lh-l4v/lib/Bisim_UL.thy

577 lines
21 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* A theory of guarded monadic bisimulation. *)
theory Bisim_UL
imports
Monads.NonDetMonadVCG
Corres_UL
Monads.Empty_Fail
begin
(* This still looks a bit wrong to me, although it is more or less what I want \<emdash> we want to be
able to move hoare triples across bisimulations, and this allows guards to be left behind, more or less
definition
"bisim_underlying SR R P P' m m' \<equiv>
\<forall>s s'. SR s s' \<longrightarrow> (P s \<longrightarrow> (\<forall>(r, t) \<in> fst (m s). \<exists>(r', t') \<in> fst (m' s'). R r r' \<and> SR t t')) \<and>
(P' s' \<longrightarrow> (\<forall>(r', t') \<in> fst (m' s'). \<exists>(r, t) \<in> fst (m s). R r r' \<and> SR t t'))"
*)
definition
bisim_underlying :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> (('c \<times> 'a) set) \<times> bool) \<Rightarrow> ('b \<Rightarrow> (('d \<times> 'b) set) \<times> bool) \<Rightarrow> bool"
where
"bisim_underlying SR R P P' m m' \<equiv>
\<forall>s s'. SR s s' \<and> P s \<and> P' s' \<longrightarrow> ((\<forall>(r, t) \<in> fst (m s). \<exists>(r', t') \<in> fst (m' s'). R r r' \<and> SR t t') \<and>
(\<forall>(r', t') \<in> fst (m' s'). \<exists>(r, t) \<in> fst (m s). R r r' \<and> SR t t'))"
(*
lemma bisim_is_corres_both_ways:
"bisim_underlying SR R P P' m m' = (corres_underlying SR False R P P' m m' \<and> corres_underlying (converse SR) False (swp R) P' P m' m)"
unfolding bisim_underlying_def corres_underlying_def
by (fastforce simp: swp_def Ball_def Bex_def)
*)
lemma bisim_valid:
assumes ac: "bisim_underlying (=) (=) P P' a a'"
and rl: "\<lbrace>Q\<rbrace> a \<lbrace>S\<rbrace>"
shows "\<lbrace>P and P' and Q\<rbrace> a' \<lbrace>S\<rbrace>"
using ac rl
unfolding bisim_underlying_def valid_def
by (fastforce simp: split_def)
lemma bisim_valid2:
assumes ac: "bisim_underlying (=) (=) P P' a a'"
and rl: "\<lbrace>Q\<rbrace> a' \<lbrace>S\<rbrace>"
shows "\<lbrace>P and P' and Q\<rbrace> a \<lbrace>S\<rbrace>"
using ac rl
unfolding bisim_underlying_def valid_def
by (fastforce simp: split_def)
lemma bisim_underlyingI [consumes 0, case_names Left Right]:
assumes r1: "\<And>s s' r t. \<lbrakk>SR s s'; P s; P' s'; (r, t) \<in> fst (m s) \<rbrakk> \<Longrightarrow> \<exists>(r', t') \<in> fst (m' s'). R r r' \<and> SR t t'"
and r2: "\<And>s s' r' t'. \<lbrakk>SR s s'; P s; P' s'; (r', t') \<in> fst (m' s') \<rbrakk> \<Longrightarrow> \<exists>(r, t) \<in> fst (m s). R r r' \<and> SR t t'"
shows "bisim_underlying SR R P P' m m'"
unfolding bisim_underlying_def
by (fastforce dest: r1 r2 simp: split_def)
lemma bisim_underlyingE1:
assumes bs: "bisim_underlying SR R P P' m m'"
and sr: "SR s s'"
and ps: "P s" "P' s'"
and ms: "(r, t) \<in> fst (m s)"
and rl: "\<And>r' t'. \<lbrakk> (r', t') \<in> fst (m' s'); R r r'; SR t t' \<rbrakk> \<Longrightarrow> X"
shows X
using bs sr ps ms unfolding bisim_underlying_def
by (fastforce intro: rl)
lemma bisim_underlyingE2:
assumes bs: "bisim_underlying SR R P P' m m'"
and sr: "SR s s'"
and ps: "P s" "P' s'"
and ms: "(r', t') \<in> fst (m' s')"
and rl: "\<And>r t. \<lbrakk> (r, t) \<in> fst (m s); R r r'; SR t t' \<rbrakk> \<Longrightarrow> X"
shows X
using bs sr ps ms unfolding bisim_underlying_def
by (fastforce intro: rl)
lemma bisim_split:
assumes ac: "bisim_underlying SR R' P P' a c"
and bd: "\<And>r r'. R' r r' \<Longrightarrow> bisim_underlying SR R (Q r) (Q' r') (b r) (d r')"
and v1: "\<lbrace>S\<rbrace> a \<lbrace>Q\<rbrace>"
and v2: "\<lbrace>S'\<rbrace> c \<lbrace>Q'\<rbrace>"
shows "bisim_underlying SR R (P and S) (P' and S') (a >>= b) (c >>= d)"
using ac
apply -
apply (rule bisim_underlyingI)
apply (clarsimp simp: in_monad split_def)
apply (erule (4) bisim_underlyingE1)
apply (frule (1) use_valid [OF _ v1])
apply (frule (1) use_valid [OF _ v2])
apply (erule (4) bisim_underlyingE1 [OF bd])
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
apply (clarsimp simp: in_monad split_def)
apply (erule (4) bisim_underlyingE2)
apply (frule (1) use_valid [OF _ v1])
apply (frule (1) use_valid [OF _ v2])
apply (erule (4) bisim_underlyingE2 [OF bd])
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
done
abbreviation
"bisim \<equiv> bisim_underlying (=)"
lemma bisim_refl:
assumes rrefl: "\<And>r. R r r"
shows "bisim R P P' m m"
apply (rule bisim_underlyingI)
apply (clarsimp simp: split_def)
apply (erule bexI [rotated])
apply (simp add: rrefl)
apply (clarsimp simp: split_def)
apply (erule bexI [rotated])
apply (simp add: rrefl)
done
lemma bisim_guard_imp:
assumes bs: "bisim_underlying SR R Q Q' m m'"
and rls: "\<And>s. P s \<Longrightarrow> Q s" "\<And>s. P' s \<Longrightarrow> Q' s"
shows "bisim_underlying SR R P P' m m'"
using bs rls
by (fastforce intro!: bisim_underlyingI elim: bisim_underlyingE1 bisim_underlyingE2)
lemma bisim_return':
assumes Rxx: "R x x'"
shows "bisim_underlying SR R P P' (return x) (return x')"
apply (rule bisim_underlyingI)
apply (clarsimp simp: in_monad split_def Bex_def Rxx)
apply (clarsimp simp: in_monad split_def Bex_def Rxx)
done
lemmas bisim_return = bisim_return' [where P = \<top> and P' = \<top>]
lemma bisim_split_handle:
assumes bm: "bisim (f' \<oplus> r) Pn Pn' m m'"
and bc: "\<And>x x'. f' x x' \<Longrightarrow> bisim (f \<oplus> r) (Pf x) (Pf' x') (c x) (c' x')"
and v1: "\<lbrace>P\<rbrace> m \<lbrace>\<lambda>_ _. True\<rbrace>, \<lbrace>Pf\<rbrace>"
and v2: "\<lbrace>P'\<rbrace> m' \<lbrace>\<lambda>_ _. True\<rbrace>, \<lbrace>Pf'\<rbrace>"
shows "bisim (f \<oplus> r) (Pn and P) (Pn' and P') (m <handle> c) (m' <handle> c')"
unfolding handleE_def handleE'_def
apply (rule bisim_split [where Q = "\<lambda>r s. case_sum (\<lambda>l. Pf l s) (\<lambda>_. True) r" and Q' = "\<lambda>r s. case_sum (\<lambda>l. Pf' l s) (\<lambda>_. True) r", OF bm, folded validE_def])
apply (case_tac ra)
apply clarsimp
apply (erule bc)
apply clarsimp
apply (rule bisim_return')
apply simp
apply (rule v1)
apply (rule v2)
done
(* Set up wpc *)
lemma wpc_helper_bisim:
"bisim_underlying SR r Q Q' f f' \<Longrightarrow> wpc_helper (P, P', P'') (Q, Q', Q'') (bisim_underlying SR r P P' f f')"
apply (clarsimp simp: wpc_helper_def)
apply (erule bisim_guard_imp)
apply simp
apply fastforce
done
wpc_setup "\<lambda>m. bisim_underlying SR r P P' a m" wpc_helper_bisim
wpc_setup "\<lambda>m. bisim_underlying SR r P P' a (m >>= c)" wpc_helper_bisim
lemma bisim_split_refl:
assumes bs: "\<And>r. bisim R (Q r) (Q' r) (b r) (d r)"
and v1: "\<lbrace>S\<rbrace> a \<lbrace>Q\<rbrace>"
and v2: "\<lbrace>S'\<rbrace> a \<lbrace>Q'\<rbrace>"
shows "bisim R S S' (a >>= b) (a >>= d)"
apply (rule bisim_guard_imp)
apply (rule bisim_split [OF _ _ v1 v2])
apply (rule bisim_refl [where P = \<top> and P' = \<top> and R = "(=)", OF refl])
apply simp
apply (rule bs)
apply simp_all
done
lemma bisim_throwError':
"f e e' \<Longrightarrow> bisim_underlying SR (f \<oplus> R') P P' (throwError e) (throwError e')"
apply (rule bisim_underlyingI)
apply (clarsimp simp: in_monad Bex_def)+
done
lemmas bisim_throwError = bisim_throwError' [where P = \<top> and P' = \<top>]
lemma bisim_splitE:
assumes ac: "bisim_underlying SR (f \<oplus> R') P P' a c"
and bd: "\<And>r r'. R' r r' \<Longrightarrow> bisim_underlying SR (f \<oplus> R) (Q r) (Q' r') (b r) (d r')"
and v1: "\<lbrace>S\<rbrace> a \<lbrace>Q\<rbrace>, -"
and v2: "\<lbrace>S'\<rbrace> c \<lbrace>Q'\<rbrace>, -"
shows "bisim_underlying SR (f \<oplus> R) (P and S) (P' and S') (a >>=E b) (c >>=E d)"
apply (simp add: bindE_def lift_def[abs_def])
apply (rule bisim_split [where Q = "\<lambda>r s. case_sum (\<lambda>_. True) (\<lambda>l. Q l s) r" and Q' = "\<lambda>r s. case_sum (\<lambda>_. True) (\<lambda>l. Q' l s) r", OF ac, folded validE_def, folded validE_R_def])
apply (case_tac r')
apply clarsimp
apply (erule bisim_throwError')
apply clarsimp
apply (erule bd)
apply (rule v1)
apply (rule v2)
done
lemma bisim_split_reflE:
assumes ab: "\<And>r. bisim (f \<oplus> R) (Q r) (Q' r) (a r) (b r)"
and v1: "\<lbrace>S\<rbrace> m \<lbrace>Q\<rbrace>, -"
and v2: "\<lbrace>S'\<rbrace> m \<lbrace>Q'\<rbrace>, -"
and refls: "\<And>e. f e e" "\<And>r. R r r"
shows "bisim (f \<oplus> R) S S' (m >>=E a) (m >>=E b)"
using refls
apply -
apply (rule bisim_guard_imp)
apply (rule bisim_splitE [where R' = "(=)", OF _ _ v1 v2])
apply (rule bisim_refl)
apply (case_tac r, simp_all)[1]
apply simp
apply (rule ab)
apply simp+
done
lemma bisim_split_bind_case_sum:
"\<lbrakk>bisim_underlying sr (lr \<oplus> rr) P P' a d;
\<And>rv rv'. lr rv rv' \<Longrightarrow> bisim_underlying sr r (R rv) (R' rv') (b rv) (e rv');
\<And>rv rv'. rr rv rv' \<Longrightarrow> bisim_underlying sr r (S rv) (S' rv') (c rv) (f rv'); \<lbrace>Q\<rbrace> a \<lbrace>S\<rbrace>, \<lbrace>R\<rbrace>; \<lbrace>Q'\<rbrace> d \<lbrace>S'\<rbrace>, \<lbrace>R'\<rbrace>\<rbrakk>
\<Longrightarrow> bisim_underlying sr r (P and Q) (P' and Q') (a >>= case_sum b c) (d >>= case_sum e f)"
apply (erule bisim_split [where Q = "\<lambda>rv s. case_sum (\<lambda>l. R l s) (\<lambda>r. S r s) rv" and Q' = "\<lambda>rv s. case_sum (\<lambda>l. R' l s) (\<lambda>r. S' r s) rv", folded validE_def])
apply (case_tac r')
apply clarsimp
apply clarsimp
apply assumption+
done
lemma bisim_liftE [simp]:
"bisim_underlying SR (f \<oplus> R) P P' (liftE a) (liftE b) = bisim_underlying SR R P P' a b"
by (fastforce simp: in_monad intro: bisim_underlyingI elim: bisim_underlyingE1 bisim_underlyingE2)
lemma bisim_when:
assumes bs: "b \<Longrightarrow> bisim_underlying SR R P P' m m'"
and rr: "R () ()"
shows "bisim_underlying SR R (\<lambda>s. b \<longrightarrow> P s) (\<lambda>s. b \<longrightarrow> P' s) (when b m) (when b m')"
using assms
apply (cases b, simp_all add: when_def)
apply (erule bisim_return)
done
(* not really used *)
definition
"det_on P f \<equiv> \<forall>s. P s \<longrightarrow> (\<exists>r. f s = ({r}, False))"
lemma det_onE:
"\<lbrakk>det_on P f; P s; \<And>r s'. \<lbrakk> (r, s') \<in> fst (f s); \<not> snd (f s)\<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
unfolding det_on_def by fastforce
lemma bisim_noop_det_on:
assumes a: "\<And>s. \<lbrace>Pa and (=) s\<rbrace> a \<lbrace>\<lambda>_. (=) s\<rbrace>"
and b: "\<And>s. \<lbrace>Pb and (=) s\<rbrace> b \<lbrace>\<lambda>_. (=) s\<rbrace>"
and da: "det_on P a"
and db: "det_on P' b"
shows "bisim_underlying sr dc (Pa and P) (Pb and P') a b"
using da db
apply -
apply (rule bisim_underlyingI)
apply clarsimp
apply (erule (1) det_onE)+
apply (frule use_valid [OF _ a], fastforce)
apply (frule use_valid [OF _ b], fastforce)
apply fastforce
apply clarsimp
apply (erule (1) det_onE)+
apply (frule use_valid [OF _ a], fastforce)
apply (frule use_valid [OF _ b], fastforce)
apply fastforce
done
lemma det_on_gets:
"det_on \<top> (gets f)" unfolding det_on_def
by (clarsimp simp: gets_def return_def bind_def get_def)
lemma hoare_gen_asmE':
"(P \<Longrightarrow> \<lbrace>P'\<rbrace> f \<lbrace>Q\<rbrace>, \<lbrace>R\<rbrace>) \<Longrightarrow> \<lbrace>P' and K P\<rbrace> f \<lbrace>Q\<rbrace>, \<lbrace>R\<rbrace>"
unfolding validE_def
by (erule hoare_gen_asm)
lemma det_onE':
"\<lbrakk>det_on P f; P s; \<And>r s'. \<lbrakk> f s = ({(r, s')}, False)\<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
unfolding det_on_def by fastforce
(* ugh *)
lemma det_on_guard_imp [wp_comb]:
assumes da: "det_on P' a"
and "\<And>s. P s \<Longrightarrow> P' s"
shows "det_on P a"
using assms unfolding det_on_def by auto
lemma det_on_split [wp_split]:
assumes da: "det_on Pa a"
and db: "\<And>x. det_on (Pb x) (b x)"
and v: "\<lbrace>Pb'\<rbrace> a \<lbrace>Pb\<rbrace>"
shows "det_on (Pa and Pb') (a >>= b)"
unfolding det_on_def using da
apply -
apply clarsimp
apply (erule (1) det_onE)
apply (frule (1) use_valid [OF _ v])
apply (erule det_onE' [OF da])
apply (erule det_onE' [OF db])
apply (clarsimp simp: bind_def split_def)
done
lemma det_det_on:
"det m \<Longrightarrow> det_on \<top> m"
unfolding det_def det_on_def by auto
lemma det_on_liftE [wp]:
"det_on P m \<Longrightarrow> det_on P (liftE m)"
unfolding liftE_def
apply (rule det_on_guard_imp)
apply (erule det_on_split [OF _ det_det_on])
apply simp
apply wp
apply simp
done
lemma det_on_lift [wp]:
"(\<And>y. det_on (P y) (m y)) \<Longrightarrow> det_on (case_sum (\<lambda>_. \<top>) P x) (lift m x)"
unfolding lift_def
by (auto simp: det_on_def throwError_def return_def split: sum.splits)
lemma det_on_assert_opt [wp]:
"det_on (\<lambda>_. x \<noteq> None) (assert_opt x)"
unfolding det_on_def assert_opt_def by (fastforce split: option.splits simp: fail_def return_def)
lemmas dets_to_det_on [wp] = det_det_on [OF det_gets] det_det_on [OF return_det]
(* Set up wpc *)
lemma wpc_helper_det_on:
"det_on Q f \<Longrightarrow> wpc_helper (P, P', P'') (Q, Q', Q'') (det_on P f)"
apply (clarsimp simp: wpc_helper_def det_on_def)
done
wpc_setup "\<lambda>m. det_on P m" wpc_helper_det_on
wpc_setup "\<lambda>m. det_on P (m >>= c)" wpc_helper_det_on
lemma bisim_symb_exec_r_det_on:
assumes z: "\<And>rv. bisim_underlying sr r P (Q' rv) x (y rv)"
assumes y: "\<lbrace>P'\<rbrace> m \<lbrace>Q'\<rbrace>"
assumes x: "\<And>s. \<lbrace>Pe and (=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>"
assumes nf: "det_on Pd m"
shows "bisim_underlying sr r P (P' and Pe and Pd) x (m >>= (\<lambda>rv. y rv))"
apply (rule bisim_guard_imp)
apply (subst gets_bind_ign [symmetric], rule bisim_split)
apply (rule bisim_noop_det_on [OF _ x det_on_gets])
apply (rule hoare_pre, wp)
apply fastforce
apply (rule nf)
apply (rule z)
apply (wp y)+
apply simp+
done
definition
not_empty :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b set \<times> bool) \<Rightarrow> bool"
where
"not_empty P f \<equiv> \<forall>s. P s \<longrightarrow> (fst (f s) \<noteq> {})"
lemma not_emptyE:
"\<lbrakk> not_empty P f; P s; \<And>r s'. \<lbrakk> (r, s') \<in> fst (f s)\<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
unfolding not_empty_def by fastforce
(* ugh *)
lemma not_empty_guard_imp [wp_comb]:
assumes da: "not_empty P' a"
and "\<And>s. P s \<Longrightarrow> P' s"
shows "not_empty P a"
using assms unfolding not_empty_def by auto
lemma not_empty_split [wp_split]:
assumes da: "not_empty Pa a"
and db: "\<And>x. not_empty (Pb x) (b x)"
and v: "\<lbrace>Pb'\<rbrace> a \<lbrace>Pb\<rbrace>"
shows "not_empty (Pa and Pb') (a >>= b)"
unfolding not_empty_def using da
apply -
apply clarsimp
apply (erule (1) not_emptyE)
apply (frule (1) use_valid [OF _ v])
apply (erule not_emptyE [OF da])
apply (erule not_emptyE [OF db])
apply (fastforce simp: bind_def split_def)
done
lemma not_empty_return [wp]:
"not_empty \<top> (return x)"
unfolding not_empty_def
by (simp add: return_def)
lemma not_empty_liftE [wp]:
assumes ne: "not_empty P m"
shows "not_empty P (liftE m)"
unfolding liftE_def
apply (rule not_empty_guard_imp)
apply (wp ne)
apply simp
done
lemma not_empty_lift [wp]:
"(\<And>y. not_empty (P y) (m y)) \<Longrightarrow> not_empty (case_sum (\<lambda>_. \<top>) P x) (lift m x)"
unfolding lift_def
by (auto simp: not_empty_def throwError_def return_def split: sum.splits)
lemma not_empty_assert_opt [wp]:
"not_empty (\<lambda>_. x \<noteq> None) (assert_opt x)"
unfolding not_empty_def assert_opt_def by (fastforce split: option.splits simp: fail_def return_def)
lemma not_empty_gets [wp]:
"not_empty \<top> (gets f)" unfolding not_empty_def
by (clarsimp simp: gets_def return_def bind_def get_def)
(* Set up wpc *)
lemma wpc_helper_not_empty:
"not_empty Q f \<Longrightarrow> wpc_helper (P, P', P'') (Q, Q', Q'') (not_empty P f)"
apply (clarsimp simp: wpc_helper_def not_empty_def)
done
wpc_setup "\<lambda>m. not_empty P m" wpc_helper_not_empty
wpc_setup "\<lambda>m. not_empty P (m >>= c)" wpc_helper_not_empty
lemma bisim_noop:
assumes a: "\<And>s. \<lbrace>Pa and (=) s\<rbrace> a \<lbrace>\<lambda>_. (=) s\<rbrace>"
and b: "\<And>s. \<lbrace>Pb and (=) s\<rbrace> b \<lbrace>\<lambda>_. (=) s\<rbrace>"
and da: "not_empty P a"
and db: "not_empty P' b"
shows "bisim_underlying sr dc (Pa and P) (Pb and P') a b"
using da db
apply -
apply (rule bisim_underlyingI)
apply clarsimp
apply (erule (1) not_emptyE)+
apply (frule use_valid [OF _ a], fastforce)
apply (frule use_valid [OF _ b], fastforce)
apply fastforce
apply clarsimp
apply (erule (1) not_emptyE)+
apply (frule use_valid [OF _ a], fastforce)
apply (frule use_valid [OF _ b], fastforce)
apply fastforce
done
lemma bisim_symb_exec_r:
assumes z: "\<And>rv. bisim_underlying sr r P (Q' rv) x (y rv)"
assumes y: "\<lbrace>P'\<rbrace> m \<lbrace>Q'\<rbrace>"
assumes x: "\<And>s. \<lbrace>Pe and (=) s\<rbrace> m \<lbrace>\<lambda>r. (=) s\<rbrace>"
assumes ne: "not_empty Pd m"
shows "bisim_underlying sr r P (P' and Pe and Pd) x (m >>= (\<lambda>rv. y rv))"
apply (rule bisim_guard_imp)
apply (subst gets_bind_ign [symmetric], rule bisim_split)
apply (rule bisim_noop [OF _ x not_empty_gets])
apply (rule hoare_pre, wp)
apply fastforce
apply (rule ne)
apply (rule z)
apply (wp y)+
apply simp+
done
lemma bisim_not_empty:
assumes bs: "bisim r P P' m m'"
and ne: "not_empty R m"
shows "not_empty (P and P' and R) m'"
unfolding not_empty_def using bs ne
apply clarsimp
apply (erule (1) not_emptyE)
apply (erule_tac s=s and s'=s in bisim_underlyingE1 [where SR = "(=)"])
apply simp+
done
lemma bisim_split_req:
assumes ac: "bisim (=) P P' a c"
and bd: "\<And>r. bisim R (Q r) (Q' r) (b r) (d r)"
and v1: "\<lbrace>S\<rbrace> a \<lbrace>\<lambda>r. Q r and Q' r\<rbrace>"
shows "bisim R (P and S) P' (a >>= b) (c >>= d)"
using ac
apply -
apply (rule bisim_underlyingI)
apply (clarsimp simp: in_monad split_def)
apply (erule bisim_underlyingE1)
apply simp
apply assumption+
apply (frule (1) use_valid [OF _ v1])
apply clarsimp
apply (rule bisim_underlyingE1 [OF bd])
apply simp
apply assumption+
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
apply (clarsimp simp: in_monad split_def)
apply (erule bisim_underlyingE2)
apply simp
apply assumption+
apply (frule (1) use_valid [OF _ v1])
apply clarsimp
apply (rule bisim_underlyingE2 [OF bd])
apply simp
apply assumption+
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
done
lemma bisim_splitE_req:
assumes ac: "bisim (f \<oplus> (=)) P P' a c"
and bd: "\<And>r. bisim (f \<oplus> R) (Q r) (Q' r) (b r) (d r)"
and v1: "\<lbrace>S\<rbrace> a \<lbrace>\<lambda>r. Q r and Q' r\<rbrace>, -"
shows "bisim (f \<oplus> R) (P and S) P' (a >>=E b) (c >>=E d)"
using ac
apply -
apply (simp add: bindE_def lift_def[abs_def])
apply (rule bisim_underlyingI)
apply (clarsimp simp: in_monad split_def)
apply (erule bisim_underlyingE1)
apply simp
apply assumption+
apply (frule (1) use_valid [OF _ v1 [unfolded validE_R_def validE_def]])
apply (clarsimp split: sum.splits)
apply (fastforce simp: in_monad bind_def throwError_def return_def split: sum.splits prod.splits)
apply (rule bisim_underlyingE1 [OF bd])
apply simp
apply assumption+
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
apply (clarsimp simp: in_monad split_def)
apply (erule bisim_underlyingE2)
apply simp
apply assumption+
apply (frule (1) use_valid [OF _ v1 [unfolded validE_R_def validE_def]])
apply clarsimp
apply (clarsimp split: sum.splits)
apply (fastforce simp: in_monad bind_def throwError_def return_def split: sum.splits prod.splits)
apply (rule bisim_underlyingE2 [OF bd])
apply simp
apply assumption+
apply (rename_tac r'' t'')
apply (rule_tac x = "(r'', t'')" in bexI)
apply clarsimp
apply (fastforce simp: in_monad)
done
lemma bisim_symb_exec_r_bs:
assumes bs: "bisim (=) R R' (return ()) m"
and z: "\<And>rv. bisim r P P' x (y rv)"
shows "bisim r (P and R and P') R' x (m >>= (\<lambda>rv. y rv))"
apply (rule bisim_guard_imp)
apply (subst return_bind [symmetric, where f = "\<lambda>(_ :: unit).x"], rule bisim_split_req)
apply (rule bs)
apply (rule z)
apply wp
apply simp
apply simp+
done
end