects that incorporate both data structure and behaviour. This is in
contrast to conventional programming wheredata structure and behaviour are only loosely connected.

Object: an object consists of a private data area and set of operations - so called methods - on that object.
Methods may be public or private. No other software componentis allowed to read or change the private

data of an object directly. Every other software componenthasto use the public methods on that object to
read or write data in the private data area of an object.

Object Class: by specifying an object class (often in the form of a type definition) you enable the instantiation

of numerous objects of the sameclass,i.e., all instantiations have the private data area and the methods

defined in the objectclass.

(Multiple) Inheritance: an object class can inherit the private data area and the methods of one (or more)

superclasses (object classes aboveit in the class hierarchy) with being allowed to add someprivate data, to

add some methods or to modify the implementations of the inherited methods. Using Inheritance multiple

object class trees can be built.

Polymorphism: the same operation may behavedifferently on different object classes, e.g. the write operation

for a terminal object writes characters to that terminal and a write operation to a file object writes characters
to thatfile.

Drawback: Object oriented programming languages may lead to an additional need for resources with a

negative impact on system performance.

D.58 Traceability

Aim

The objective of Traceability is to ensure that all requirements can be shownto have been properly met and

that no untraceable material has been introduced.

Description

Traceability to requirements shall be an important consideration in the validation of a system and meansshall

be provided to allow this to be demonstrated throughoutall phasesof thelifecycle.

Traceability shall be considered applicable to both functional and non-functional requirements and shall

particularly address

a) traceability of requirements to the design or other objects whichfulfil them,

b) traceability of design objects to the implementation objects which instantiate them,

c) traceability of requirements and design objects to the operational and maintenance objects required to be

applied in the safe and properuse of the system,

d) traceability of requirements, design, implementation, operation and maintenance objects, to the

verification and test plans and specifications which will determine their acceptability,

e) traceability of verification and test plans and specifications to the test or other reports which record the

results of their application.

Where requirements, design or other objects are instantiated as a number of separate documents,

traceability shall be maintained within the documentstructures andin a hierarchical manner.

The output of the Traceability process shall be the subject of formal Configuration Management.

BS EN 50128:2011
- 121 - EN 50128:2011

D.59 Metaprogramming

Aim

Metaprogramming allows programmers to get more done in the same amountof time as they would take to
write all the code manually.

Description

Metaprogramming is the writing of computer programs that write or manipulate other programs (or
themselves) as their data or that do part of the work during compilation time that is otherwise done at run
time.

The language in which the metaprogram is written is called the metalanguage. The language of the programs
that are manipulated is called the object language. The ability of a programming language to be its own
metalanguageis called reflection or reflexivity.

Reflection is a valuable language featureto facilitate metaprogramming. Having the programming language
itself as a first-class data type (as in Lisp) is also very useful. Generic programming invokes a
metaprogrammingfacility within a language, in those languages supportingit.

Metaprogramming usually works through one of two ways.Thefirst way is to exposethe internals of the run-
time engine to the programming code through application programming interfaces (APIs). The second
approachis dynamic execution of string expressions that contain programming*commands. Thus,"programs
can write programs". Although both approaches can be used, most languages tend to lean toward one or the
other.

D.60 Procedural programming

Aim

Specifying the steps the program shall take to reach the desired state.

Description

Procedural programming based upon the conceptof the procedure call. Procedures, also knownasroutines,
subroutines, methods,or functions (not to be confused with mathematical functions, but similar to those used
in functional programming) simply contain a series of computational steps to be carried out. Any given
procedure might be called at any point during a program's execution, including by other proceduresoritself.

D.61 Sequential Function Charts

Aim

Describing program algorithmsin a diagrammatic way.

Description

The SFC elements allow partitioning a unit of application algorithms into a set of steps and transitions
interconnected by directed links. Associated with each step is a set of actions, and with eachtransition is
associated a transition condition. Since SFC elements require storage of state information, the only units of
application algorithms which can be structured using these elements are function blocks.

See EN 61131-3:2003, 2.6.

FE

BS EN 50128:2011
EN 50128:2011 #122

D.62 Ladder Diagram

Aim

Describing a program in a diagrammatic way.

Description

See EN 61131-3:2003,4.2.

D.63 Functional Block Diagram

Aim

Describing a function betweeninput variables and output variables in a diagrammatic way.

Description

See EN 61131-3:2003, 4.3.
D.64 State Chart or State Diagram

Aim

Describing the behaviour of a system in a diagrammatic way.

Description

State Chart or State diagrams are used to describe the behaviour of a system. State diagrams can describe
the possible states of an object as events occur. Each diagram usually represents objects of a single class

and track the different states of its objects through the system.

State diagram can be used to graphically represent finite state machines. This was introduced by Taylor

Booth in his 1967 book "Sequential Machines and Automata Theory". Another possible representation is the
State transition table.

A classic form of a state diagram for finite state machine is a directed graph.

D.65 Data modelling

Aim

Creating a data model

Description

Data modelling in computer science is the process of creating a data model by applying formal data model

descriptions using data modelling techniques.

A data model in software engineering is an abstract model that describes how data is represented and

accessed. Data models formally define data objects and relationships among data objects for a domain of
interest. Sometypical applications of database models include supporting the developmentof databases and

enabling the exchange of data for a particular area of interest. Data models are specified in a data modelling
language.

BS EN 50128:2011

- 123 - EN 50128:2011

D.66 Control Flow Diagram/Control Flow Graph

Aim

Describing the behaviour of a system in a diagrammatic way

Description

In computer science, a control flow diagram or a control flow graph (CFG)is a representation, using graph

notation, of all paths that might be traversed through a program during its execution. Each nodein the graph

represents a basic block, i.e. a straight-line piece of code without any jumps or jump targets; jump targets

start a block, and jumps end a block. Directed edges are used to represent jumpsin the control flow. There

are, in most presentations, two specially designated blocks: the entry block, through which control enters into

the flow graph, and the exit block, through whichall control flow leaves.

The CFGis essential to many compiler optimisations and static analysis tools.

Reachability is another graph property useful in optimisation. If a block/subgraph is not connected from the

subgraph containing the entry block, that block is unreachable during any execution, and so is unreachable

code; it can be safely removed. If the exit block is unreachable from the entry block,it indicates an infinite

loop. Again, dead code and someinfinite loops are possible even if the programmerdidn't explicitly code that

way: optimisations like constant propagation and constant folding followed by jump threading could collapse

multiple basic blocks into one, cause edges to be removed from a CFG, etc:, thus possibly disconnecting

parts of the graph.

terminology
these terms are commonly used whendiscussing control flow graphs

entry block

block through whichall control flow enters the graph

exit block
block through whichall control flow leaves the graph

back edge
an edgethat points to an ancestorin a depth-first (DFS) traversal of the graph

critical edge

an edge whichis neither the only edge leaving its source block, nor the only edge entering its destination

block. These edges should be split (a new block should be created in the middle of the edge) in order to

insert computations on the edge

abnormal edge
an edge whose destination is unknown. These edges tend to inhibit optimisation. Exception handling

constructs can produce them

impossible edge
(also known as a fake edge) an edge which has been addedto the graph solely to preserve the property that

the exit block postdominatesall blocks. It cannot ever be traversed

dominator
block M dominates block N if every path from the entry that reaches block N hasto pass through block M.

The entry block dominatesall blocks

postdominator
block M postdominates block N if every path from N to the exit has to pass through block M. The exit block

postdominatesall blocks

immediate dominator
block M immediately dominates block N if M dominates N, and there is no intervening block P such that M

dominates P and P dominates N. In other words, M is the last dominator on any path from entry to N. Each

block has a unique immediate dominator,if it has anyatall

immediate postdominator
analogousto immediate dominator

BS EN 50128:2011
EN 50128:2011 a 24<

dominatortree

an ancillary data structure depicting the dominator relationships. There is an arc from Block M to Block N if M
is an immediate dominator of N. This graph is a tree, since each block has a unique immediate dominator.

This tree is rooted at the entry block

postdominatortree

analogous to dominatortree. This tree is rooted at the exit block

loop header
sometimes called the entry point of the loop, a dominator that is the target of a loop-forming back edge.
Dominatesall blocks in the loop body

loop pre-header

suppose block M is a dominator with several incoming edges, some of them being back edges (so M is a
loop header). It is advantageous to several optimisation passes to break M up into two blocks Mpre and
Mloop. The contents of M and back edges are moved to Mloop,the rest of the edges are moved to point into

Mpre, and a new edge from Mpreto Mloopis inserted (so that Mpre is the immediate dominator of Mloop). In
the beginning, Mpre would be empty, but passes like loop-invariant code motion could populate it. Mpre is

called the loop pre-header, and Mloop would be the loop header

D.67 Sequence diagram

Aim

Describing the interaction between processes or components in a diagrammatic way.

Description

A sequencediagram is a kind of interaction diagram, that shows how processes or components operate one
with anotherandin whatorder.

D.68 Tabular Specification Methods

Aim

The aim is to provide a standardised and well-structured means of defining the data driven functions of a

system.

Description

Tabular notations such as signalling control tables are a well established method of documenting the

installation specific requirements for a railway signalling system.

The technique is suitable where the types of relationships between elements of the system are standardised.

Advantage: The format of the table and the possible entries in each field can serve as a checklist during

verification.

D.69 Application specific language

Aim

The aim is to provide a means of specifying the functionality of a data-driven system using concepts and

terminology which are easily assimilated by applications engineers who maynot be familiar with conventional

programming languages.

BS EN 50128:2011
- 125 - EN 50128:2011

Description

An application specific language typically combines control constructs which are similar to conventional high-

level programming languageswith operators which are specific to the type of system.

The technique is suitable where Boolean decisions need to be specified, but may also be applicable
elsewhere.

Advantage:Flexibility, allowing data to be produced for unusual circumstances which may not have been

foreseen whenthe system wasoriginally designed.

D.70 UML (Unified Modeling Language)

Aim

To represent software programs andrelated artefacts in a mannerthat allows complexity reduction by means
of abstraction. By allowing modelling of an existing or planned design in termsof a variety of diagram types,
UML facilitates assessmentof the key characteristics of the design on basis of representations at appropriate
levels of detail. UML is frequently used in so-called model-driven development, supported by commercial
products. This developmentstyle aims at improving the quality of the software and the productivity of the
developersby the useof high-level modelling languages.

Description

UMLis a standardized general-purpose modelling language, originating from the use of graphically oriented

software specification languages and object-oriented programming languages.Building onthis tradition, UML
reuses many of the concepts and methods of its predecessors. The models are written in terms of one or

more diagram types, classified as structure diagrams and behaviour diagrams,the latter also comprising four
diagram typesclassified as interaction diagrams.

Structure diagrams

e Package diagrams: Show the contents of and relationships betweendifferent packages, each
containing related model elements.

e Class diagrams:Specify object types with their different features and their relationships with other

object types, based on an adaption oftraditional entity-relationship diagrams.

e Object diagrams: Show howdifferent objects (class instances) are related to each other.

e Composite structure diagrams: Showtheinternal structure of a classifier (such as a class or
component) andits interaction points to other parts of the system.

e Componentdiagrams: Show the components that composethe system, their interrelationships,
interactions and external interfaces.

e Deployment diagrams: Specify how softwareis distributed across an execution platform.

Behaviour diagrams

e Activity diagrams: Describe algorithmic behaviours, using an adaption of traditional flowcharts that
allows modelling of data transfer and concurrent execution.

e State machine diagrams: Describe event-driven behaviour by meansoffinite state machines
(statecharts).

e® Use case diagrams: Model actors interacting with the system to achieve specific use cases.

BS EN 50128:2011

EN 50128:2011 - 126 -

e Interaction diagrams (communication diagrams, interaction overview diagrams, sequence diagrams,

timing diagrams): Describe scenarios comprising activities performed by communicating objects.

While UML is a generic modelling language, domain-specific interpretations are made possible by meansof

profiles. By refining standard UML concepts,profiles makeit possible to make suchinterpretations by using

the extensions defined in the profile. In this way, UML is used as a basis for defining domain-specific

languages.

D.71 Domain specific languages

Aim

To represent software programsandrelated artefacts in a languagetailored to a particular domain.

Description

A domain specific language (DSL) is a programming, specification or modelling language created specifically

to solve problemsin a particular application domain or problem domain,or with a particular technique. The

language is based on concepts and features relevant to this domain. Domain specific languages are also

known as special-purpose languages, in contrast to general-purpose programming languages or modelling

languageslike Java and UML.

Oneof the important benefits of domain specific languagesis the possibility to represent and solve problems

within a particular domain without the need for knowledge about general programming, specification or

modelling. As a consequence, programs,specifications or models can be producedat a higherlevel, possibly

by the end-user. By providing constructs tailored to this domain, and possibly means for automated code

generation, a DSL generally also increases the productivity of the programmerand the quality of the resulting

product. The code generationis typically implemented as an application generator using the DSL asinput.

EN 50159

EN 61131-3:2003

EN 61158-2:2010

BS EN 50128:2011
- 127 - EN 50128:2011

Bibliography

Railway applications - Communication, signalling and processing systems — Safety-
related communication in transmission systems

Programmablecontrollers — Part 3: Programming languages(IEC 61131-3:2003)

Industrial communication networks — Fieldbus specifications — Part 2: Physical layer
specification and service definition (IEC 61158-2:2010)

This page deliberately left blank

This page deliberately left blank

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British StandardsInstitution (BSI)
BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

Aboutus
Webring together business, industry, government, consumers, innovators

and others to shape their combined experience and expertise inte standards

-based solutions

The knowledge embodied in our standards has been carefully assembled in

a depenaable ‘omat and refined through our open consultation process.

Organizationsofall sizes and across all sectors choose standards to help

them achieve their goals.

Information on standards

We can provide you with the knowledgethat your organization needs
to succeed. Find out more about British Standards byvisiting our website at

bsigroup.com/standardsor contacting our Customer Services team or

Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British

and adopted Europeanandinternational standards. through our website at

bsigroup.com/shop, where hard copies can also be purchased

If you need international and foreign standards from other Standards Development

Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our rangeof subscription services are designed to make using standards

easier for you. For further information on oursubscription products go to

bsigroup.com/subscriptions.

With British Standards Online (BSOL) you'll have instant access to over 55,000

British and adopted European andinternational standards from your desktop.

It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial

discounts on the purchase price of standards, both in single copy and subscription

format, by becoming a BSI Subscribing Member.

‘PLUSis an updating service exclusive to BSI Subscribing Members. You will

automatically receive the latest hard copy of your standards when they're

revised or replaced.

To find out more about becoming a BS! Subscribing Memberana the benefits

of membership, pleasevisit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards

publications on yourintranet. Licences can cover as few or as many users as you

wish. With updates supplied as soon as they're available, you can be sure your

documentationis current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

bsi.

Revisions a
Our British Standards and other publications are updated by amendmentorrevision.

Wecontinualy improve the quality of cur oroducts and services to bene*t your

zusıress If you find an naccuracy o* amb gu ty within a 8r tis) Standard o° other

BSI publication please inform the Knowledge Centre

Copyright
All the data, software and documentation set outin all British Standards and

other BSI publications are the property of and copyrighted by BSI, or some person

or entity that owns copyright in the information used (such as the international

standardization bodies) and has formally licensed such information to BSI for

commercial publication and use. Except as permitted under the Copyright, Designs

and Patents Act 1988 no extract may be reproduced,storedin a retrieval system

or transmitted in any form or by any means electronic, photocopying, recording

or otherwise — without prior written permission from BSI. Details and advice can

be obtained from the Copyright & Licensing Department.

Useful Contacts:

CustomerServices

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com

Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070

Email: copyright@bsigroup.com

..making excellence a habit’

