lh-l4v/lib/More_Numeral_Type.thy

438 lines
14 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory More_Numeral_Type
imports "Word_Lib_l4v.WordSetup"
begin
(* This theory provides additional setup for numeral types, which should probably go into
Numeral_Type in the distribution at some point. *)
text \<open>
The function package uses @{const size} for guessing termination measures.
Using @{const size} also provides a convenient cast to natural numbers.
\<close>
instantiation num1 :: size
begin
definition size_num1 where [simp, code]: "size (n::num1) = 0"
instance ..
end
instantiation bit0 and bit1 :: (finite) size
begin
definition size_bit0 where [code]: "size n = nat (Rep_bit0 n)"
definition size_bit1 where [code]: "size n = nat (Rep_bit1 n)"
instance ..
end
(* As in the parent theory Numeral_Type, we first prove everything abstractly to avoid duplication,
and then instantiate bit0 and bit1. *)
locale mod_size_order = mod_ring n Rep Abs
for n :: int
and Rep :: "'a::{comm_ring_1,size,linorder} \<Rightarrow> int"
and Abs :: "int \<Rightarrow> 'a::{comm_ring_1,size,linorder}" +
assumes size_def: "size x = nat (Rep x)"
assumes less_def: "(a < b) = (Rep a < Rep b)"
assumes less_eq_def: "(a \<le> b) = (Rep a \<le> Rep b)"
begin
text \<open>
Automatic simplification of concrete @{term "(<)"} and @{term "(<=)"} goals on numeral types.
\<close>
lemmas order_numeral[simp] =
less_def[of "numeral a" "numeral b" for a b]
less_eq_def[of "numeral a" "numeral b" for a b]
less_def[of "0" "numeral b" for b]
less_def[of "1" "numeral b" for b]
less_eq_def[of "0" "numeral b" for b]
less_eq_def[of "1" "numeral b" for b]
less_def[of "numeral a" "0" for a]
less_def[of "numeral a" "1" for a]
less_eq_def[of "numeral a" "0" for a]
less_eq_def[of "numeral a" "1" for a]
text \<open> Simplifying size numerals. \<close>
lemmas [simp] = Rep_numeral
lemmas size_numerals[simp] = size_def[of "numeral m" for m]
text \<open> Simplifying representatives of 0 and 1 \<close>
lemmas [simp] = Rep_0 Rep_1
lemmas definitions = definitions less_def less_eq_def size_def
lemmas Rep = type_definition.Rep[OF type]
lemmas Abs_cases = type_definition.Abs_cases[OF type]
lemma of_nat_size[simp]:
"of_nat (size x) = (x::'a)"
by (cases x rule: Abs_cases) (clarsimp simp: Abs_inverse of_int_eq size_def)
lemma size_of_nat[simp]:
"size (of_nat x :: 'a) = nat (int x mod n)"
by (simp add: Rep_Abs_mod of_nat_eq size0 size_def)
lemma zero_less_eq[simp]:
"0 \<le> (x :: 'a)"
using Rep by (simp add: less_eq_def)
lemma zero_less_one[simp,intro!]:
"0 < (1::'a)"
by (simp add: less_def)
lemma zero_least[simp,intro]:
"(x::'a) < y \<Longrightarrow> 0 < y"
by (simp add: le_less_trans)
lemma not_less_zero_bit0[simp]:
"\<not> (x::'a) < 0"
by (simp add: not_less)
lemmas not_less_zeroE[elim!] = notE[OF not_less_zero]
lemma one_leq[simp]:
"(1 \<le> x) = (0 < (x::'a))"
using less_def less_eq_def by auto
lemma less_eq_0[simp]:
"(x \<le> 0) = (x = (0::'a))"
by (simp add: antisym)
lemma size_less[simp]:
"(size (x::'a) < size y) = (x < y)"
by (cases x rule: Abs_cases, cases y rule: Abs_cases) (auto simp: Abs_inverse definitions)
lemma size_inj[simp]:
"(size (x::'a) = size y) = (x = y)"
by (metis of_nat_size)
lemma size_less_eq[simp]:
"(size (x::'a) \<le> size y) = (x \<le> y)"
by (auto simp: le_eq_less_or_eq)
lemma size_0[simp]:
"size (0::'a) = 0"
by (simp add: size_def)
lemma size_1[simp]:
"size (1::'a) = 1"
by (simp add: size_def)
lemma size_eq_0[simp]:
"(size x = 0) = ((x::'a) = 0)"
using size_inj by fastforce
lemma minus_less:
"\<lbrakk> y \<le> x; 0 < y \<rbrakk> \<Longrightarrow> x - y < (x::'a)"
unfolding definitions
by (cases x rule: Abs_cases, cases y rule: Abs_cases) (simp add: Abs_inverse)
lemma pred[simp,intro!]:
"0 < (x::'a) \<Longrightarrow> x - 1 < x"
by (auto intro!: minus_less)
lemma minus1_leq:
"\<lbrakk> x - 1 \<le> y; y < x \<rbrakk> \<Longrightarrow> (y::'a) = x-1"
by (smt Rep_1 Rep_Abs_mod Rep_less_n less_def diff_def int_mod_ge le_neq_trans)
lemma max_bound_leq[simp,intro!]:
"(x::'a) \<le> -1"
by (smt Rep_1 Rep_Abs_mod Rep_less_n less_eq_def int_mod_ge' minus_def)
lemma leq_minus1_less:
"0 < y \<Longrightarrow> (x \<le> y - 1) = (x < (y::'a))"
by (metis le_less less_trans minus1_leq not_less pred)
lemma max_bound_neq_conv[simp]:
"(x \<noteq> -1) = ((x::'a) < -1)"
using le_neq_trans by auto
lemma max_bound_leq_conv[simp]:
"(- 1 \<le> (x::'a)) = (x = - 1)"
by (simp add: eq_iff)
lemma max_bound_not_less[simp]:
"\<not> -1 < (x::'a)"
using minus1_leq by fastforce
lemma minus_1_eq:
"(-1::'a) = of_nat (nat n - 1)"
unfolding definitions using Rep_Abs_1 of_nat_eq size1 by auto
lemma n_not_less_Rep[simp]:
"\<not> n < Rep x"
using Rep[of x] by (simp add: not_less)
lemma size_plus:
"(x::'a) < x + y \<Longrightarrow> size (x + y) = size x + size y"
unfolding definitions Rep_Abs_mod
using Rep size0
by (simp flip: nat_add_distrib add: eq_nat_nat_iff pos_mod_sign mod_add_if_z split: if_split_asm)
lemma Suc_size[simp]:
"(x::'a) < x + 1 \<Longrightarrow> size (x + 1) = Suc (size x)"
by (simp add: size_plus)
lemma no_overflow_eq_max_bound:
"((x::'a) < x + 1) = (x < -1)"
unfolding definitions
by (smt Rep_Abs_mod Rep_Abs_1 Rep_less_n int_mod_ge int_mod_ge' size0)
lemma plus_one_leq:
"x < y \<Longrightarrow> x + 1 \<le> (y::'a)"
by (metis add_diff_cancel_right' leq_minus1_less not_le zero_least)
lemma less_uminus:
"\<lbrakk> - x < y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> - y < (x::'a)"
unfolding definitions
by (smt Rep_inverse Rep_mod Rep_Abs_mod size0 zmod_zminus1_eq_if)
lemma of_nat_cases[case_names of_nat]:
"(\<And>m. \<lbrakk> (x::'a) = of_nat m; m < nat n \<rbrakk> \<Longrightarrow> P) \<Longrightarrow> P"
by (metis mod_type.Rep_less_n mod_type_axioms nat_mono_iff of_nat_size size0 size_def)
lemma minus_induct[case_names 0 minus]:
assumes "P (0::'a)"
assumes suc: "\<And>x. \<lbrakk> P (x - 1); 0 < x \<rbrakk> \<Longrightarrow> P x"
shows "P x"
proof (cases x rule: of_nat_cases)
case (of_nat m)
have "P (of_nat m)"
proof (induct m)
case 0
then show ?case using `P 0` by simp
next
case (Suc m)
show ?case
proof (cases "1 + of_nat m = (0::'a)")
case True
then show ?thesis using `P 0` by simp
next
case False
with Suc suc show ?thesis by (metis add_diff_cancel_left' less_eq_0 not_less of_nat_Suc)
qed
qed
with of_nat show ?thesis by simp
qed
lemma plus_induct[case_names 0 plus]:
assumes "P (0::'a)"
assumes suc: "\<And>x. \<lbrakk> P x; x < x + 1 \<rbrakk> \<Longrightarrow> P (x + 1)"
shows "P x"
proof (cases x rule: of_nat_cases)
case (of_nat m)
have "P (of_nat m)"
proof (induct m)
case 0
then show ?case using `P 0` by simp
next
case (Suc m)
with `P 0` suc show ?case by (metis diff_add_cancel minus_induct pred)
qed
with of_nat show ?thesis by simp
qed
lemma from_top_induct[case_names top step]:
assumes top: "\<And>x. y \<le> x \<Longrightarrow> P (x::'a)"
assumes step: "\<And>x. \<lbrakk>P x; 0 < x; x \<le> y\<rbrakk> \<Longrightarrow> P (x - 1)"
shows "P x"
proof -
obtain z where x: "x = y - z"
by (metis diff_eq_diff_eq diff_right_commute)
moreover
have "P (y - z)"
proof (induct z rule: plus_induct)
case 0
then show ?case by (simp add: top)
next
case (plus x)
then have [simp]: "y - (x + 1) = (y - x) - 1" by simp
show ?case
proof (cases "x < y")
case True
with plus show ?thesis
by simp (metis diff_add_cancel eq_iff_diff_eq_0 le_neq_trans step plus_one_leq not_le
top zero_less_eq)
next
case False
with plus show ?thesis
by (smt top Rep_Abs_mod Rep_le_n less_def less_eq_def diff_def int_mod_ge' size0)
qed
qed
ultimately show ?thesis by simp
qed
lemma tranclp_greater: "(>)\<^sup>+\<^sup>+ = ((>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool)"
by(auto simp add: fun_eq_iff intro: less_trans elim: tranclp.induct)
lemma card_n:
"CARD('a) = nat n"
using type by (simp add: type_definition.card)
lemma finite_UNIV[intro!,simp]:
"finite (UNIV::'a set)"
by (rule card_ge_0_finite) (simp add: card_n size0)
lemma finite_greater[simp]:
"finite {(x, y). y < (x::'a)}"
by (rule finite_subset[of _ "UNIV \<times> UNIV"], simp)
(rule finite_cartesian_product; rule finite_UNIV)
lemma wf_greater[intro!,simp]:
"wf {(x,y). x > (y::'a)}"
by (auto simp: trancl_def tranclp_greater intro!: finite_acyclic_wf acyclicI)
(* less_induct already instantiated in class well_order *)
lemma greater_induct[case_names greater]:
"(\<And>x. (\<And>z. x < z \<Longrightarrow> P z) \<Longrightarrow> P x) \<Longrightarrow> P (x::'a)"
by (rule wf_induct_rule, rule wf_greater) fastforce
lemma from_top_full_induct[case_names top step]:
assumes top: "\<And>x. y \<le> x \<Longrightarrow> P (x::'a)"
assumes step: "\<And>x. \<lbrakk>\<forall>z > x. P z; x < y\<rbrakk> \<Longrightarrow> P x"
shows "P x"
proof (induct x rule: greater_induct)
case (greater x)
show ?case
proof (cases "x < y")
case True
then show ?thesis by (blast intro: step greater)
next
case False
then show ?thesis by (auto simp: not_less intro: top)
qed
qed
interpretation greater_wellorder: wellorder "(\<ge>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "(>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool"
by unfold_locales (auto intro: greater_induct)
lemma greater_least_fold[simp]: "greater_wellorder.Least = Greatest"
by (auto simp: greater_wellorder.Least_def Greatest_def)
lemmas GreatestI = greater_wellorder.LeastI[simplified greater_least_fold]
lemmas Greatest_le = greater_wellorder.Least_le[simplified greater_least_fold]
lemmas exists_greatest_iff = greater_wellorder.exists_least_iff
lemmas GreatestI2_wellorder = greater_wellorder.LeastI2_wellorder[simplified greater_least_fold]
lemma neq_0_conv:
"((x::'a) \<noteq> 0) = (0 < x)"
by (meson neqE not_less_zero_bit0)
lemma minus_leq_less: "\<lbrakk> (x::'a) \<le> y; 0 < z; z \<le> x \<rbrakk> \<Longrightarrow> x - z < y"
by (metis le_less less_trans minus_less)
lemma minus_one_leq_less: "\<lbrakk> (x::'a) \<le> y; 0 < x \<rbrakk> \<Longrightarrow> x - 1 < y"
using pred by fastforce
lemma size_minus:
"y \<le> (x::'a) \<Longrightarrow> size (x - y) = size x - size y"
unfolding definitions Rep_Abs_mod
using Rep size0
by (simp flip: nat_diff_distrib add: eq_nat_nat_iff pos_mod_sign mod_sub_if_z split: if_split_asm)
lemma size_minus_one:
"0 < (x::'a) \<Longrightarrow> size (x - 1) = size x - Suc 0"
by (simp add: size_minus)
end
interpretation bit0:
mod_size_order "int CARD('a::finite bit0)"
"Rep_bit0 :: 'a::finite bit0 \<Rightarrow> int"
"Abs_bit0 :: int \<Rightarrow> 'a::finite bit0"
by unfold_locales (auto simp: size_bit0_def less_bit0_def less_eq_bit0_def)
interpretation bit1:
mod_size_order "int CARD('a::finite bit1)"
"Rep_bit1 :: 'a::finite bit1 \<Rightarrow> int"
"Abs_bit1 :: int \<Rightarrow> 'a::finite bit1"
by unfold_locales (auto simp: size_bit1_def less_bit1_def less_eq_bit1_def)
declare bit0.minus_induct[induct type]
declare bit1.minus_induct[induct type]
section \<open>Further enumeration instances.\<close>
instantiation bit0 and bit1 :: (finite) enumeration_both
begin
definition enum_alt_bit0 where "enum_alt \<equiv> alt_from_ord (enum :: 'a :: finite bit0 list)"
definition enum_alt_bit1 where "enum_alt \<equiv> alt_from_ord (enum :: 'a :: finite bit1 list)"
instance by intro_classes (auto simp: enum_alt_bit0_def enum_alt_bit1_def)
end
subsection \<open>Relating @{const enum} and @{const size}\<close>
lemma fromEnum_size_bit0[simp]:
"fromEnum (x::'a::finite bit0) = size x"
proof -
have "enum ! the_index enum x = x" by (auto intro: nth_the_index)
moreover
have "the_index enum x < length (enum::'a bit0 list)" by (auto intro: the_index_bounded)
moreover
{ fix y
assume "Abs_bit0' (int y) = x"
moreover
assume "y < 2 * CARD('a)"
ultimately
have "y = nat (Rep_bit0 x)"
by (smt Abs_bit0'_code card_bit0 mod_pos_pos_trivial nat_int of_nat_less_0_iff
zless_nat_eq_int_zless)
}
ultimately
show ?thesis by (simp add: fromEnum_def enum_bit0_def size_bit0_def)
qed
lemma fromEnum_size_bitq[simp]:
"fromEnum (x::'a::finite bit1) = size x"
proof -
have "enum ! the_index enum x = x" by (auto intro: nth_the_index)
moreover
have "the_index enum x < length (enum::'a bit1 list)" by (auto intro: the_index_bounded)
moreover
{ fix y
assume "Abs_bit1' (int y) = x"
moreover
assume "y < Suc (2 * CARD('a))"
ultimately
have "y = nat (Rep_bit1 x)"
by (smt Abs_bit1'_code card_bit1 mod_pos_pos_trivial nat_int of_nat_less_0_iff
zless_nat_eq_int_zless)
}
ultimately
show ?thesis by (simp add: fromEnum_def enum_bit1_def size_bit1_def del: upt_Suc)
qed
lemma minBound_size_bit0[simp]:
"(minBound::'a::finite bit0) = 0"
by (simp add: minBound_def hd_map enum_bit0_def Abs_bit0'_def zero_bit0_def)
lemma minBound_size_bit1[simp]:
"(minBound::'a::finite bit1) = 0"
by (simp add: minBound_def hd_map enum_bit1_def Abs_bit1'_def zero_bit1_def)
lemma maxBound_size_bit0:
"(maxBound::'a::finite bit0) = of_nat (2 * CARD('a) - 1)"
by (simp add: maxBound_def enum_bit0_def last_map Abs_bit0'_def bit0.of_nat_eq)
lemma maxBound_size_bit1:
"(maxBound::'a::finite bit1) = of_nat (2 * CARD('a))"
by (simp add: maxBound_def enum_bit1_def last_map Abs_bit1'_def bit1.of_nat_eq)
lemma maxBound_minus_one_bit0:
"maxBound = (-1 ::'a::finite bit0)"
by (simp add: bit0.definitions bit0.of_nat_eq bit0.Rep_Abs_1 maxBound_size_bit0)
lemma maxBound_minus_one_bit1:
"maxBound = (-1 ::'a::finite bit1)"
by (simp add: bit1.definitions bit1.of_nat_eq bit1.Rep_Abs_1 zmod_minus1 maxBound_size_bit1)
lemmas maxBound_size_bit = maxBound_size_bit0 maxBound_size_bit1
lemmas maxBound_minus_one_bit[simp] = maxBound_minus_one_bit1 maxBound_minus_one_bit0
end