(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) (* * A theoretical framework for reasoning about non-interference * of monadic programs. *) theory EquivValid imports Corres_UL begin section\State equivalence validity\ text\ A generalised information flow property. Often, we read in the entire state, but then only examine part of it. The following property may be used to split up binds whose first part does this. @{term "I"} is the state relation that holds invariantly. @{term "A"} (also) holds between initial states. @{term "B"} (also) holds between final states. @{term "P"} holds in the initial state for @{term "f"}. @{term "P'"} holds in the initial state for @{term "f'"}. \ definition equiv_valid_2 :: "('s \ 's \ bool) \ ('s \ 's \ bool) \ ('s \ 's \ bool) \ ('b \ 'c \ bool) \ ('s \ bool) \ ('s \ bool) \ ('s,'b) nondet_monad \ ('s,'c) nondet_monad \ bool" where "equiv_valid_2 I A B R P P' f f' \ \s t. P s \ P' t \ I s t \ A s t \ (\(rva, s') \ fst (f s). \(rvb, t') \ fst (f' t). R rva rvb \ I s' t' \ B s' t')" lemma equiv_valid_2_bind_general: assumes r2: "\ rv rv'. R' rv rv' \ equiv_valid_2 D B C R (Q rv) (Q' rv') (g rv) (g' rv')" assumes r1: "equiv_valid_2 D A B R' P P' f f'" assumes hoare: "\ S \ f \ Q \" assumes hoare': "\ S' \ f' \ Q' \" shows "equiv_valid_2 D A C R (\ s. P s \ S s) (\ s. P' s \ S' s) (f >>= g) (f' >>= g')" using assms unfolding bind_def equiv_valid_2_def valid_def apply fastforce done (* almost all of the time, the second relation doesn't change *) lemma equiv_valid_2_bind: assumes r2: "\ rv rv'. R' rv rv' \ equiv_valid_2 D A A R (Q rv) (Q' rv') (g rv) (g' rv')" assumes r1: "equiv_valid_2 D A A R' P P' f f'" assumes hoare: "\ S \ f \ Q \" assumes hoare': "\ S' \ f' \ Q' \" shows "equiv_valid_2 D A A R (\ s. P s \ S s) (\ s. P' s \ S' s) (f >>= g) (f' >>= g')" using assms by (blast intro: equiv_valid_2_bind_general) lemma equiv_valid_2_guard_imp: assumes reads_res: "equiv_valid_2 D A B R Q Q' f f'" assumes guard_imp: "\ s. P s \ Q s" assumes guard_imp': "\ s. P' s \ Q' s" shows "equiv_valid_2 D A B R P P' f f'" using assms by (fastforce simp: equiv_valid_2_def) lemma equiv_valid_2_bind_pre: assumes r2: "\ rv rv'. R' rv rv' \ equiv_valid_2 D A A R (Q rv) (Q' rv') (g rv) (g' rv')" assumes r1: "equiv_valid_2 D A A R' P P' f f'" assumes hoare: "\ S \ f \ Q \" assumes hoare': "\ S' \ f' \ Q' \" assumes guard_imp: "\ s. T s \ P s \ S s" assumes guard_imp': "\ s. T' s \ P' s \ S' s" shows "equiv_valid_2 D A A R T T' (f >>= g) (f' >>= g')" using assms by (blast intro: equiv_valid_2_bind[THEN equiv_valid_2_guard_imp]) lemma return_ev2: assumes rel: "\ s t. \P s; P' t; I s t; A s t\ \ R a b" shows "equiv_valid_2 I A A R P P' (return a) (return b)" by(auto simp: equiv_valid_2_def return_def rel) lemma equiv_valid_2_liftE: "equiv_valid_2 D A B R P P' f f' \ equiv_valid_2 D A B (E \ R) P P' (liftE f) (liftE f')" apply(unfold liftE_def) apply(rule equiv_valid_2_guard_imp) apply(rule_tac Q="\\" and Q'="\\" and R'=R in equiv_valid_2_bind_general) apply(fastforce intro: return_ev2) apply assumption apply(rule wp_post_taut)+ by(simp_all) lemma equiv_valid_2_liftE_bindE_general: assumes r2: "\ rv rv'. R' rv rv' \ equiv_valid_2 D B C R (Q rv) (Q' rv') (g rv) (g' rv')" assumes hoare: "\ S \ f \ Q \" assumes hoare': "\ S' \ f' \ Q' \" assumes r1: "equiv_valid_2 D A B R' P P' f f'" shows "equiv_valid_2 D A C R (P and S) (P' and S') (liftE f >>=E g) (liftE f' >>=E g')" apply(unfold bindE_def) apply(rule equiv_valid_2_guard_imp) apply(rule_tac Q="\ rv. K (\ v. rv \ Inl v) and (\ s. \ v. rv = Inr v \ Q v s)" and Q'="\ rv. K (\ v. rv \ Inl v) and (\ s. \ v. rv = Inr v \ Q' v s)" in equiv_valid_2_bind_general) prefer 2 apply(rule_tac E="dc" in equiv_valid_2_liftE) apply(rule r1) apply(clarsimp simp: lift_def split: sum.split) apply(insert r2, fastforce simp: equiv_valid_2_def)[1] apply(simp add: liftE_def, wp, fastforce intro!: hoare_strengthen_post[OF hoare]) apply(simp add: liftE_def, wp, fastforce intro!: hoare_strengthen_post[OF hoare']) by(auto) lemma equiv_valid_2_liftE_bindE: assumes r2: "\ rv rv'. R' rv rv' \ equiv_valid_2 D A A R (Q rv) (Q' rv') (g rv) (g' rv')" assumes hoare: "\ S \ f \ Q \" assumes hoare': "\ S' \ f' \ Q' \" assumes r1: "equiv_valid_2 D A A R' P P' f f'" shows "equiv_valid_2 D A A R (P and S) (P' and S') (liftE f >>=E g) (liftE f' >>=E g')" using assms by(blast intro: equiv_valid_2_liftE_bindE_general) lemma equiv_valid_2_rvrel_imp: "\equiv_valid_2 I A A R P P' f f'; \ s t. R s t \ R' s t\ \ equiv_valid_2 I A A R' P P' f f'" apply(fastforce simp: equiv_valid_2_def) done subsection\Specialised fixed-state state equivalence validity\ text\ For resolve_address_bits and rec_del: talk about a fixed initial state. Note we only do this for one of the computations; the other state can be constrained by how it is related to this one by @{term "I"} and so forth. Also captures the typical case where the relation between the return values is equality and the required preconditions are identical. wp can cope with this. \ definition spec_equiv_valid :: "'s \ ('s \ 's \ bool) \ ('s \ 's \ bool) \ ('s \ 's \ bool) \ ('s \ bool) \ ('s,'b) nondet_monad \ bool" where "spec_equiv_valid st I A B P f \ equiv_valid_2 I A B (=) (P and ((=) st)) P f f" abbreviation spec_equiv_valid_inv where "spec_equiv_valid_inv st I A P f \ spec_equiv_valid st I A A P f" subsection\Specialised state equivalence validity\ text\ Most of the time we deal with the streamlined version. wp can cope with this too. \ definition equiv_valid :: "('s \ 's \ bool) \ ('s \ 's \ bool) \ ('s \ 's \ bool) \ ('s \ bool) \ ('s,'b) nondet_monad \ bool" where "equiv_valid I A B P f \ \st. spec_equiv_valid st I A B P f" lemma equiv_valid_def2: "equiv_valid I A B P f = equiv_valid_2 I A B (=) P P f f" by (simp add: equiv_valid_def spec_equiv_valid_def equiv_valid_2_def) abbreviation equiv_valid_rv where "equiv_valid_rv I A B R P f \ equiv_valid_2 I A B R P P f f" (* this is probably way more general than we need for all but a few special cases *) lemma bind_ev_general: assumes reads_res_2: "\rv. equiv_valid I B C (Q rv) (g rv)" assumes reads_res_1: "equiv_valid I A B P' f" assumes hoare: "\ P'' \ f \ Q \" shows "equiv_valid I A C (\s. P' s \ P'' s) (f >>= g)" unfolding equiv_valid_def2 apply (rule equiv_valid_2_bind_general[where R'="(=)"]) apply (auto intro: reads_res_1[unfolded equiv_valid_def2] reads_res_2[unfolded equiv_valid_def2])[2] apply (rule hoare) apply (rule hoare) done lemma bind_ev: assumes reads_res_2: "\rv. equiv_valid I A A (Q rv) (g rv)" assumes reads_res_1: "equiv_valid I A A P' f" assumes hoare: "\ P'' \ f \ Q \" shows "equiv_valid I A A (\s. P' s \ P'' s) (f >>= g)" using assms by (blast intro: bind_ev_general) lemma equiv_valid_weaken_pre: "\ equiv_valid I A' B P f; \st t. I st t \ A st t \ A' st t \ \ equiv_valid I A B P f" by (fastforce simp: equiv_valid_def spec_equiv_valid_def equiv_valid_2_def) lemma equiv_valid_guard_imp: assumes reads_res: "equiv_valid I A B Q f" assumes guard_imp: "\ s. P s \ Q s" shows "equiv_valid I A B P f" using assms by (fastforce simp: equiv_valid_def2 equiv_valid_2_def) lemmas bind_ev_pre = bind_ev[THEN equiv_valid_guard_imp] lemma gen_asm_ev': assumes "Q \ equiv_valid D A B P f" shows "equiv_valid D A B (P and K Q) f" using assms by (fastforce simp: equiv_valid_def2 equiv_valid_2_def) declare K_def [simp del] lemmas gen_asm_ev = gen_asm_ev'[where P="\", simplified] gen_asm_ev' gen_asm_ev'[simplified K_def, where P="\", simplified] gen_asm_ev'[simplified K_def] declare K_def [simp] text \ This is a further streamlined version that we expect to get the most from automating, and for the most part, we shouldn't need to deal with the extra generality of the properties above. \ abbreviation equiv_valid_inv where "equiv_valid_inv I A P f \ equiv_valid I A A P f" abbreviation equiv_valid_rv_inv where "equiv_valid_rv_inv I A R P f \ equiv_valid_rv I A A R P f" lemma get_evrv: "equiv_valid_rv_inv I A (I and A) \ get" by(auto simp: equiv_valid_2_def get_def) lemma equiv_valid_rv_bind_general: assumes ev1: "equiv_valid_rv I A B W P f" assumes ev2: "\ rv rv'. W rv rv' \ equiv_valid_2 I B C R (Q rv) (Q rv') (g rv) (g rv')" assumes hoare: "\ P \ f \ Q \" shows "equiv_valid_rv I A C R P (f >>= g)" apply(rule equiv_valid_2_guard_imp) apply(rule equiv_valid_2_bind_general[OF ev2]) apply(assumption) apply(rule ev1) apply(rule hoare) apply(rule hoare) apply(simp_all) done lemma equiv_valid_rv_bind: assumes ev1: "equiv_valid_rv_inv I A W P f" assumes ev2: "\ rv rv'. W rv rv' \ equiv_valid_2 I A A R (Q rv) (Q rv') (g rv) (g rv')" assumes hoare: "\ P \ f \ Q \" shows "equiv_valid_rv_inv I A R P (f >>= g)" using assms by(blast intro: equiv_valid_rv_bind_general) lemma modify_ev2: assumes "\ s t. \I s t; A s t; P s; P' t\ \ R () () \ I (f s) (f' t) \ B (f s) (f' t)" shows "equiv_valid_2 I A B R P P' (modify f) (modify f')" apply(clarsimp simp: equiv_valid_2_def in_monad) using assms by auto lemma modify_ev: "equiv_valid I A B (\ s. \ s t. I s t \ A s t \ I (f s) (f t) \ B (f s) (f t)) (modify f)" apply(clarsimp simp:equiv_valid_def2) apply(rule modify_ev2) by auto lemma modify_ev': "equiv_valid I A B (\ s. \ t. I s t \ A s t \ I (f s) (f t) \ B (f s) (f t)) (modify f)" apply(clarsimp simp:equiv_valid_def2) apply(rule modify_ev2) by auto lemma modify_ev'': assumes "\ s t. \I s t; A s t; P s; P t\ \ I (f s) (f t) \ B (f s) (f t)" shows "equiv_valid I A B P (modify f)" apply(clarsimp simp:equiv_valid_def2) apply(rule modify_ev2) using assms by auto lemma put_ev2: assumes "\ s t. \I s t; A s t; P s; P' t\ \ R () () \ I x x' \ B x x'" shows "equiv_valid_2 I A B R P P' (put x) (put x')" apply(clarsimp simp: equiv_valid_2_def in_monad) using assms by auto lemma get_bind_ev2: assumes "\ rv rv'. \I rv rv'; A rv rv'\ \ equiv_valid_2 I A B R (P and ((=) rv)) (P' and ((=) rv')) (f rv) (f' rv')" shows "equiv_valid_2 I A B R P P' (get >>= f) (get >>= f')" apply(rule equiv_valid_2_guard_imp) apply(rule_tac R'="I and A" in equiv_valid_2_bind_general) apply(rule assms, simp+) apply(rule get_evrv) apply(wp get_sp)+ by(auto) lemma return_ev_pre: "equiv_valid_inv I A P (return x)" apply (simp add: equiv_valid_def2 return_ev2) done lemmas return_ev = return_ev_pre[where P=\] lemma fail_ev2_l: "equiv_valid_2 I A B R P P' fail f'" by(simp add: equiv_valid_2_def fail_def) lemma fail_ev2_r: "equiv_valid_2 I A B R P P' f fail" by(simp add: equiv_valid_2_def fail_def) lemma fail_ev_pre: "equiv_valid I A B P fail" apply (simp add: equiv_valid_def2 fail_ev2_l) done lemmas fail_ev = fail_ev_pre[where P=\] lemma assert_ev2: "R () () \ equiv_valid_2 I A A R P P' (assert a) (assert b)" apply(simp add: assert_def fail_ev2_l fail_ev2_r) apply(blast intro: return_ev2) done lemma liftE_ev: "equiv_valid I A B P f \ equiv_valid I A B P (liftE f)" unfolding liftE_def apply (rule bind_ev_general[THEN equiv_valid_guard_imp, OF return_ev _ wp_post_taut]) apply fastforce+ (* schematic instantiation *) done lemma if_ev: assumes "b \ equiv_valid I A B P f" assumes "\ b \ equiv_valid I A B Q g" shows "equiv_valid I A B (\s. (b \ P s) \ (\b \ Q s)) (if b then f else g)" apply (clarsimp split: if_split) using assms by blast lemmas if_ev_pre = equiv_valid_guard_imp[OF if_ev] lemma assert_ev_pre: "equiv_valid_inv I A P (assert b)" apply(simp add: equiv_valid_def2 assert_ev2) done lemmas assert_ev = assert_ev_pre[where P=\] lemma assert_opt_ev: "equiv_valid_inv I A \ (assert_opt v)" apply (simp add: assert_opt_def return_ev fail_ev split: option.split) done lemma assert_opt_ev2: assumes "\ a a'. \v = Some a; v' = Some a'\ \ R a a'" shows "equiv_valid_2 I A A R \ \ (assert_opt v) (assert_opt v')" apply (simp add: assert_opt_def return_ev fail_ev2_l fail_ev2_r split: option.split) apply(intro allI impI) apply(rule return_ev2) apply(rule assms, assumption+) done lemma select_f_ev: "equiv_valid_inv I A (K (det f)) (select_f (f x))" apply (rule gen_asm_ev) apply (simp add: select_f_def equiv_valid_def2 equiv_valid_2_def det_set_iff) done lemma gets_evrv: "equiv_valid_rv_inv I A R (K (\s t. I s t \ A s t \ R (f s) (f t))) (gets f)" apply (auto simp: equiv_valid_2_def in_monad) done lemma gets_evrv': "equiv_valid_rv_inv I A R (\s. (\t. I s t \ A s t \ R (f s) (f t))) (gets f)" apply (auto simp: equiv_valid_2_def in_monad) done lemma gets_evrv'': "\s t. I s t \ A s t \ P s \ P t \ R (f s) (f t) \ equiv_valid_rv_inv I A R P (gets f)" apply (auto simp: equiv_valid_2_def in_monad) done lemma equiv_valid_rv_guard_imp: "\equiv_valid_rv I A B R P f; \ s. Q s \ P s\ \ equiv_valid_rv I A B R Q f" apply(simp add: equiv_valid_2_def) apply fast done lemma gets_ev: shows "equiv_valid_inv I A (\ s. \ s t. I s t \ A s t \ f s = f t) (gets f)" apply (simp add: equiv_valid_def2) apply (auto intro: equiv_valid_rv_guard_imp[OF gets_evrv]) done lemma gets_ev': shows "equiv_valid_inv I A (\ s. \ t. I s t \ A s t \ f s = f t) (gets f)" apply (simp add: equiv_valid_def2) apply (auto intro: equiv_valid_rv_guard_imp[OF gets_evrv']) done lemma gets_ev'': "\s t. I s t \ A s t \ P s \ P t \ f s = f t \ equiv_valid_inv I A P (gets f)" apply (simp add: equiv_valid_def2) apply (auto intro: equiv_valid_rv_guard_imp[OF gets_evrv'']) done lemma gets_the_evrv: "equiv_valid_rv_inv I A R (K (\s t. I s t \ A s t \ R (the (f s)) (the (f t)))) (gets_the f)" unfolding gets_the_def apply (rule equiv_valid_rv_bind) apply(rule equiv_valid_rv_guard_imp[OF gets_evrv]) apply simp apply(rule assert_opt_ev2) apply simp apply wp done lemma gets_the_ev: "equiv_valid_inv I A (K (\s t. I s t \ A s t \ f s = f t)) (gets_the f)" unfolding equiv_valid_def2 apply(rule equiv_valid_rv_guard_imp[OF gets_the_evrv]) by simp lemma throwError_ev_pre: "equiv_valid_inv I A P (throwError e)" by (auto simp: throwError_def return_ev_pre) lemmas throwError_ev = throwError_ev_pre[where P=\] lemma returnOk_ev_pre: "equiv_valid_inv I A P (returnOk v)" by (auto simp: returnOk_def return_ev_pre) lemmas returnOk_ev = returnOk_ev_pre[where P=\] (* this seems restrictive, to have the same beginning and ending state relation, however, one suspects that bindE is used usually only in code that doesn't modify the state, so is probably OK.. We'll see *) lemma bindE_ev: assumes reads_res_2: "\ rv. equiv_valid_inv I A (Q rv) (g rv)" assumes reads_res_1: "equiv_valid_inv I A P' f" assumes hoare: "\ P'' \ f \ Q \,-" shows "equiv_valid_inv I A (\s. P' s \ P'' s) (f >>=E g)" unfolding bindE_def apply (rule bind_ev) prefer 3 apply(rule hoare[unfolded validE_R_def validE_def]) apply(simp split: sum.split add: lift_def throwError_ev) apply(blast intro!: reads_res_2) apply(rule reads_res_1) done lemmas bindE_ev_pre = bindE_ev[THEN equiv_valid_guard_imp] (* Of course, when we know that progress is always made, we can do better *) lemma liftE_bindE_ev_general: assumes r2: "\ val. equiv_valid I B C (Q val) (g val)" assumes r1: "equiv_valid I A B P f" assumes hoare: "\ R \ f \ Q \" shows "equiv_valid I A C (\ s. P s \ R s) (liftE f >>=E g)" apply(simp add: bindE_def) apply(rule_tac Q="\ rv. K (\ v. rv \ Inl v) and (\ s. \ v. rv = Inr v \ Q v s)" in bind_ev_general) prefer 2 apply(rule liftE_ev) apply(rule r1) apply(insert r2, fastforce simp: lift_def split: sum.split simp: equiv_valid_def2 equiv_valid_2_def)[1] apply(insert hoare, fastforce simp: valid_def liftE_def return_def bind_def) done lemma liftE_bindE_ev: assumes r2: "\ val. equiv_valid_inv I A (Q val) (g val)" assumes r1: "equiv_valid_inv I A P f" assumes hoare: "\ R \ f \ Q \" shows "equiv_valid_inv I A (\ s. P s \ R s) (liftE f >>=E g)" using assms by (blast intro: liftE_bindE_ev_general) lemmas liftE_bindE_ev_pre = liftE_bindE_ev[THEN equiv_valid_guard_imp] lemma liftM_ev: assumes reads_res: "equiv_valid I A B P g" shows "equiv_valid I A B P (liftM f g)" apply (simp add: liftM_def) apply (rule bind_ev_general[THEN equiv_valid_guard_imp, OF return_ev reads_res wp_post_taut]) apply simp done lemma liftME_ev: assumes reads_res: "equiv_valid_inv I A P g" shows "equiv_valid_inv I A P (liftME f g)" apply(simp add: liftME_def) apply (rule bindE_ev_pre[OF returnOk_ev reads_res]) apply (rule hoare_True_E_R) apply fast done lemma whenE_ev: assumes a: "b \ equiv_valid_inv I A P m" shows "equiv_valid_inv I A (\s. b \ P s) (whenE b m)" unfolding whenE_def by (auto intro: a returnOk_ev_pre) lemma whenE_throwError_bindE_ev: assumes "\ rv. \ b \ equiv_valid_inv I A P (g rv)" shows "equiv_valid_inv I A P (whenE b (throwError e) >>=E g)" apply (rule_tac Q="\ rv. P and (\ s. \ b)" in bindE_ev_pre) apply (rule gen_asm_ev) apply (blast intro: assms) apply (rule whenE_ev) apply (rule throwError_ev) apply (wp whenE_throwError_wp) apply simp done (* FIXME: trivially generalised *) lemma K_bind_ev: "equiv_valid I A B P f \ equiv_valid I A B P (K_bind f x)" by simp subsection\wp setup\ lemmas splits_ev[wp_split] = bind_ev_pre bindE_ev_pre bind_ev bindE_ev if_ev_pre if_ev lemmas wp_ev[wp] = return_ev_pre return_ev liftE_ev fail_ev_pre fail_ev assert_opt_ev assert_ev gets_ev gets_the_ev returnOk_ev_pre returnOk_ev throwError_ev_pre throwError_ev liftM_ev liftME_ev whenE_ev K_bind_ev subsection\crunch setup\ lemmas pre_ev = hoare_pre equiv_valid_guard_imp subsection\wpc setup\ lemma wpc_helper_equiv_valid: "equiv_valid D A B Q f \ wpc_helper (P, P', P'') (Q, Q', Q'') (equiv_valid D A B P f)" using equiv_valid_guard_imp apply (simp add: wpc_helper_def) apply (blast) done wpc_setup "\m. equiv_valid D A B Q m" wpc_helper_equiv_valid subsection\More hoare-like rules\ lemma mapM_ev_pre: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \" assumes inv_established: "\ s. P s \ I s" shows "equiv_valid_inv D A P (mapM m lst)" using assms apply(atomize) apply(rule_tac Q=I in equiv_valid_guard_imp) apply(induct lst) apply(simp add: mapM_Nil return_ev_pre) apply(subst mapM_Cons) apply(rule bind_ev_pre[where P''="I"]) apply(rule bind_ev[OF return_ev]) apply fastforce apply (rule wp_post_taut) apply fastforce+ done lemma mapM_x_ev_pre: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \" assumes inv_established: "\ s. P s \ I s" shows "equiv_valid_inv D A P (mapM_x m lst)" apply(subst mapM_x_mapM) apply(rule bind_ev_pre[OF return_ev mapM_ev_pre]) apply (blast intro: reads_res invariant inv_established wp_post_taut)+ done lemma mapM_ev: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \" shows "equiv_valid_inv D A I (mapM m lst)" using assms by (auto intro: mapM_ev_pre) lemma mapM_x_ev: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \" shows "equiv_valid_inv D A I (mapM_x m lst)" using assms by (auto intro: mapM_x_ev_pre) (* MOVE -- proof clagged from mapM_x_mapM *) lemma mapME_x_mapME: "mapME_x f l = mapME f l >>=E (\ y. returnOk ())" apply (simp add: mapME_x_def sequenceE_x_def mapME_def sequenceE_def) apply (induct l, simp_all add: Let_def bindE_assoc) done lemma mapME_ev_pre: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \,-" assumes inv_established: "\ s. P s \ I s" shows "equiv_valid_inv D A P (mapME m lst)" using assms apply(atomize) apply(rule_tac Q=I in equiv_valid_guard_imp) apply(induct lst) apply(simp add: mapME_Nil returnOk_ev_pre) apply(subst mapME_Cons) apply wp apply fastforce apply (rule hoare_True_E_R[where P="\"]) apply fastforce+ done lemma mapME_ev: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv I A P (m x)" assumes invariant: "\ x. x \ set lst \ \ P \ m x \ \_. P \, -" shows "equiv_valid_inv I A P (mapME m lst)" using assms by (auto intro: mapME_ev_pre) lemma mapME_x_ev_pre: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \,-" assumes inv_established: "\ s. P s \ I s" shows "equiv_valid_inv D A P (mapME_x m lst)" unfolding mapME_x_mapME apply (wp assms mapME_ev_pre | simp)+ done lemma mapME_x_ev: assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A I (m x)" assumes invariant: "\ x. x \ set lst \ \ I \ m x \ \_. I \, -" shows "equiv_valid_inv D A I (mapME_x m lst)" using assms by (auto intro: mapME_x_ev_pre) lemma mapM_ev': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (K (P x)) (m x)" shows "equiv_valid_inv D A (K (\x\set lst. P x)) (mapM m lst)" apply(rule mapM_ev) apply(rule equiv_valid_guard_imp[OF reads_res], simp+, wp) done lemma mapM_x_ev': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (K (P x)) (m x)" shows "equiv_valid_inv D A (K (\x\set lst. P x)) (mapM_x m lst)" apply(rule mapM_x_ev) apply(rule equiv_valid_guard_imp[OF reads_res], simp+, wp) done lemma mapME_ev': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (K (P x)) (m x)" shows "equiv_valid_inv D A (K (\x\set lst. P x)) (mapME m lst)" apply(rule mapME_ev) apply(rule equiv_valid_guard_imp[OF reads_res], simp+, wp) done lemma mapME_x_ev': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (K (P x)) (m x)" shows "equiv_valid_inv D A (K (\x\set lst. P x)) (mapME_x m lst)" apply(rule mapME_x_ev) apply(rule equiv_valid_guard_imp[OF reads_res], simp+, wp) done subsection\Rules for the specialised validity\ lemma use_spec_ev: "(\st. spec_equiv_valid st I A B P f) \ equiv_valid I A B P f" by (simp add: equiv_valid_def) lemma drop_spec_ev: "equiv_valid I A B P f \ spec_equiv_valid st I A B P f" by (simp add: equiv_valid_def) lemma spec_equiv_valid_guard_imp: assumes reads_res: "spec_equiv_valid_inv s' I A P' f" assumes guard_imp: "\ s. P s \ P' s" shows "spec_equiv_valid_inv s' I A P f" using assms by (fastforce simp: spec_equiv_valid_def equiv_valid_2_def) lemma bind_spec_ev: assumes reads_res_2: "\ rv s''. (rv, s'') \ fst (f s') \ spec_equiv_valid_inv s'' I A (Q rv) (g rv)" assumes reads_res_1: "spec_equiv_valid_inv s' I A P' f" assumes hoare: "\P''\ f \Q\" shows "spec_equiv_valid_inv s' I A (\s. P' s \ P'' s) (f >>= g)" using reads_res_1 apply (clarsimp simp: spec_equiv_valid_def equiv_valid_2_def valid_def bind_def split_def) apply (rename_tac t a b aa ba ab bb ac bc) apply (erule_tac x=t in allE) apply clarsimp apply (erule_tac x="(a, b)" in ballE) apply (erule_tac x="(ab, bb)" in ballE) apply clarsimp apply (cut_tac reads_res_2) prefer 2 apply assumption apply (clarsimp simp: spec_equiv_valid_def equiv_valid_2_def) apply(erule_tac x=bb in allE) using hoare apply (fastforce simp: valid_def)+ done lemma bindE_spec_ev: assumes reads_res_2: "\ rv s''. (Inr rv, s'') \ fst (f s') \ spec_equiv_valid_inv s'' I A (Q rv) (g rv)" assumes reads_res_1: "spec_equiv_valid_inv s' I A P' f" assumes hoare: "\P''\ f \Q\,-" shows "spec_equiv_valid_inv s' I A (\s. P' s \ P'' s) (f >>=E g)" unfolding bindE_def apply (rule bind_spec_ev) prefer 3 apply(rule hoare[simplified validE_R_def validE_def]) apply(simp split: sum.split add: lift_def) apply(rule conjI) apply(fastforce simp: spec_equiv_valid_def throwError_def return_ev2) apply(fastforce simp: reads_res_2) apply(rule reads_res_1) done lemma if_spec_ev: "\ G \ spec_equiv_valid_inv s' I A P f; \ G \ spec_equiv_valid_inv s' I A P' f' \ \ spec_equiv_valid_inv s' I A (\s. (G \ P s) \ (\ G \ P' s)) (if G then f else f')" by (cases G, simp+) lemmas splits_spec_ev[wp_split] = drop_spec_ev spec_equiv_valid_guard_imp[OF bind_spec_ev] spec_equiv_valid_guard_imp[OF bindE_spec_ev] bind_spec_ev bindE_spec_ev spec_equiv_valid_guard_imp[OF if_spec_ev] if_spec_ev (* Miscellaneous rules. *) lemma assertE_ev[wp]: "equiv_valid_inv I A \ (assertE b)" unfolding assertE_def apply wp by simp lemma equiv_valid_2_bindE: assumes g: "\rv rv'. R' rv rv' \ equiv_valid_2 D A A (E \ R) (Q rv) (Q' rv') (g rv) (g' rv')" assumes h1: "\S\ f \Q\,-" assumes h2: "\S'\ f' \Q'\,-" assumes f: "equiv_valid_2 D A A (E \ R') P P' f f'" shows "equiv_valid_2 D A A (E \ R) (P and S) (P' and S') (f >>=E g) (f' >>=E g')" apply(unfold bindE_def) apply(rule equiv_valid_2_guard_imp) apply(rule_tac R'="E \ R'" and Q="case_sum \\ Q" and Q'="case_sum \\ Q'" and S=S and S'=S' in equiv_valid_2_bind) apply(clarsimp simp: lift_def split: sum.splits) apply(intro impI conjI allI) apply(simp add: throwError_def) apply(rule return_ev2) apply simp apply(simp) apply(simp) apply(fastforce intro: g) apply(rule f) apply(insert h1, fastforce simp: valid_def validE_R_def validE_def split: sum.splits)[1] apply(insert h2, fastforce simp: valid_def validE_R_def validE_def split: sum.splits)[1] by auto lemma rel_sum_comb_equals: "((=) \ (=)) = (=)" apply(rule ext) apply(rule ext) apply(rename_tac a b) apply(case_tac a, auto) done definition spec_equiv_valid_2_inv where "spec_equiv_valid_2_inv s I A R P P' f f' \ equiv_valid_2 I A A R (P and ((=) s)) P' f f'" lemma spec_equiv_valid_def2: "spec_equiv_valid s I A A P f = spec_equiv_valid_2_inv s I A (=) P P f f" apply(simp add: spec_equiv_valid_def spec_equiv_valid_2_inv_def) done lemma drop_spec_ev2_inv: "equiv_valid_2 I A A R P P' f f' \ spec_equiv_valid_2_inv s I A R P P' f f'" apply(simp add: spec_equiv_valid_2_inv_def) apply(erule equiv_valid_2_guard_imp, auto) done lemma spec_equiv_valid_2_inv_guard_imp: "\spec_equiv_valid_2_inv s I A R Q Q' f f'; \ s. P s \ Q s; \ s. P' s \ Q' s\ \ spec_equiv_valid_2_inv s I A R P P' f f'" by(auto simp: spec_equiv_valid_2_inv_def equiv_valid_2_def) lemma bind_spec_ev2: assumes reads_res_2: "\ rv s' rv'. \(rv, s') \ fst (f s); R' rv rv'\ \ spec_equiv_valid_2_inv s' I A R (Q rv) (Q' rv') (g rv) (g' rv')" assumes reads_res_1: "spec_equiv_valid_2_inv s I A R' P P' f f'" assumes hoare: "\S\ f \Q\" assumes hoare': "\S'\ f' \Q'\" shows "spec_equiv_valid_2_inv s I A R (P and S) (P' and S') (f >>= g) (f' >>= g')" using reads_res_1 apply (clarsimp simp: spec_equiv_valid_2_inv_def equiv_valid_2_def bind_def split_def) apply (erule_tac x=t in allE) apply clarsimp apply (drule_tac x="(a, b)" in bspec, assumption) apply (drule_tac x="(ab, bb)" in bspec, assumption) apply clarsimp apply (cut_tac rv="a" and s'="b" in reads_res_2) apply assumption apply assumption apply (clarsimp simp: spec_equiv_valid_2_inv_def equiv_valid_2_def) apply(drule_tac x=bb in spec) apply clarsimp using hoare hoare' apply (fastforce simp: valid_def)+ done lemma spec_equiv_valid_2_inv_bindE: assumes g: "\rv s' rv'. \(Inr rv, s') \ fst (f s); R' rv rv'\ \ spec_equiv_valid_2_inv s' I A (E \ R) (Q rv) (Q' rv') (g rv) (g' rv')" assumes h1: "\S\ f \Q\,-" assumes h2: "\S'\ f' \Q'\,-" assumes f: "spec_equiv_valid_2_inv s I A (E \ R') P P' f f'" shows "spec_equiv_valid_2_inv s I A (E \ R) (P and S) (P' and S') (f >>=E g) (f' >>=E g')" apply(unfold bindE_def) apply(rule spec_equiv_valid_2_inv_guard_imp) apply(rule_tac R'="E \ R'" and Q="case_sum \\ Q" and Q'="case_sum \\ Q'" and S=S and S'=S' in bind_spec_ev2) apply(clarsimp simp: lift_def split: sum.splits) apply(intro impI conjI allI) apply(simp add: throwError_def) apply(rule drop_spec_ev2_inv[OF return_ev2]) apply simp apply(simp) apply(simp) apply(fastforce intro: g) apply(rule f) apply(insert h1, fastforce simp: valid_def validE_R_def validE_def split: sum.splits)[1] apply(insert h2, fastforce simp: valid_def validE_R_def validE_def split: sum.splits)[1] by auto lemma trancl_subset_equivalence: "\(a, b) \ r'\<^sup>+; \x. (a, x)\r'\<^sup>+ \ Q x; \x y. Q x \ ((y, x) \ r) = ((y, x) \ r')\ \ (a, b) \ r\<^sup>+" apply(induct a b rule: trancl.induct) apply(blast) apply(simp) apply(rule_tac b=b in trancl_into_trancl) apply(simp) apply(erule_tac x=c in allE) apply(subgoal_tac "(a, c) \ r'\<^sup>+") apply(auto) done lemma equiv_valid_rv_gets_compD: "equiv_valid_rv_inv I A R P (gets (f \ g)) \ equiv_valid_rv_inv I A (\ rv rv'. R (f rv) (f rv')) P (gets g)" apply(clarsimp simp: equiv_valid_2_def gets_def bind_def return_def get_def) done lemma liftE_ev2: "equiv_valid_2 I A B R P P' f f' \ equiv_valid_2 I A B (E \ R) P P' (liftE f) (liftE f')" apply(clarsimp simp: liftE_def equiv_valid_2_def bind_def return_def) apply fastforce done lemma whenE_spec_ev2_inv: assumes a: "b \ spec_equiv_valid_2_inv s I A R P P' m m'" assumes r: "\ x. R x x" shows "spec_equiv_valid_2_inv s I A R P P' (whenE b m) (whenE b m')" unfolding whenE_def apply (auto intro: a simp: returnOk_def intro!: drop_spec_ev2_inv[OF return_ev2] intro: r) done lemma whenE_spec_ev: assumes a: "b \ spec_equiv_valid_inv s I A P m" shows "spec_equiv_valid_inv s I A P (whenE b m) " unfolding whenE_def apply (auto intro: a simp: returnOk_def intro!: drop_spec_ev[OF return_ev_pre]) done lemma spec_equiv_valid_2_inv_by_spec_equiv_valid: "\spec_equiv_valid s I A A P f; P' = P; f' = f; (\ a. R a a)\ \ spec_equiv_valid_2_inv s I A R P P' f f'" apply(clarsimp simp: spec_equiv_valid_def spec_equiv_valid_2_inv_def) apply(fastforce simp: equiv_valid_2_def) done lemma mapM_ev'': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (P x) (m x)" assumes inv: "\ x. x \ set lst \ \ \s. \x\set lst. P x s \ m x \ \_ s. \x\set lst. P x s \" shows "equiv_valid_inv D A (\ s. \x\set lst. P x s) (mapM m lst)" apply(rule mapM_ev) apply(rule equiv_valid_guard_imp[OF reads_res]; simp) apply(wpsimp wp: inv) done lemma mapM_x_ev'': assumes reads_res: "\ x. x \ set lst \ equiv_valid_inv D A (P x) (m x)" assumes inv: "\ x. x \ set lst \ \ \s. \x\set lst. P x s \ m x \ \_ s. \x\set lst. P x s \" shows "equiv_valid_inv D A (\ s. \x\set lst. P x s) (mapM_x m lst)" apply(rule mapM_x_ev) apply(rule equiv_valid_guard_imp[OF reads_res]; simp) apply(wpsimp wp: inv) done lemma catch_ev[wp]: assumes ok: "equiv_valid I A A P f" assumes err: "\ e. equiv_valid I A A (E e) (handler e)" assumes hoare: "\ Q \ f -, \ E \" shows "equiv_valid I A A (P and Q) (f handler)" apply (simp add: catch_def) apply (wp err ok | wpc | simp)+ apply (insert hoare[simplified validE_E_def validE_def])[1] apply (simp split: sum.splits) by simp lemma equiv_valid_rv_trivial: assumes inv: "\ P. \ P \ f \ \_. P \" shows "equiv_valid_rv_inv I A \\ \ f" by(auto simp: equiv_valid_2_def dest: state_unchanged[OF inv]) lemma equiv_valid_2_trivial: assumes inv: "\ P. \ P \ f \ \_. P \" assumes inv': "\ P. \ P \ f' \ \_. P \" shows "equiv_valid_2 I A A \\ \ \ f f'" by(auto simp: equiv_valid_2_def dest: state_unchanged[OF inv] state_unchanged[OF inv']) lemma gen_asm_ev2_r: "\P' \ equiv_valid_2 I A B R P Q f f'\ \ equiv_valid_2 I A B R P (Q and (K P')) f f'" apply(fastforce simp: equiv_valid_2_def) done lemma gen_asm_ev2_l: "\P \ equiv_valid_2 I A B R Q P' f f'\ \ equiv_valid_2 I A B R (Q and (K P)) P' f f'" apply(fastforce simp: equiv_valid_2_def) done lemma gen_asm_ev2_r': "\P' \ equiv_valid_2 I A B R P \ f f'\ \ equiv_valid_2 I A B R P (\s. P') f f'" apply(fastforce simp: equiv_valid_2_def) done lemma gen_asm_ev2_l': "\P \ equiv_valid_2 I A B R \ P' f f'\ \ equiv_valid_2 I A B R (\s. P) P' f f'" apply(fastforce simp: equiv_valid_2_def) done lemma equiv_valid_rv_liftE_bindE: assumes ev1: "equiv_valid_rv_inv I A W P f" assumes ev2: "\ rv rv'. W rv rv' \ equiv_valid_2 I A A R (Q rv) (Q rv') (g rv) (g rv')" assumes hoare: "\ P \ f \ Q \" shows "equiv_valid_rv_inv I A R P ((liftE f) >>=E g)" apply(unfold bindE_def) apply(rule_tac Q="\ rv. K (\ v. rv \ Inl v) and (\ s. \ v. rv = Inr v \ Q v s)" in equiv_valid_rv_bind) apply(rule_tac E="dc" in equiv_valid_2_liftE) apply(rule ev1) apply(clarsimp simp: lift_def split: sum.split) apply(insert ev2, fastforce simp: equiv_valid_2_def)[1] apply(insert hoare, clarsimp simp: valid_def liftE_def bind_def return_def split_def) done lemma if_evrv: assumes "b \ equiv_valid_rv_inv I A R P f" assumes "\ b \ equiv_valid_rv_inv I A R Q g" shows "equiv_valid_rv_inv I A R (\s. (b \ P s) \ (\b \ Q s)) (if b then f else g)" apply (clarsimp split: if_split) using assms by blast end