lh-l4v/lib/Word_Lib/Word_Lemmas_64.thy

282 lines
9.2 KiB
Plaintext
Raw Normal View History

2016-05-19 06:21:17 +00:00
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
section "Lemmas for Word Length 64"
theory Word_Lemmas_64
imports
Word_Lemmas
Word_Setup_64
begin
lemma ucast_8_64_inj:
"inj (ucast :: 8 word \<Rightarrow> 64 word)"
by (rule down_ucast_inj) (clarsimp simp: is_down_def target_size source_size)
lemma upto_2_helper:
"{0..<2 :: 64 word} = {0, 1}"
by (safe; simp) unat_arith
lemmas upper_bits_unset_is_l2p_64 = upper_bits_unset_is_l2p [where 'a=64, folded word_bits_def]
lemmas le_2p_upper_bits_64 = le_2p_upper_bits [where 'a=64, folded word_bits_def]
lemmas le2p_bits_unset_64 = le2p_bits_unset[where 'a=64, folded word_bits_def]
lemma word_bits_len_of:
"len_of TYPE (64) = word_bits"
by (simp add: word_bits_conv)
lemmas unat_power_lower64' = unat_power_lower[where 'a=64]
lemmas unat_power_lower64 [simp] = unat_power_lower64'[unfolded word_bits_len_of]
lemmas word64_less_sub_le' = word_less_sub_le[where 'a = 64]
lemmas word64_less_sub_le[simp] = word64_less_sub_le' [folded word_bits_def]
lemma word_bits_size:
"size (w::word64) = word_bits"
by (simp add: word_bits_def word_size)
lemmas word64_power_less_1' = word_power_less_1[where 'a = 64]
lemmas word64_power_less_1[simp] = word64_power_less_1'[folded word_bits_def]
lemma of_nat64_0:
"\<lbrakk>of_nat n = (0::word64); n < 2 ^ word_bits\<rbrakk> \<Longrightarrow> n = 0"
by (erule of_nat_0, simp add: word_bits_def)
lemma unat_mask_2_less_4:
"unat (p && mask 2 :: word64) < 4"
apply (rule unat_less_helper)
apply (rule order_le_less_trans, rule word_and_le1)
apply (simp add: mask_def)
done
lemmas unat_of_nat64' = unat_of_nat_eq[where 'a=64]
lemmas unat_of_nat64 = unat_of_nat64'[unfolded word_bits_len_of]
lemmas word_power_nonzero_64 = word_power_nonzero [where 'a=64, folded word_bits_def]
lemmas unat_mult_simple = iffD1 [OF unat_mult_lem [where 'a = 64, unfolded word_bits_len_of]]
lemmas div_power_helper_64 = div_power_helper [where 'a=64, folded word_bits_def]
lemma n_less_word_bits:
"(n < word_bits) = (n < 64)"
by (simp add: word_bits_def)
lemmas of_nat_less_pow_64 = of_nat_power [where 'a=64, folded word_bits_def]
lemma lt_word_bits_lt_pow:
"sz < word_bits \<Longrightarrow> sz < 2 ^ word_bits"
by (simp add: word_bits_conv)
lemma unat_less_word_bits:
fixes y :: word64
shows "x < unat y \<Longrightarrow> x < 2 ^ word_bits"
unfolding word_bits_def
by (rule order_less_trans [OF _ unat_lt2p])
lemmas unat_mask_word64' = unat_mask[where 'a=64]
lemmas unat_mask_word64 = unat_mask_word64'[folded word_bits_def]
lemmas word64_minus_one_le' = word_minus_one_le[where 'a=64]
lemmas word64_minus_one_le = word64_minus_one_le'[simplified]
lemma ucast_not_helper:
fixes a::word8
assumes a: "a \<noteq> 0xFF"
shows "ucast a \<noteq> (0xFF::word64)"
proof
assume "ucast a = (0xFF::word64)"
also
have "(0xFF::word64) = ucast (0xFF::word8)" by simp
finally
show False using a
apply -
apply (drule up_ucast_inj, simp)
apply simp
done
qed
lemma less_4_cases:
"(x::word64) < 4 \<Longrightarrow> x=0 \<or> x=1 \<or> x=2 \<or> x=3"
apply clarsimp
apply (drule word_less_cases, erule disjE, simp, simp)+
done
lemma unat_ucast_8_64:
fixes x :: "word8"
shows "unat (ucast x :: word64) = unat x"
unfolding ucast_def unat_def
apply (subst int_word_uint)
apply (subst mod_pos_pos_trivial)
apply simp
apply (rule lt2p_lem)
apply simp
apply simp
done
lemma if_then_1_else_0:
"((if P then 1 else 0) = (0 :: word64)) = (\<not> P)"
by simp
lemma if_then_0_else_1:
"((if P then 0 else 1) = (0 :: word64)) = (P)"
by simp
lemmas if_then_simps = if_then_0_else_1 if_then_1_else_0
lemma ucast_le_ucast_8_64:
"(ucast x \<le> (ucast y :: word64)) = (x \<le> (y :: word8))"
by (simp add: word_le_nat_alt unat_ucast_8_64)
lemma in_16_range:
"0 \<in> S \<Longrightarrow> r \<in> (\<lambda>x. r + x * (16 :: word64)) ` S"
"n - 1 \<in> S \<Longrightarrow> (r + (16 * n - 16)) \<in> (\<lambda>x :: word64. r + x * 16) ` S"
by (clarsimp simp: image_def elim!: bexI[rotated])+
lemma eq_2_64_0:
"(2 ^ 64 :: word64) = 0"
by simp
lemma x_less_2_0_1:
fixes x :: word64 shows
"x < 2 \<Longrightarrow> x = 0 \<or> x = 1"
by (rule x_less_2_0_1') auto
lemmas mask_64_max_word = max_word_mask [symmetric, where 'a=64, simplified]
lemma of_nat64_n_less_equal_power_2:
"n < 64 \<Longrightarrow> ((of_nat n)::64 word) < 2 ^ n"
by (rule of_nat_n_less_equal_power_2, clarsimp simp: word_size)
lemma word_rsplit_0:
"word_rsplit (0 :: word64) = [0, 0, 0, 0, 0, 0, 0, 0 :: word8]"
apply (simp add: word_rsplit_def bin_rsplit_def Let_def)
done
lemma unat_ucast_10_64 :
fixes x :: "10 word"
shows "unat (ucast x :: word64) = unat x"
unfolding ucast_def unat_def
apply (subst int_word_uint)
apply (subst mod_pos_pos_trivial)
apply simp
apply (rule lt2p_lem)
apply simp
apply simp
done
lemma bool_mask [simp]:
fixes x :: word64
shows "(0 < x && 1) = (x && 1 = 1)"
by (rule bool_mask') auto
lemma word64_bounds:
"- (2 ^ (size (x :: word64) - 1)) = (-9223372036854775808 :: int)"
"((2 ^ (size (x :: word64) - 1)) - 1) = (9223372036854775807 :: int)"
"- (2 ^ (size (y :: 64 signed word) - 1)) = (-9223372036854775808 :: int)"
"((2 ^ (size (y :: 64 signed word) - 1)) - 1) = (9223372036854775807 :: int)"
by (simp_all add: word_size)
lemma word_ge_min:"sint (x::64 word) \<ge> -9223372036854775808"
by (metis sint_ge word64_bounds(1) word_size)
lemmas signed_arith_ineq_checks_to_eq_word64'
= signed_arith_ineq_checks_to_eq[where 'a=64]
signed_arith_ineq_checks_to_eq[where 'a="64 signed"]
lemmas signed_arith_ineq_checks_to_eq_word64
= signed_arith_ineq_checks_to_eq_word64' [unfolded word64_bounds]
lemmas signed_mult_eq_checks64_to_64'
= signed_mult_eq_checks_double_size[where 'a=64 and 'b=64]
signed_mult_eq_checks_double_size[where 'a="64 signed" and 'b=64]
lemmas signed_mult_eq_checks64_to_64 = signed_mult_eq_checks64_to_64'[simplified]
lemmas sdiv_word64_max' = sdiv_word_max [where 'a=64] sdiv_word_max [where 'a="64 signed"]
lemmas sdiv_word64_max = sdiv_word64_max'[simplified word_size, simplified]
lemmas sdiv_word64_min' = sdiv_word_min [where 'a=64] sdiv_word_min [where 'a="64 signed"]
lemmas sdiv_word64_min = sdiv_word64_min' [simplified word_size, simplified]
lemmas sint64_of_int_eq' = sint_of_int_eq [where 'a=64]
lemmas sint64_of_int_eq = sint64_of_int_eq' [simplified]
lemma ucast_of_nats [simp]:
"(ucast (of_nat x :: word64) :: sword64) = (of_nat x)"
"(ucast (of_nat x :: word64) :: sword16) = (of_nat x)"
"(ucast (of_nat x :: word64) :: sword8) = (of_nat x)"
"(ucast (of_nat x :: word16) :: sword16) = (of_nat x)"
"(ucast (of_nat x :: word16) :: sword8) = (of_nat x)"
"(ucast (of_nat x :: word8) :: sword8) = (of_nat x)"
by (auto simp: ucast_of_nat is_down)
lemmas signed_shift_guard_simpler_64'
= power_strict_increasing_iff[where b="2 :: nat" and y=31]
lemmas signed_shift_guard_simpler_64 = signed_shift_guard_simpler_64'[simplified]
lemma word64_31_less:
"31 < len_of TYPE (64 signed)" "31 > (0 :: nat)"
"31 < len_of TYPE (64)" "31 > (0 :: nat)"
by auto
lemmas signed_shift_guard_to_word_64
= signed_shift_guard_to_word[OF word64_31_less(1-2)]
signed_shift_guard_to_word[OF word64_31_less(3-4)]
lemma le_step_down_word_3:
fixes x :: "64 word"
shows "\<lbrakk>x \<le> y; x \<noteq> y; y < 2 ^ 64 - 1\<rbrakk> \<Longrightarrow> x \<le> y - 1"
by (rule le_step_down_word_2, assumption+)
lemma shiftr_1:
"(x::word64) >> 1 = 0 \<Longrightarrow> x < 2"
by word_bitwise clarsimp
lemma mask_step_down_64:
"(b::64word) && 0x1 = (1::64word) \<Longrightarrow> (\<exists>x. x < 64 \<and> mask x = b >> 1) \<Longrightarrow> (\<exists>x. mask x = b)"
apply clarsimp
apply (rule_tac x="x + 1" in exI)
apply (subgoal_tac "x \<le> 63")
apply (erule le_step_down_nat, clarsimp simp:mask_def, word_bitwise, clarsimp+)+
apply (clarsimp simp:mask_def, word_bitwise, clarsimp)
apply clarsimp
done
lemma unat_of_int_64:
"\<lbrakk>i \<ge> 0; i \<le>2 ^ 31\<rbrakk> \<Longrightarrow> (unat ((of_int i)::sword64)) = nat i"
unfolding unat_def
apply (subst eq_nat_nat_iff, clarsimp+)
apply (simp add: word_of_int uint_word_of_int int_mod_eq')
done
(* Helper for packing then unpacking a 64-bit variable. *)
lemma cast_chunk_assemble_id_64[simp]:
"(((ucast ((ucast (x::64 word))::32 word))::64 word) || (((ucast ((ucast (x >> 32))::32 word))::64 word) << 32)) = x"
by (simp add:cast_chunk_assemble_id)
(* Another variant of packing and unpacking a 64-bit variable. *)
lemma cast_chunk_assemble_id_64'[simp]:
"(((ucast ((scast (x::64 word))::32 word))::64 word) || (((ucast ((scast (x >> 32))::32 word))::64 word) << 32)) = x"
by (simp add:cast_chunk_scast_assemble_id)
(* Specialiasations of down_cast_same for adding to local simpsets. *)
lemma cast_down_u64: "(scast::64 word \<Rightarrow> 32 word) = (ucast::64 word \<Rightarrow> 32 word)"
apply (subst down_cast_same[symmetric])
apply (simp add:is_down)+
done
lemma cast_down_s64: "(scast::64 sword \<Rightarrow> 32 word) = (ucast::64 sword \<Rightarrow> 32 word)"
apply (subst down_cast_same[symmetric])
apply (simp add:is_down)+
done
end