(* * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230) * * SPDX-License-Identifier: BSD-2-Clause *) section "Words of Length 32" theory Word_32 imports Word_Lemmas Word_Syntax Word_Names Rsplit More_Word_Operations Bitwise begin context includes bit_operations_syntax begin type_synonym word32 = "32 word" lemma len32: "len_of (x :: 32 itself) = 32" by simp type_synonym sword32 = "32 sword" lemma ucast_8_32_inj: "inj (ucast :: 8 word \ 32 word)" by (rule down_ucast_inj) (clarsimp simp: is_down_def target_size source_size) lemmas unat_power_lower32' = unat_power_lower[where 'a=32] lemmas word32_less_sub_le' = word_less_sub_le[where 'a = 32] lemmas word32_power_less_1' = word_power_less_1[where 'a = 32] lemmas unat_of_nat32' = unat_of_nat_eq[where 'a=32] lemmas unat_mask_word32' = unat_mask[where 'a=32] lemmas word32_minus_one_le' = word_minus_one_le[where 'a=32] lemmas word32_minus_one_le = word32_minus_one_le'[simplified] lemma unat_ucast_8_32: fixes x :: "8 word" shows "unat (ucast x :: word32) = unat x" by transfer simp lemma ucast_le_ucast_8_32: "(ucast x \ (ucast y :: word32)) = (x \ (y :: 8 word))" by (simp add: ucast_le_ucast) lemma eq_2_32_0: "(2 ^ 32 :: word32) = 0" by simp lemmas mask_32_max_word = max_word_mask [symmetric, where 'a=32, simplified] lemma of_nat32_n_less_equal_power_2: "n < 32 \ ((of_nat n)::32 word) < 2 ^ n" by (rule of_nat_n_less_equal_power_2, clarsimp simp: word_size) lemma unat_ucast_10_32 : fixes x :: "10 word" shows "unat (ucast x :: word32) = unat x" by transfer simp lemma word32_bounds: "- (2 ^ (size (x :: word32) - 1)) = (-2147483648 :: int)" "((2 ^ (size (x :: word32) - 1)) - 1) = (2147483647 :: int)" "- (2 ^ (size (y :: 32 signed word) - 1)) = (-2147483648 :: int)" "((2 ^ (size (y :: 32 signed word) - 1)) - 1) = (2147483647 :: int)" by (simp_all add: word_size) lemmas signed_arith_ineq_checks_to_eq_word32' = signed_arith_ineq_checks_to_eq[where 'a=32] signed_arith_ineq_checks_to_eq[where 'a="32 signed"] lemmas signed_arith_ineq_checks_to_eq_word32 = signed_arith_ineq_checks_to_eq_word32' [unfolded word32_bounds] lemmas signed_mult_eq_checks32_to_64' = signed_mult_eq_checks_double_size[where 'a=32 and 'b=64] signed_mult_eq_checks_double_size[where 'a="32 signed" and 'b=64] lemmas signed_mult_eq_checks32_to_64 = signed_mult_eq_checks32_to_64'[simplified] lemmas sdiv_word32_max' = sdiv_word_max [where 'a=32] sdiv_word_max [where 'a="32 signed"] lemmas sdiv_word32_max = sdiv_word32_max'[simplified word_size, simplified] lemmas sdiv_word32_min' = sdiv_word_min [where 'a=32] sdiv_word_min [where 'a="32 signed"] lemmas sdiv_word32_min = sdiv_word32_min' [simplified word_size, simplified] lemmas sint32_of_int_eq' = sint_of_int_eq [where 'a=32] lemmas sint32_of_int_eq = sint32_of_int_eq' [simplified] lemma ucast_of_nats [simp]: "(ucast (of_nat x :: word32) :: sword32) = (of_nat x)" "(ucast (of_nat x :: word32) :: 16 sword) = (of_nat x)" "(ucast (of_nat x :: word32) :: 8 sword) = (of_nat x)" "(ucast (of_nat x :: 16 word) :: 16 sword) = (of_nat x)" "(ucast (of_nat x :: 16 word) :: 8 sword) = (of_nat x)" "(ucast (of_nat x :: 8 word) :: 8 sword) = (of_nat x)" by (simp_all add: of_nat_take_bit take_bit_word_eq_self unsigned_of_nat) lemmas signed_shift_guard_simpler_32' = power_strict_increasing_iff[where b="2 :: nat" and y=31] lemmas signed_shift_guard_simpler_32 = signed_shift_guard_simpler_32'[simplified] lemma word32_31_less: "31 < len_of TYPE (32 signed)" "31 > (0 :: nat)" "31 < len_of TYPE (32)" "31 > (0 :: nat)" by auto lemmas signed_shift_guard_to_word_32 = signed_shift_guard_to_word[OF word32_31_less(1-2)] signed_shift_guard_to_word[OF word32_31_less(3-4)] lemma has_zero_byte: "~~ (((((v::word32) && 0x7f7f7f7f) + 0x7f7f7f7f) || v) || 0x7f7f7f7f) \ 0 \ v && 0xff000000 = 0 \ v && 0xff0000 = 0 \ v && 0xff00 = 0 \ v && 0xff = 0" by word_bitwise auto lemma mask_step_down_32: \\x. mask x = b\ if \b && 1 = 1\ and \\x. x < 32 \ mask x = b >> 1\ for b :: \32word\ proof - from \b && 1 = 1\ have \odd b\ by (auto simp add: mod_2_eq_odd and_one_eq) then have \b mod 2 = 1\ using odd_iff_mod_2_eq_one by blast from \\x. x < 32 \ mask x = b >> 1\ obtain x where \x < 32\ \mask x = b >> 1\ by blast then have \mask x = b div 2\ using shiftr1_is_div_2 [of b] by simp with \b mod 2 = 1\ have \2 * mask x + 1 = 2 * (b div 2) + b mod 2\ by (simp only:) also have \\ = b\ by (simp add: mult_div_mod_eq) finally have \2 * mask x + 1 = b\ . moreover have \mask (Suc x) = 2 * mask x + (1 :: 'a::len word)\ by (simp add: mask_Suc_rec) ultimately show ?thesis by auto qed lemma unat_of_int_32: "\i \ 0; i \2 ^ 31\ \ (unat ((of_int i)::sword32)) = nat i" by (simp add: unsigned_of_int nat_take_bit_eq take_bit_nat_eq_self) lemmas word_ctz_not_minus_1_32 = word_ctz_not_minus_1[where 'a=32, simplified] (* Helper for packing then unpacking a 64-bit variable. *) lemma cast_chunk_assemble_id_64[simp]: "(((ucast ((ucast (x::64 word))::32 word))::64 word) || (((ucast ((ucast (x >> 32))::32 word))::64 word) << 32)) = x" by (simp add:cast_chunk_assemble_id) (* Another variant of packing and unpacking a 64-bit variable. *) lemma cast_chunk_assemble_id_64'[simp]: "(((ucast ((scast (x::64 word))::32 word))::64 word) || (((ucast ((scast (x >> 32))::32 word))::64 word) << 32)) = x" by (simp add:cast_chunk_scast_assemble_id) (* Specialisations of down_cast_same for adding to local simpsets. *) lemma cast_down_u64: "(scast::64 word \ 32 word) = (ucast::64 word \ 32 word)" by (subst down_cast_same[symmetric]; simp add:is_down)+ lemma cast_down_s64: "(scast::64 sword \ 32 word) = (ucast::64 sword \ 32 word)" by (subst down_cast_same[symmetric]; simp add:is_down) lemma word32_and_max_simp: \x AND 0xFFFFFFFF = x\ for x :: \32 word\ using word_and_full_mask_simp [of x] by (simp add: numeral_eq_Suc mask_Suc_exp) end end