lh-l4v/lib/Aligned.thy

906 lines
27 KiB
Plaintext
Raw Normal View History

2014-07-14 19:32:44 +00:00
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory Aligned
imports WordLib MoreDivides WordSetup
begin
lemma is_aligned_mask: "(is_aligned w n) = (w && mask n = 0)"
unfolding is_aligned_def by (rule and_mask_dvd_nat)
lemma list_of_false:
"True \<notin> set xs \<Longrightarrow> xs = replicate (length xs) False"
by (induct xs, simp_all)
lemma eq_zero_set_bl: "(w = 0) = (True \<notin> set (to_bl w))"
apply (subst word_bl.Rep_inject[symmetric])
apply (subst to_bl_0)
apply (rule iffI)
apply clarsimp
apply (drule list_of_false)
apply simp
done
lemmas and_bang = word_and_nth
lemma diff_diff_less: "(i < m - (m - (n :: nat))) = (i < m \<and> i < n)"
apply (case_tac "n \<le> m")
apply fastforce+
done
lemma is_aligned_to_bl:
"is_aligned (w :: 'a :: len word) n = (True \<notin> set (drop (size w - n) (to_bl w)))"
apply (simp add: is_aligned_mask eq_zero_set_bl)
apply (clarsimp simp: in_set_conv_nth word_size)
apply (simp add: to_bl_nth word_size cong: conj_cong)
apply (simp add: diff_diff_less)
apply safe
apply (case_tac "n \<le> len_of TYPE('a)")
prefer 2
apply (rule_tac x=i in exI)
apply clarsimp
apply (subgoal_tac "\<exists>j < len_of TYPE('a). j < n \<and> len_of TYPE('a) - n + j = i")
apply (erule exE)
apply (rule_tac x=j in exI)
apply clarsimp
apply (thin_tac "w !! ?t")
apply (rule_tac x="i + n - len_of TYPE('a)" in exI)
apply clarsimp
apply arith
apply (rule_tac x="len_of TYPE('a) - n + i" in exI)
apply clarsimp
apply arith
done
lemma unat_power_lower [simp]:
assumes nv: "n < len_of TYPE('a::len)"
shows "unat ((2::'a::len word) ^ n) = 2 ^ n"
apply (subst word_unat_power)
apply (subst unat_of_nat)
apply (subst mod_less)
apply (simp add: nv)
apply simp
done
lemma power_overflow:
"n \<ge> len_of TYPE('a) \<Longrightarrow> 2 ^ n = (0 :: 'a::len word)"
apply (subgoal_tac "\<exists>m. n = (len_of TYPE ('a)) + m")
apply safe
apply (simp only: power_add word_pow_0)
apply simp
apply (rule exI[where x="n - len_of TYPE ('a)"])
apply simp
done
lemma is_alignedI [intro?]:
fixes x::"'a::len word"
assumes xv: "x = 2 ^ n * k"
shows "is_aligned x n"
proof cases
assume nv: "n < len_of TYPE('a)"
show ?thesis
unfolding is_aligned_def
proof (rule dvdI [where k = "unat k mod 2 ^ (len_of TYPE('a) - n)"])
from xv
have "unat x = (unat (2::word32) ^ n * unat k) mod 2 ^ len_of TYPE('a)"
using nv
by (subst (asm) word_unat.Rep_inject [symmetric], simp,
subst unat_word_ariths, simp)
also have "\<dots> = 2 ^ n * (unat k mod 2 ^ (len_of TYPE('a) - n))" using nv
by (simp add: mult_mod_right power_add [symmetric] add_diff_inverse)
finally show "unat x = 2 ^ n * (unat k mod 2 ^ (len_of TYPE('a) - n))" .
qed
next
assume "\<not> n < len_of TYPE('a)"
with xv
show ?thesis by (simp add: not_less power_overflow is_aligned_def)
qed
lemma is_aligned_weaken:
"\<lbrakk> is_aligned w x; x \<ge> y \<rbrakk> \<Longrightarrow> is_aligned w y"
apply (simp add: is_aligned_def)
apply (rule dvd_trans)
prefer 2
apply assumption
apply (simp add: le_imp_power_dvd)
done
lemma nat_power_less_diff:
assumes lt: "(2::nat) ^ n * q < 2 ^ m"
shows "q < 2 ^ (m - n)"
using lt
proof (induct n arbitrary: m)
case 0
thus ?case by simp
next
case (Suc n)
have ih: "\<And>m. 2 ^ n * q < 2 ^ m \<Longrightarrow> q < 2 ^ (m - n)"
and prem: "2 ^ Suc n * q < 2 ^ m" by fact+
show ?case
proof (cases m)
case 0
thus ?thesis using Suc by simp
next
case (Suc m')
thus ?thesis using prem
apply simp
apply (rule ih)
apply (simp add: mult_ac)
done
qed
qed
lemma is_alignedE_pre:
fixes w::"'a::len word"
assumes aligned: "is_aligned w n"
shows rl: "\<exists>q. w = 2 ^ n * (of_nat q) \<and> q < 2 ^ (len_of TYPE('a) - n)"
proof -
from aligned obtain q where wv: "unat w = 2 ^ n * q"
unfolding is_aligned_def ..
show ?thesis
proof (rule exI, intro conjI)
show "q < 2 ^ (len_of TYPE('a) - n)"
proof (rule nat_power_less_diff)
have "unat w < 2 ^ size w" unfolding word_size ..
hence "unat w < 2 ^ len_of TYPE('a)" by simp
with wv show "2 ^ n * q < 2 ^ len_of TYPE('a)" by simp
qed
have r: "of_nat (2 ^ n) = (2::word32) ^ n"
by (induct n) simp+
from wv have "of_nat (unat w) = of_nat (2 ^ n * q)" by simp
hence "w = of_nat (2 ^ n * q)" by (subst word_unat.Rep_inverse [symmetric])
thus "w = 2 ^ n * (of_nat q)" by (simp add: r)
qed
qed
lemma is_alignedE:
"\<lbrakk>is_aligned (w::'a::len word) n;
\<And>q. \<lbrakk>w = 2 ^ n * (of_nat q); q < 2 ^ (len_of TYPE('a) - n)\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
by (auto dest: is_alignedE_pre)
lemma is_aligned_replicate:
fixes w::"'a::len word"
assumes aligned: "is_aligned w n"
and nv: "n \<le> len_of TYPE('a)"
shows "to_bl w = (take (len_of TYPE('a) - n) (to_bl w)) @ replicate n False"
proof -
from nv have rl: "\<And>q. q < 2 ^ (len_of TYPE('a) - n) \<Longrightarrow>
to_bl (2 ^ n * (of_nat q :: 'a word)) =
drop n (to_bl (of_nat q :: 'a word)) @ replicate n False"
apply (subst shiftl_t2n [symmetric])
apply (subst bl_shiftl)
apply (simp add: min_def word_size)
done
show ?thesis using aligned
by (auto simp: rl elim: is_alignedE)
qed
lemma is_aligned_drop:
fixes w::"'a::len word"
assumes "is_aligned w n" "n \<le> len_of TYPE('a)"
shows "drop (len_of TYPE('a) - n) (to_bl w) = replicate n False"
proof -
have "to_bl w = take (len_of TYPE('a) - n) (to_bl w) @ replicate n False"
by (rule is_aligned_replicate) fact+
hence "drop (len_of TYPE('a) - n) (to_bl w) = drop (len_of TYPE('a) - n) \<dots>" by simp
also have "\<dots> = replicate n False" by simp
finally show ?thesis .
qed
lemma less_is_drop_replicate:
fixes x::"'a::len word"
assumes lt: "x < 2 ^ n"
shows "to_bl x = replicate (len_of TYPE('a) - n) False @ drop (len_of TYPE('a) - n) (to_bl x)"
proof -
show ?thesis
apply (subst less_mask_eq [OF lt, symmetric])
apply (subst bl_and_mask)
apply simp
done
qed
lemma is_aligned_add_conv:
fixes off::"'a::len word"
assumes aligned: "is_aligned w n"
and offv: "off < 2 ^ n"
shows "to_bl (w + off) =
(take (len_of TYPE('a) - n) (to_bl w)) @ (drop (len_of TYPE('a) - n) (to_bl off))"
proof cases
assume nv: "n \<le> len_of TYPE('a)"
show ?thesis
proof (subst aligned_bl_add_size, simp_all only: word_size)
show "drop (len_of TYPE('a) - n) (to_bl w) = replicate n False"
by (subst is_aligned_replicate [OF aligned nv]) (simp add: word_size)
from offv show "take (len_of TYPE('a) - n) (to_bl off) =
replicate (len_of TYPE('a) - n) False"
by (subst less_is_drop_replicate, assumption) simp
qed fact
next
assume "\<not> n \<le> len_of TYPE('a)"
with offv show ?thesis by (simp add: power_overflow)
qed
lemma nat_less_power_trans:
fixes n :: nat
assumes nv: "n < 2 ^ (m - k)"
and kv: "k \<le> m"
shows "2 ^ k * n < 2 ^ m"
proof (rule order_less_le_trans)
show "2 ^ k * n < 2 ^ k * 2 ^ (m - k)"
by (rule mult_less_mono2 [OF nv zero_less_power]) simp
show "(2::nat) ^ k * 2 ^ (m - k) \<le> 2 ^ m" using nv kv
by (subst power_add [symmetric]) simp
qed
lemma aligned_add_aligned:
fixes x::"'a::len word"
assumes aligned1: "is_aligned x n"
and aligned2: "is_aligned y m"
and lt: "m \<le> n"
shows "is_aligned (x + y) m"
proof cases
assume nlt: "n < len_of TYPE('a)"
show ?thesis
unfolding is_aligned_def dvd_def
proof -
from aligned2 obtain q2 where yv: "y = 2 ^ m * of_nat q2"
and q2v: "q2 < 2 ^ (len_of TYPE('a) - m)"
by (auto elim: is_alignedE)
from lt obtain k where kv: "m + k = n" by (auto simp: le_iff_add)
with aligned1 obtain q1 where xv: "x = 2 ^ (m + k) * of_nat q1"
and q1v: "q1 < 2 ^ (len_of TYPE('a) - (m + k))"
by (auto elim: is_alignedE)
have l1: "2 ^ (m + k) * q1 < 2 ^ len_of TYPE('a)"
by (rule nat_less_power_trans [OF q1v])
(subst kv, rule order_less_imp_le [OF nlt])
have l2: "2 ^ m * q2 < 2 ^ len_of TYPE('a)"
by (rule nat_less_power_trans [OF q2v],
rule order_less_imp_le [OF order_le_less_trans])
fact+
have "x = of_nat (2 ^ (m + k) * q1)" using xv
by simp
moreover have "y = of_nat (2 ^ m * q2)" using yv
by simp
ultimately have upls: "unat x + unat y = 2 ^ m * (2 ^ k * q1 + q2)"
apply -
apply (erule ssubst)+
apply (subst unat_of_nat)
apply (subst mod_less [OF l1])
apply (subst unat_of_nat)
apply (subst mod_less [OF l2])
apply (subst power_add)
apply (subst add_mult_distrib2)
apply simp
done
(* (2 ^ k * q1 + q2) *)
show "\<exists>d. unat (x + y) = 2 ^ m * d"
proof (cases "unat x + unat y < 2 ^ len_of TYPE('a)")
case True
have "unat (x + y) = unat x + unat y"
by (subst unat_plus_if', rule if_P) fact
also have "\<dots> = 2 ^ m * (2 ^ k * q1 + q2)" by (rule upls)
finally show ?thesis ..
next
case False
hence "unat (x + y) = (unat x + unat y) mod 2 ^ len_of TYPE('a)"
by (subst unat_word_ariths(1)) simp
also have "\<dots> = (2 ^ m * (2 ^ k * q1 + q2)) mod 2 ^ len_of TYPE('a)"
by (subst upls, rule refl)
also have "\<dots> = 2 ^ m * ((2 ^ k * q1 + q2) mod 2 ^ (len_of TYPE('a) - m))"
apply (subst mult_mod_right)
apply (subst power_add [symmetric])
apply (subst le_add_diff_inverse
[OF order_trans[OF lt order_less_imp_le[OF nlt]]])
apply (rule refl)
done
finally show ?thesis ..
qed
qed
next
assume "\<not> n < len_of TYPE('a)"
with assms
show ?thesis by (simp add: not_less power_overflow is_aligned_mask mask_def)
qed
corollary aligned_sub_aligned:
"\<lbrakk>is_aligned (x::'a::len word) n; is_aligned y m; m \<le> n\<rbrakk>
\<Longrightarrow> is_aligned (x - y) m"
apply (simp add: diff_def)
apply (erule aligned_add_aligned, simp_all)
apply (erule is_alignedE)
apply (rule_tac k="- of_nat q" in is_alignedI)
apply simp
done
lemma is_aligned_shift:
fixes k::"'a::len word"
shows "is_aligned (k << m) m"
proof cases
assume mv: "m < len_of TYPE('a)"
from mv obtain q where mq: "m + q = len_of TYPE('a)" and "0 < q"
by (auto dest: less_imp_add_positive)
have "(2\<Colon>nat) ^ m dvd unat (k << m)"
proof
have kv: "(unat k div 2 ^ q) * 2 ^ q + unat k mod 2 ^ q = unat k"
by (rule mod_div_equality)
have "unat (k << m) = unat (2 ^ m * k)" by (simp add: shiftl_t2n)
also have "\<dots> = (2 ^ m * unat k) mod (2 ^ len_of TYPE('a))" using mv
by (subst unat_word_ariths(2))+ simp
also have "\<dots> = 2 ^ m * (unat k mod 2 ^ q)"
by (subst mq [symmetric], subst power_add, subst mod_mult2_eq) simp
finally show "unat (k << m) = 2 ^ m * (unat k mod 2 ^ q)" .
qed
thus ?thesis by (unfold is_aligned_def)
next
assume "\<not> m < len_of TYPE('a)"
thus ?thesis
by (simp add: not_less power_overflow is_aligned_mask mask_def
shiftl_zero_size word_size)
qed
lemma word_mod_by_0: "k mod (0::'a::len word) = k"
by (simp add: word_arith_nat_mod)
lemma aligned_mod_eq_0:
fixes p::"'a::len word"
assumes al: "is_aligned p sz"
shows "p mod 2 ^ sz = 0"
proof cases
assume szv: "sz < len_of TYPE('a)"
with al
show ?thesis
unfolding is_aligned_def
apply -
apply (rule word_unat.Rep_eqD)
apply (subst unat_mod)
apply (simp add: dvd_eq_mod_eq_0)
done
next
assume "\<not> sz < len_of TYPE('a)"
with al show ?thesis
by (simp add: not_less power_overflow is_aligned_mask mask_def
word_mod_by_0)
qed
lemma is_aligned_triv: "is_aligned (2 ^ n ::'a::len word) n"
by (rule is_alignedI [where k = 1], simp)
lemma is_aligned_mult_triv1: "is_aligned (2 ^ n * x ::'a::len word) n"
by (rule is_alignedI [OF refl])
lemma is_aligned_mult_triv2: "is_aligned (x * 2 ^ n ::'a::len word) n"
by (subst mult_commute, simp add: is_aligned_mult_triv1)
lemma word_power_less_0_is_0:
fixes x :: "'a::len word"
shows "x < a ^ 0 \<Longrightarrow> x = 0" by simp
lemma nat_add_offset_less:
fixes x :: nat
assumes yv: "y < 2 ^ n"
and xv: "x < 2 ^ m"
and mn: "sz = m + n"
shows "x * 2 ^ n + y < 2 ^ sz"
proof (subst mn)
from yv obtain qy where "y + qy = 2 ^ n" and "0 < qy"
by (auto dest: less_imp_add_positive)
have "x * 2 ^ n + y < x * 2 ^ n + 2 ^ n" by simp fact+
also have "\<dots> = (x + 1) * 2 ^ n" by simp
also have "\<dots> \<le> 2 ^ (m + n)" using xv
by (subst power_add) (rule mult_le_mono1, simp)
finally show "x * 2 ^ n + y < 2 ^ (m + n)" .
qed
lemma is_aligned_no_wrap:
fixes off :: "'a::len word"
fixes ptr :: "'a::len word"
assumes al: "is_aligned ptr sz"
and off: "off < 2 ^ sz"
shows "unat ptr + unat off < 2 ^ len_of TYPE('a)"
proof -
have szv: "sz < len_of TYPE('a)"
apply (rule ccontr)
using off
by (clarsimp simp: not_less p2_eq_0[THEN iffD2])
from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and
qv: "q < 2 ^ (len_of TYPE('a) - sz)" by (auto elim: is_alignedE)
show ?thesis
proof (cases "sz = 0")
case True
thus ?thesis using off ptrq qv
by clarsimp
next
case False
hence sne: "0 < sz" ..
show ?thesis
proof -
have uq: "unat (of_nat q ::'a::len word) = q"
apply (subst unat_of_nat)
apply (rule mod_less)
apply (rule order_less_trans [OF qv])
apply (rule power_strict_increasing [OF diff_less [OF sne]])
apply (simp_all)
done
have uptr: "unat ptr = 2 ^ sz * q"
apply (subst ptrq)
apply (subst iffD1 [OF unat_mult_lem])
apply (subst unat_power_lower [OF szv])
apply (subst uq)
apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]])
apply (subst uq)
apply (subst unat_power_lower [OF szv])
apply simp
done
show "unat ptr + unat off < 2 ^ len_of TYPE('a)" using szv
apply (subst uptr)
apply (subst mult_commute, rule nat_add_offset_less [OF _ qv])
apply (rule order_less_le_trans [OF unat_mono [OF off] order_eq_refl])
apply simp_all
done
qed
qed
qed
lemma is_aligned_no_wrap':
fixes ptr :: "'a::len word"
assumes al: "is_aligned ptr sz"
and off: "off < 2 ^ sz"
shows "ptr \<le> ptr + off"
by (subst no_plus_overflow_unat_size, subst word_size, rule is_aligned_no_wrap) fact+
lemma is_aligned_no_overflow':
fixes p :: "'a::len word"
assumes al: "is_aligned p n"
shows "p \<le> p + (2 ^ n - 1)"
proof cases
assume "n<len_of TYPE('a)"
with al
have "2^n - (1::'a::len word) < 2^n"
by (simp add: word_less_nat_alt unat_sub_if_size)
with al
show ?thesis by (rule is_aligned_no_wrap')
next
assume "\<not> n<len_of TYPE('a)"
with al
show ?thesis
by (simp add: not_less power_overflow is_aligned_mask mask_2pm1)
qed
lemma is_aligned_no_overflow:
"is_aligned ptr sz \<Longrightarrow> ptr \<le> ptr + 2^sz - 1"
by (drule is_aligned_no_overflow') (simp add: field_simps)
lemma replicate_not_True:
"\<And>n. xs = replicate n False \<Longrightarrow> True \<notin> set xs"
by (induct xs) auto
lemma is_aligned_replicateI:
"to_bl p = addr @ replicate n False \<Longrightarrow> is_aligned (p::'a::len word) n"
apply (simp add: is_aligned_to_bl word_size)
apply (subgoal_tac "length addr = len_of TYPE('a) - n")
apply (simp add: replicate_not_True)
apply (drule arg_cong [where f=length])
apply simp
done
lemma to_bl_1: "to_bl (1::'a::len word) = replicate (len_of TYPE('a) - 1) False @ [True]"
proof -
have "to_bl (1 :: 'a::len word) = to_bl (mask 1 :: 'a::len word)"
by (simp add: mask_def)
also have "\<dots> = replicate (len_of TYPE('a) - 1) False @ [True]"
apply (subst to_bl_mask)
apply (clarsimp simp add: min_def)
apply (case_tac "len_of TYPE('a)", simp)
apply simp
done
finally show ?thesis .
qed
lemma to_bl_2p:
"n < len_of TYPE('a) \<Longrightarrow>
to_bl ((2::'a::len word) ^ n) =
replicate (len_of TYPE('a) - Suc n) False @ True # replicate n False"
apply (subst shiftl_1 [symmetric])
apply (subst bl_shiftl)
apply (simp add: to_bl_1 min_def word_size)
done
lemma map_zip_replicate_False_xor:
"n = length xs \<Longrightarrow> map (\<lambda>(x, y). x = (\<not> y)) (zip xs (replicate n False)) = xs"
by (induct xs arbitrary: n, auto)
lemma drop_minus_lem:
"\<lbrakk> n \<le> length xs; 0 < n; n' = length xs \<rbrakk> \<Longrightarrow> drop (n' - n) xs = rev xs ! (n - 1) # drop (Suc (n' - n)) xs"
proof (induct xs arbitrary: n n')
case Nil thus ?case by simp
next
case (Cons y ys)
from Cons.prems
show ?case
apply simp
apply (cases "n = Suc (length ys)")
apply (simp add: nth_append)
apply (simp add: Suc_diff_le Cons.hyps nth_append)
apply clarsimp
apply arith
done
qed
lemma drop_minus:
"\<lbrakk> n < length xs; n' = length xs \<rbrakk> \<Longrightarrow> drop (n' - Suc n) xs = rev xs ! n # drop (n' - n) xs"
apply (subst drop_minus_lem)
apply simp
apply simp
apply simp
apply simp
apply (cases "length xs", simp)
apply (simp add: Suc_diff_le)
done
lemma xor_2p_to_bl:
fixes x::"'a::len word"
shows "to_bl (x xor 2^n) =
(if n < len_of TYPE('a)
then take (len_of TYPE('a)-Suc n) (to_bl x) @ (\<not>rev (to_bl x)!n) # drop (len_of TYPE('a)-n) (to_bl x)
else to_bl x)"
proof -
have x: "to_bl x = take (len_of TYPE('a)-Suc n) (to_bl x) @ drop (len_of TYPE('a)-Suc n) (to_bl x)"
by simp
show ?thesis
apply simp
apply (rule conjI)
apply (clarsimp simp: word_size)
apply (simp add: bl_word_xor map2_def to_bl_2p)
apply (subst x)
apply (subst zip_append)
apply simp
apply (simp add: map_append)
apply (simp add: map_zip_replicate_False_xor drop_minus)
apply clarsimp
apply (rule word_eqI)
apply (simp add: word_size nth_w2p)
done
qed
lemma aligned_add_xor:
assumes al: "is_aligned (x::'a::len word) n'" and le: "n < n'"
shows "(x + 2^n) xor 2^n = x"
proof cases
assume "n' < len_of TYPE('a)"
with assms show ?thesis
apply -
apply (rule word_bl.Rep_eqD)
apply (subst xor_2p_to_bl)
apply simp
apply (subst is_aligned_add_conv, simp,
simp add: word_less_nat_alt)+
apply (simp add: to_bl_2p nth_append)
apply (cases "n' = Suc n")
apply simp
apply (subst is_aligned_replicate [where n="Suc n",
simplified, symmetric])
apply assumption
apply simp
apply (rule refl)
apply (subgoal_tac "\<not> len_of TYPE('a) - Suc n \<le> len_of TYPE('a) - n'")
prefer 2
apply arith
apply (simp add: min_def)
apply (subst replicate_Suc [symmetric])
apply (subst replicate_add [symmetric])
apply simp
apply (simp add: is_aligned_replicate [simplified, symmetric])
done
next
assume "\<not> n' < len_of TYPE('a)"
with al show ?thesis
by (simp add: is_aligned_mask mask_def not_less power_overflow)
qed
lemma is_aligned_0 [simp]:
"is_aligned p 0"
by (simp add: is_aligned_def)
lemma is_aligned_replicateD:
"\<lbrakk> is_aligned (w::'a::len word) n; n \<le> len_of TYPE('a) \<rbrakk>
\<Longrightarrow> \<exists>xs. to_bl w = xs @ replicate n False
\<and> length xs = size w - n"
apply (subst is_aligned_replicate, assumption+)
apply (rule exI, rule conjI, rule refl)
apply (simp add: word_size)
done
lemma is_aligned_add_mult_multI:
fixes p :: "'a::len word"
shows "\<lbrakk>is_aligned p m; n \<le> m; n' = n\<rbrakk> \<Longrightarrow> is_aligned (p + x * 2 ^ n * z) n'"
apply (erule aligned_add_aligned)
apply (auto intro: is_alignedI [where k="x*z"])
done
lemma is_aligned_add_multI:
fixes p :: "'a::len word"
shows "\<lbrakk>is_aligned p m; n \<le> m; n' = n\<rbrakk> \<Longrightarrow> is_aligned (p + x * 2 ^ n) n'"
apply (erule aligned_add_aligned)
apply (auto intro: is_alignedI [where k="x"])
done
lemma unat_of_nat_len:
"x < 2 ^ len_of TYPE('a) \<Longrightarrow> unat (of_nat x :: 'a::len word) = x"
by (simp add: word_size unat_of_nat)
lemma is_aligned_no_wrap''':
fixes ptr :: "'a::len word"
shows"\<lbrakk> is_aligned ptr sz; sz < len_of TYPE('a); off < 2 ^ sz \<rbrakk>
\<Longrightarrow> unat ptr + off < 2 ^ len_of TYPE('a)"
apply (drule is_aligned_no_wrap[where off="of_nat off"])
apply (simp add: word_less_nat_alt)
apply (erule order_le_less_trans[rotated])
apply (subst unat_of_nat)
apply (rule mod_le_dividend)
apply (subst(asm) unat_of_nat_len)
apply (erule order_less_trans)
apply (erule power_strict_increasing)
apply simp
apply assumption
done
lemma is_aligned_get_word_bits:
fixes p :: "'a::len word"
shows "\<lbrakk> is_aligned p n; \<lbrakk> is_aligned p n; n < len_of TYPE('a) \<rbrakk> \<Longrightarrow> P;
\<lbrakk> p = 0; n \<ge> len_of TYPE('a) \<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
apply (cases "n < len_of TYPE('a)")
apply simp
apply simp
apply (erule meta_mp)
apply (clarsimp simp: is_aligned_mask mask_def power_add
power_overflow)
done
lemma rsubst:
"\<lbrakk> P s; s = t \<rbrakk> \<Longrightarrow> P t"
by simp
lemma aligned_small_is_0:
"\<lbrakk> is_aligned x n; x < 2 ^ n \<rbrakk> \<Longrightarrow> x = 0"
apply (erule is_aligned_get_word_bits)
apply (frule is_aligned_add_conv [rotated, where w=0])
apply (simp add: is_aligned_def)
apply simp
apply (drule is_aligned_replicateD)
apply simp
apply (clarsimp simp: word_size)
apply (subst (asm) replicate_add [symmetric])
apply (drule arg_cong[where f="of_bl :: bool list \<Rightarrow> 'a::len word"])
apply simp
apply (simp only: replicate.simps[symmetric, where x=False]
drop_replicate)
done
corollary is_aligned_less_sz:
"\<lbrakk>is_aligned a sz; a \<noteq> 0\<rbrakk> \<Longrightarrow> \<not> a < 2 ^ sz"
by (rule notI, drule(1) aligned_small_is_0, erule(1) notE)
lemma aligned_at_least_t2n_diff:
"\<lbrakk>is_aligned x n; is_aligned y n; x < y\<rbrakk> \<Longrightarrow> x \<le> y - 2 ^ n"
apply (erule is_aligned_get_word_bits[where p=y])
apply (rule ccontr)
apply (clarsimp simp: linorder_not_le)
apply (subgoal_tac "y - x = 0")
apply clarsimp
apply (rule aligned_small_is_0)
apply (erule(1) aligned_sub_aligned)
apply simp
apply unat_arith
apply simp
done
lemma word_sub_1_le:
"x \<noteq> 0 \<Longrightarrow> x - 1 \<le> (x :: ('a :: len) word)"
apply (subst no_ulen_sub)
apply simp
apply (cases "uint x = 0")
apply (simp add: uint_0_iff)
apply (insert uint_ge_0[where x=x])
apply arith
done
lemma is_aligned_no_overflow'':
"\<lbrakk>is_aligned x n; x + 2 ^ n \<noteq> 0\<rbrakk> \<Longrightarrow> x \<le> x + 2 ^ n"
apply (frule is_aligned_no_overflow')
apply (erule order_trans)
apply (simp add: field_simps)
apply (erule word_sub_1_le)
done
lemma is_aligned_nth:
"is_aligned p m = (\<forall>n < m. \<not>p !! n)"
apply (clarsimp simp: is_aligned_mask bang_eq word_size)
apply (rule iffI)
apply clarsimp
apply (case_tac "n < size p")
apply (simp add: word_size)
apply (drule test_bit_size)
apply simp
apply clarsimp
done
lemma range_inter:
"({a..b} \<inter> {c..d} = {}) = (\<forall>x. \<not>(a \<le> x \<and> x \<le> b \<and> c \<le> x \<and> x \<le> d))"
by auto
lemma aligned_inter_non_empty:
"\<lbrakk> {p..p + (2 ^ n - 1)} \<inter> {p..p + 2 ^ m - 1} = {};
is_aligned p n; is_aligned p m\<rbrakk> \<Longrightarrow> False"
apply (clarsimp simp only: range_inter)
apply (erule_tac x=p in allE)
apply simp
apply (erule impE)
apply (erule is_aligned_no_overflow')
apply (erule notE)
apply (erule is_aligned_no_overflow)
done
lemma not_aligned_mod_nz:
assumes al: "\<not> is_aligned a n"
shows "a mod 2 ^ n \<noteq> 0"
proof cases
assume "n < len_of TYPE('a)"
with al
show ?thesis
apply (simp add: is_aligned_def dvd_eq_mod_eq_0 word_arith_nat_mod
del: word_neq_0_conv)
apply (erule of_nat_neq_0)
apply (rule order_less_trans)
apply (rule mod_less_divisor)
apply simp
apply simp
done
next
assume "\<not> n < len_of TYPE('a)"
with al
show ?thesis
by (simp add: is_aligned_mask mask_def not_less power_overflow
word_less_nat_alt word_mod_by_0)
qed
lemma nat_add_offset_le:
fixes x :: nat
assumes yv: "y \<le> 2 ^ n"
and xv: "x < 2 ^ m"
and mn: "sz = m + n"
shows "x * 2 ^ n + y \<le> 2 ^ sz"
proof (subst mn)
from yv obtain qy where "y + qy = 2 ^ n"
by (auto simp: le_iff_add)
have "x * 2 ^ n + y \<le> x * 2 ^ n + 2 ^ n"
using yv xv by simp
also have "\<dots> = (x + 1) * 2 ^ n" by simp
also have "\<dots> \<le> 2 ^ (m + n)" using xv
by (subst power_add) (rule mult_le_mono1, simp)
finally show "x * 2 ^ n + y \<le> 2 ^ (m + n)" .
qed
lemma is_aligned_no_wrap_le:
fixes ptr::"'a::len word"
assumes al: "is_aligned ptr sz"
and szv: "sz < len_of TYPE('a)"
and off: "off \<le> 2 ^ sz"
shows "unat ptr + off \<le> 2 ^ len_of TYPE('a)"
proof -
from al obtain q where ptrq: "ptr = 2 ^ sz * of_nat q" and
qv: "q < 2 ^ (len_of TYPE('a) - sz)" by (auto elim: is_alignedE)
show ?thesis
proof (cases "sz = 0")
case True
thus ?thesis using off ptrq qv
apply (clarsimp)
apply (erule le_SucE)
apply (simp add: unat_of_nat)
apply (simp add: less_eq_Suc_le [symmetric] unat_of_nat)
done
next
case False
hence sne: "0 < sz" ..
show ?thesis
proof -
have uq: "unat (of_nat q :: 'a word) = q"
apply (subst unat_of_nat)
apply (rule mod_less)
apply (rule order_less_trans [OF qv])
apply (rule power_strict_increasing [OF diff_less [OF sne]])
apply simp_all
done
have uptr: "unat ptr = 2 ^ sz * q"
apply (subst ptrq)
apply (subst iffD1 [OF unat_mult_lem])
apply (subst unat_power_lower [OF szv])
apply (subst uq)
apply (rule nat_less_power_trans [OF qv order_less_imp_le [OF szv]])
apply (subst uq)
apply (subst unat_power_lower [OF szv])
apply simp
done
show "unat ptr + off \<le> 2 ^ len_of TYPE('a)" using szv
apply (subst uptr)
apply (subst mult_commute, rule nat_add_offset_le [OF off qv])
apply simp
done
qed
qed
qed
lemma is_aligned_neg_mask:
"m \<le> n \<Longrightarrow> is_aligned (x && ~~ mask n) m"
apply (simp add: and_not_mask)
apply (erule is_aligned_weaken[rotated])
apply (rule is_aligned_shift)
done
lemma unat_minus:
"unat (- (x :: ('a :: len) word))
= (if x = 0 then 0 else (2 ^ size x) - unat x)"
using unat_sub_if_size[where x="2 ^ size x" and y=x]
apply (clarsimp simp: word_size word_pow_0)
apply (simp add: unat_eq_0)
done
lemma is_aligned_minus:
"is_aligned p n \<Longrightarrow> is_aligned (- p) n"
apply (clarsimp simp: is_aligned_def unat_minus word_size word_neq_0_conv)
apply (rule dvd_diff_nat, simp_all)
apply (rule le_imp_power_dvd)
apply (fold is_aligned_def)
apply (erule_tac Q="0<p" in contrapos_pp)
apply (clarsimp simp add: is_aligned_mask mask_def power_overflow)
done
end