lh-l4v/tools/asmrefine/GraphLangLemmas.thy

332 lines
13 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory GraphLangLemmas
imports GraphLang CommonOpsLemmas
begin
definition
get_state_function_call :: "(string \<Rightarrow> graph_function option)
\<Rightarrow> (next_node \<times> state \<times> string) \<Rightarrow> string option"
where
"get_state_function_call Gamma x \<equiv> case x of (NextNode nn, st, fname) \<Rightarrow>
(case Gamma fname of Some gf \<Rightarrow>
(case function_graph gf nn of Some (Call _ fname' _ _) \<Rightarrow> Some fname' | _ \<Rightarrow> None)
| None \<Rightarrow> None)
| _ \<Rightarrow> None"
definition
exec_graph_invariant :: "(string \<Rightarrow> graph_function option) \<Rightarrow> string \<Rightarrow> stack \<Rightarrow> bool"
where
"exec_graph_invariant Gamma gf xs = (xs \<noteq> []
\<and> (\<forall>frame \<in> set (tl xs). get_state_function_call Gamma frame \<noteq> None)
\<and> map (Some o snd o snd) xs = map (get_state_function_call Gamma) (tl xs) @ [Some gf])"
lemma exec_graph_invariant_Cons:
"exec_graph_invariant Gamma fname (x # xs) = (if xs = [] then snd (snd x) = fname
else (get_state_function_call Gamma (hd xs) = Some (snd (snd x))
\<and> exec_graph_invariant Gamma fname xs))"
by (cases xs, auto simp add: exec_graph_invariant_def)
lemma exec_step_invariant:
"(stack, stack') \<in> exec_graph_step Gamma
\<Longrightarrow> exec_graph_invariant Gamma gf stack
\<Longrightarrow> exec_graph_invariant Gamma gf stack'"
by (auto simp: all_exec_graph_step_cases exec_graph_invariant_Cons
get_state_function_call_def
split: graph_function.split_asm)
lemma exec_trace_invariant':
"tr \<in> exec_trace Gamma gf
\<Longrightarrow> (\<forall>stack. tr i = Some stack
\<longrightarrow> exec_graph_invariant Gamma gf stack)"
apply (induct i)
apply (clarsimp simp: exec_trace_def exec_graph_invariant_def)
apply (clarsimp split: next_node.split_asm list.split_asm)
apply (clarsimp simp: exec_trace_def nat_trace_rel_def)
apply (drule_tac x=i in spec, clarsimp)
apply (auto elim: exec_step_invariant)
done
lemmas exec_trace_invariant = exec_trace_invariant'[rule_format]
lemma exec_trace_Nil:
"tr \<in> exec_trace Gamma gf \<Longrightarrow> tr i \<noteq> Some []"
apply safe
apply (drule(1) exec_trace_invariant)
apply (simp add: exec_graph_invariant_def)
done
lemma exec_trace_step_cases:
assumes exec: "tr \<in> exec_trace Gamma gf"
shows "((tr i = None \<and> tr (Suc i) = None))
\<or> (\<exists>state. tr i = Some [state] \<and> fst state \<in> {Ret, Err} \<and> tr (Suc i) = None)
\<or> (tr i \<noteq> None \<and> tr (Suc i) \<noteq> None \<and> (the (tr i), the (tr (Suc i))) \<in> exec_graph_step Gamma)"
using exec exec_trace_Nil[OF exec]
apply (clarsimp simp: exec_trace_def nat_trace_rel_def continuing_def Ball_def)
apply (drule_tac x=i in spec)+
apply (auto split: list.split_asm option.split_asm prod.split_asm next_node.split_asm)[1]
done
definition
reachable_step :: "(nat \<Rightarrow> node option) \<Rightarrow> (next_node \<times> next_node) set"
where
"reachable_step graph = {(s, t). (case s of NextNode i \<Rightarrow>
(case graph i of None \<Rightarrow> False
| Some (Cond l r _) \<Rightarrow> (t = l \<or> t = r)
| Some (Basic c _) \<Rightarrow> t = c
| Some (Call c _ _ _) \<Rightarrow> t = c \<or> t = Err) | _ \<Rightarrow> False)}"
abbreviation
"reachable_step' gf \<equiv> reachable_step (function_graph gf)"
lemma exec_trace_None_dom_subset:
"tr n = None \<Longrightarrow> tr \<in> exec_trace Gamma f
\<Longrightarrow> dom tr \<subseteq> {..< n}"
unfolding exec_trace_def
by (blast elim: CollectE dest: trace_None_dom_subset)
lemma trace_Some_dom_superset:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> {..i} \<subseteq> dom tr"
apply (clarsimp, rule ccontr, clarsimp)
apply (drule(1) trace_None_dom_subset)
apply auto
done
lemma nat_trace_rel_final:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> \<not> c' v
\<Longrightarrow> restrict_map tr {.. i} \<in> nat_trace_rel c' R"
apply (frule(1) trace_Some_dom_superset)
apply (clarsimp simp: nat_trace_rel_def restrict_map_def Suc_le_eq)
apply (drule_tac c="Suc n" in subsetD, auto)
done
lemma trace_None_dom_eq:
"tr n = None \<Longrightarrow> tr \<in> nat_trace_rel cont R
\<Longrightarrow> (\<exists>n'. n' \<le> n \<and> dom tr = {..< n'})"
apply (cases "\<forall>i. tr i = None")
apply (rule_tac x=0 in exI)
apply (simp add: fun_eq_iff)
apply clarsimp
apply (rule_tac x="Suc (Max (dom tr))" in exI)
apply (drule(1) nat_trace_Max_dom_None[rotated, simplified, OF exI])
apply clarsimp
apply (frule(1) trace_None_dom_subset)
apply (rule conjI)
apply auto[1]
apply (rule equalityI)
apply (auto simp: less_Suc_eq_le intro!: Max_ge elim: finite_subset)[1]
apply (clarsimp, rule ccontr, clarsimp simp: less_Suc_eq_le)
apply (drule(1) trace_None_dom_subset)+
apply auto
done
lemma trace_end_eq_Some:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> tr (Suc i) = None
\<Longrightarrow> trace_end tr = Some v"
apply (frule(1) trace_Some_dom_superset)
apply (frule(1) trace_None_dom_eq)
apply (clarsimp simp: le_Suc_eq lessThan_Suc_atMost[symmetric])
apply (simp add: trace_end_def)
apply (subst Max_eqI[where x=i], simp_all)
apply auto
done
lemma trace_end_cut:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> trace_end (restrict_map tr {.. i}) = Some v"
apply (frule(1) trace_Some_dom_superset)
apply (simp add: trace_end_def Int_absorb1)
apply (subst Max_eqI[where x=i], simp_all)
apply (simp add: restrict_map_def)
apply (metis Suc_n_not_le_n)
done
definition
trace_drop_n :: "nat \<Rightarrow> nat \<Rightarrow> trace \<Rightarrow> trace"
where
"trace_drop_n start n_drop tr = (\<lambda>i. if (\<forall>j < i. tr (start + j) \<noteq> None
\<and> continuing (rev (drop n_drop (rev (the (tr (start + j)))))))
then option_map (rev o drop n_drop o rev) (tr (i + start)) else None)"
lemma rev_drop_step:
"(stack, stack') \<in> exec_graph_step Gamma
\<Longrightarrow> continuing (rev (drop k (rev stack)))
\<Longrightarrow> (rev (drop k (rev stack)), rev (drop k (rev stack'))) \<in> exec_graph_step Gamma"
apply (subgoal_tac "\<exists>xs ys. stack = xs @ ys \<and> k = length ys")
apply clarsimp
apply (frule(1) exec_graph_step_stack_extend[THEN iffD1])
apply clarsimp
apply (rule_tac x="take (length stack - k) stack" in exI)
apply (rule_tac x="drop (length stack - k) stack" in exI)
apply (cases "length (rev (drop k (rev stack)))")
apply simp
apply simp
done
lemma rev_drop_continuing:
"continuing (rev (drop k (rev stack))) \<Longrightarrow> continuing stack"
by (simp add: continuing_def split: list.split next_node.split,
auto simp: drop_Cons split: nat.split_asm)
lemma all_less_Suc_eq:
"(\<forall>x < Suc i. P x) = (P i \<and> (\<forall>x < i. P x))"
by (auto simp: less_Suc_eq)
lemma exec_trace_drop_n_Cons:
assumes tr: "tr \<in> exec_trace Gamma fn" "Gamma fn'' = Some gf"
shows "tr i = Some ((NextNode n, st, fn'') # xs)
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> trace_drop_n (Suc i) (Suc (length xs)) tr \<in> exec_trace Gamma fn'"
using tr
apply (clarsimp simp: exec_trace_def)
apply (intro conjI)
apply (simp add: trace_drop_n_def)
apply (cut_tac exec_trace_step_cases[where i=i, OF tr(1)])
apply (clarsimp simp: all_exec_graph_step_cases exec_graph_invariant_Cons
split: graph_function.split_asm)
apply (clarsimp simp: nat_trace_rel_def trace_drop_n_def
all_less_Suc_eq
split del: if_split)
apply (cut_tac i="Suc i + na" in exec_trace_Nil[OF tr(1)])
apply (drule_tac x="Suc i + na" in spec)+
apply (clarsimp simp: field_simps)
apply (safe, simp_all)
apply (safe intro!: rev_drop_step)
apply (auto dest!: rev_drop_continuing)
done
lemma exec_trace_drop_n:
assumes tr: "tr \<in> exec_trace Gamma fn" "Gamma fn = Some gf"
shows "tr i = Some [(NextNode n, st, fn'')]
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> trace_drop_n (Suc i) 1 tr \<in> exec_trace Gamma fn'"
apply (frule exec_trace_invariant[OF tr(1)])
apply (simp add: exec_graph_invariant_Cons)
apply (drule(2) exec_trace_drop_n_Cons[OF tr])
apply simp
done
lemma exec_trace_drop_n_rest_Cons:
"tr \<in> exec_trace Gamma fn
\<Longrightarrow> tr i = Some ((NextNode n, st, fn'') # xs)
\<Longrightarrow> Gamma fn'' = Some gf
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> (\<forall>stk. trace_drop_n (Suc i) (Suc (length xs)) tr k = Some stk
\<longrightarrow> tr (Suc i + k) = Some (stk @ (NextNode n, st, fn'') # xs))"
proof (induct k)
case 0 show ?case using 0
apply (clarsimp simp: trace_drop_n_def)
apply (frule_tac i=i in exec_trace_step_cases)
apply (clarsimp simp: exec_graph_step_def exec_graph_invariant_Cons
split: graph_function.split_asm)
done
next
case (Suc k)
have rev_drop_eq: "\<And>xs ys n. length ys = n
\<Longrightarrow> (xs = rev (drop n (rev xs)) @ ys)
= (\<exists>zs. xs = zs @ ys)"
by auto
show ?case using Suc.prems Suc.hyps
apply (clarsimp simp: trace_drop_n_def field_simps)
apply (frule_tac i="Suc k + i" in exec_trace_step_cases)
apply (clarsimp simp: field_simps all_less_Suc_eq rev_drop_eq)
apply (clarsimp simp: exec_graph_step_stack_extend)
done
qed
lemma exec_trace_drop_n_rest:
"tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some gf
\<Longrightarrow> tr i = Some [(NextNode n, st, fn'')]
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> (\<forall>stk. trace_drop_n (Suc i) 1 tr k = Some stk
\<longrightarrow> tr (Suc i + k) = Some (stk @ [(NextNode n, st, fn'')]))"
apply (frule(1) exec_trace_invariant)
apply (clarsimp simp: exec_graph_invariant_Cons)
apply (drule(4) exec_trace_drop_n_rest_Cons)
apply auto
done
lemma trace_drop_n_init:
"tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some f
\<Longrightarrow> function_graph f n = Some (Call nn fname inputs outputs)
\<Longrightarrow> Gamma fname = Some f'
\<Longrightarrow> tr i = Some [(NextNode n, st, fn')]
\<Longrightarrow> trace_drop_n (Suc i) 1 tr 0 = Some [(NextNode (entry_point f'),
init_vars (function_inputs f') inputs st, fname)]"
apply (frule(1) exec_trace_invariant)
apply (clarsimp simp: exec_graph_invariant_Cons)
apply (frule_tac i=i in exec_trace_step_cases, clarsimp)
apply (clarsimp simp: all_exec_graph_step_cases trace_drop_n_def)
done
lemma exec_trace_init:
"tr \<in> exec_trace Gamma fn
\<Longrightarrow> \<exists>st gf. Gamma fn = Some gf \<and> tr 0 = Some [(NextNode (entry_point gf), st, fn)]"
by (clarsimp simp: exec_trace_def)
lemma dom_Max_None:
"tr \<in> exec_trace Gamma f \<Longrightarrow> (tr (Max (dom tr)) \<noteq> None)"
apply (rule notI)
apply (frule(1) exec_trace_None_dom_subset)
apply (cases "dom tr = {}")
apply (clarsimp dest!: exec_trace_init)
apply (drule Max_in[rotated])
apply (simp add: finite_subset)
apply clarsimp
done
lemma trace_end_trace_drop_n_None:
"trace_end (trace_drop_n i j tr) = None \<Longrightarrow> tr \<in> exec_trace Gamma f
\<Longrightarrow> trace_drop_n i j tr \<in> exec_trace Gamma f'
\<Longrightarrow> trace_end tr = None"
apply (clarsimp simp: trace_end_def dom_Max_None split: if_split_asm)
apply (rule ccontr, simp)
apply (drule(1) exec_trace_None_dom_subset)
apply (drule_tac x="n + i + 1" in spec)
apply (clarsimp simp: trace_drop_n_def split: if_split_asm)
apply auto[1]
done
lemma trace_end_trace_drop_n_Some:
"trace_end (trace_drop_n (Suc i) (Suc 0) tr) = Some [(Ret, st', dontcare)]
\<Longrightarrow> tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some f
\<Longrightarrow> function_graph f n = Some (Call nn fname inputs outputs)
\<Longrightarrow> Gamma fname = Some f'
\<Longrightarrow> tr i = Some [(NextNode n, st, fn')]
\<Longrightarrow> \<exists>j. tr (Suc i + j) = Some [(nn, return_vars (function_outputs f') outputs st' st, fn)]
"
apply (frule(4) exec_trace_drop_n)
apply (drule trace_end_SomeD, fastforce simp add: exec_trace_def)
apply clarsimp
apply (frule(4) exec_trace_drop_n_rest, simp, drule spec, drule(1) mp)
apply simp
apply (frule(1) exec_trace_invariant[where stack="[a, b]" for a b])
apply (clarsimp simp: exec_graph_invariant_Cons get_state_function_call_def)
apply (frule_tac i="Suc i + na" in exec_trace_step_cases, clarsimp)
apply (clarsimp simp: all_exec_graph_step_cases)
apply (metis add_Suc_right)
done
end