lh-l4v/lib/sep_algebra/Map_Extra.thy

584 lines
23 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(* Author: Rafal Kolanski, 2008
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
header {* More properties of maps plus map disjuction. *}
theory Map_Extra
imports "~~/src/HOL/Main"
begin
text {*
A note on naming:
Anything not involving heap disjuction can potentially be incorporated
directly into Map.thy, thus uses @{text "m"} for map variable names.
Anything involving heap disjunction is not really mergeable with Map, is
destined for use in separation logic, and hence uses @{text "h"}
*}
section {* Things that could go into Option Type *}
text {* Misc option lemmas *}
lemma None_not_eq: "(None \<noteq> x) = (\<exists>y. x = Some y)" by (cases x) auto
lemma None_com: "(None = x) = (x = None)" by fast
lemma Some_com: "(Some y = x) = (x = Some y)" by fast
section {* Things that go into Map.thy *}
text {* Map intersection: set of all keys for which the maps agree. *}
definition
map_inter :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" (infixl "\<inter>\<^sub>m" 70) where
"m\<^sub>1 \<inter>\<^sub>m m\<^sub>2 \<equiv> {x \<in> dom m\<^sub>1. m\<^sub>1 x = m\<^sub>2 x}"
text {* Map restriction via domain subtraction *}
definition
sub_restrict_map :: "('a \<rightharpoonup> 'b) => 'a set => ('a \<rightharpoonup> 'b)" (infixl "`-" 110)
where
"m `- S \<equiv> (\<lambda>x. if x \<in> S then None else m x)"
subsection {* Properties of maps not related to restriction *}
lemma empty_forall_equiv: "(m = empty) = (\<forall>x. m x = None)"
by (fastforce intro!: ext)
lemma map_le_empty2 [simp]:
"(m \<subseteq>\<^sub>m empty) = (m = empty)"
by (auto simp: map_le_def intro: ext)
lemma dom_iff:
"(\<exists>y. m x = Some y) = (x \<in> dom m)"
by auto
lemma non_dom_eval:
"x \<notin> dom m \<Longrightarrow> m x = None"
by auto
lemma non_dom_eval_eq:
"x \<notin> dom m = (m x = None)"
by auto
lemma map_add_same_left_eq:
"m\<^sub>1 = m\<^sub>1' \<Longrightarrow> (m\<^sub>0 ++ m\<^sub>1 = m\<^sub>0 ++ m\<^sub>1')"
by simp
lemma map_add_left_cancelI [intro!]:
"m\<^sub>1 = m\<^sub>1' \<Longrightarrow> m\<^sub>0 ++ m\<^sub>1 = m\<^sub>0 ++ m\<^sub>1'"
by simp
lemma dom_empty_is_empty:
"(dom m = {}) = (m = empty)"
proof (rule iffI)
assume a: "dom m = {}"
{ assume "m \<noteq> empty"
hence "dom m \<noteq> {}"
by - (subst (asm) empty_forall_equiv, simp add: dom_def)
hence False using a by blast
}
thus "m = empty" by blast
next
assume a: "m = empty"
thus "dom m = {}" by simp
qed
lemma map_add_dom_eq:
"dom m = dom m' \<Longrightarrow> m ++ m' = m'"
by (rule ext) (auto simp: map_add_def split: option.splits)
lemma map_add_right_dom_eq:
"\<lbrakk> m\<^sub>0 ++ m\<^sub>1 = m\<^sub>0' ++ m\<^sub>1'; dom m\<^sub>1 = dom m\<^sub>1' \<rbrakk> \<Longrightarrow> m\<^sub>1 = m\<^sub>1'"
unfolding map_add_def
by (rule ext, rule ccontr,
drule_tac x=x in fun_cong, clarsimp split: option.splits,
drule sym, drule sym, force+)
lemma map_le_same_dom_eq:
"\<lbrakk> m\<^sub>0 \<subseteq>\<^sub>m m\<^sub>1 ; dom m\<^sub>0 = dom m\<^sub>1 \<rbrakk> \<Longrightarrow> m\<^sub>0 = m\<^sub>1"
by (auto intro!: ext simp: map_le_def elim!: ballE)
subsection {* Properties of map restriction *}
lemma restrict_map_cancel:
"(m |` S = m |` T) = (dom m \<inter> S = dom m \<inter> T)"
by (fastforce intro: ext dest: fun_cong
simp: restrict_map_def None_not_eq
split: split_if_asm)
lemma map_add_restricted_self [simp]:
"m ++ m |` S = m"
by (auto intro: ext simp: restrict_map_def map_add_def split: option.splits)
lemma map_add_restrict_dom_right [simp]:
"(m ++ m') |` dom m' = m'"
by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
lemma restrict_map_UNIV [simp]:
"m |` UNIV = m"
by (simp add: restrict_map_def)
lemma restrict_map_dom:
"S = dom m \<Longrightarrow> m |` S = m"
by (auto intro!: ext simp: restrict_map_def None_not_eq)
lemma restrict_map_subdom:
"dom m \<subseteq> S \<Longrightarrow> m |` S = m"
by (fastforce simp: restrict_map_def None_com intro: ext)
lemma map_add_restrict:
"(m\<^sub>0 ++ m\<^sub>1) |` S = ((m\<^sub>0 |` S) ++ (m\<^sub>1 |` S))"
by (force simp: map_add_def restrict_map_def intro: ext)
lemma map_le_restrict:
"m \<subseteq>\<^sub>m m' \<Longrightarrow> m = m' |` dom m"
by (force simp: map_le_def restrict_map_def None_com intro: ext)
lemma restrict_map_le:
"m |` S \<subseteq>\<^sub>m m"
by (auto simp: map_le_def)
lemma restrict_map_remerge:
"\<lbrakk> S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m |` (S \<union> T)"
by (rule ext, clarsimp simp: restrict_map_def map_add_def
split: option.splits)
lemma restrict_map_empty:
"dom m \<inter> S = {} \<Longrightarrow> m |` S = empty"
by (fastforce simp: restrict_map_def intro: ext)
lemma map_add_restrict_comp_right [simp]:
"(m |` S ++ m |` (UNIV - S)) = m"
by (force simp: map_add_def restrict_map_def split: option.splits intro: ext)
lemma map_add_restrict_comp_right_dom [simp]:
"(m |` S ++ m |` (dom m - S)) = m"
by (auto simp: map_add_def restrict_map_def split: option.splits intro!: ext)
lemma map_add_restrict_comp_left [simp]:
"(m |` (UNIV - S) ++ m |` S) = m"
by (subst map_add_comm, auto)
lemma restrict_self_UNIV:
"m |` (dom m - S) = m |` (UNIV - S)"
by (auto intro!: ext simp: restrict_map_def)
lemma map_add_restrict_nonmember_right:
"x \<notin> dom m' \<Longrightarrow> (m ++ m') |` {x} = m |` {x}"
by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
lemma map_add_restrict_nonmember_left:
"x \<notin> dom m \<Longrightarrow> (m ++ m') |` {x} = m' |` {x}"
by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
lemma map_add_restrict_right:
"x \<subseteq> dom m' \<Longrightarrow> (m ++ m') |` x = m' |` x"
by (rule ext, auto simp: restrict_map_def map_add_def split: option.splits)
lemma restrict_map_compose:
"\<lbrakk> S \<union> T = dom m ; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` S ++ m |` T = m"
by (fastforce intro: ext simp: map_add_def restrict_map_def)
lemma map_le_dom_subset_restrict:
"\<lbrakk> m' \<subseteq>\<^sub>m m; dom m' \<subseteq> S \<rbrakk> \<Longrightarrow> m' \<subseteq>\<^sub>m (m |` S)"
by (force simp: restrict_map_def map_le_def)
lemma map_le_dom_restrict_sub_add:
"m' \<subseteq>\<^sub>m m \<Longrightarrow> m |` (dom m - dom m') ++ m' = m"
by (auto simp: None_com map_add_def restrict_map_def map_le_def
split: option.splits
intro!: ext)
(force simp: Some_com)+
lemma subset_map_restrict_sub_add:
"T \<subseteq> S \<Longrightarrow> m |` (S - T) ++ m |` T = m |` S"
by (auto simp: restrict_map_def map_add_def intro!: ext split: option.splits)
lemma restrict_map_sub_union:
"m |` (dom m - (S \<union> T)) = (m |` (dom m - T)) |` (dom m - S)"
by (auto intro!: ext simp: restrict_map_def)
lemma prod_restrict_map_add:
"\<lbrakk> S \<union> T = U; S \<inter> T = {} \<rbrakk> \<Longrightarrow> m |` (X \<times> S) ++ m |` (X \<times> T) = m |` (X \<times> U)"
by (auto simp: map_add_def restrict_map_def intro!: ext split: option.splits)
section {* Things that should not go into Map.thy (separation logic) *}
subsection {* Definitions *}
text {* Map disjuction *}
definition
map_disj :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool" (infix "\<bottom>" 51) where
"h\<^sub>0 \<bottom> h\<^sub>1 \<equiv> dom h\<^sub>0 \<inter> dom h\<^sub>1 = {}"
declare None_not_eq [simp]
subsection {* Properties of @{term "sub_restrict_map"} *}
lemma restrict_map_sub_disj: "h |` S \<bottom> h `- S"
by (fastforce simp: sub_restrict_map_def restrict_map_def map_disj_def
split: option.splits split_if_asm)
lemma restrict_map_sub_add: "h |` S ++ h `- S = h"
by (fastforce simp: sub_restrict_map_def restrict_map_def map_add_def
split: option.splits split_if
intro: ext)
subsection {* Properties of map disjunction *}
lemma map_disj_empty_right [simp]:
"h \<bottom> empty"
by (simp add: map_disj_def)
lemma map_disj_empty_left [simp]:
"empty \<bottom> h"
by (simp add: map_disj_def)
lemma map_disj_com:
"h\<^sub>0 \<bottom> h\<^sub>1 = h\<^sub>1 \<bottom> h\<^sub>0"
by (simp add: map_disj_def, fast)
lemma map_disjD:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> dom h\<^sub>0 \<inter> dom h\<^sub>1 = {}"
by (simp add: map_disj_def)
lemma map_disjI:
"dom h\<^sub>0 \<inter> dom h\<^sub>1 = {} \<Longrightarrow> h\<^sub>0 \<bottom> h\<^sub>1"
by (simp add: map_disj_def)
subsection {* Map associativity-commutativity based on map disjuction *}
lemma map_add_com:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 ++ h\<^sub>1 = h\<^sub>1 ++ h\<^sub>0"
by (drule map_disjD, rule map_add_comm, force)
lemma map_add_left_commute:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 ++ (h\<^sub>1 ++ h\<^sub>2) = h\<^sub>1 ++ (h\<^sub>0 ++ h\<^sub>2)"
by (simp add: map_add_com map_disj_com map_add_assoc)
lemma map_add_disj:
"h\<^sub>0 \<bottom> (h\<^sub>1 ++ h\<^sub>2) = (h\<^sub>0 \<bottom> h\<^sub>1 \<and> h\<^sub>0 \<bottom> h\<^sub>2)"
by (simp add: map_disj_def, fast)
lemma map_add_disj':
"(h\<^sub>1 ++ h\<^sub>2) \<bottom> h\<^sub>0 = (h\<^sub>1 \<bottom> h\<^sub>0 \<and> h\<^sub>2 \<bottom> h\<^sub>0)"
by (simp add: map_disj_def, fast)
text {*
We redefine @{term "map_add"} associativity to bind to the right, which
seems to be the more common case.
Note that when a theory includes Map again, @{text "map_add_assoc"} will
return to the simpset and will cause infinite loops if its symmetric
counterpart is added (e.g. via @{text "map_add_ac"})
*}
declare map_add_assoc [simp del]
text {*
Since the associativity-commutativity of @{term "map_add"} relies on
map disjunction, we include some basic rules into the ac set.
*}
lemmas map_add_ac =
map_add_assoc[symmetric] map_add_com map_disj_com
map_add_left_commute map_add_disj map_add_disj'
subsection {* Basic properties *}
lemma map_disj_None_right:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; x \<in> dom h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>1 x = None"
by (auto simp: map_disj_def dom_def)
lemma map_disj_None_left:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; x \<in> dom h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>0 x = None"
by (auto simp: map_disj_def dom_def)
lemma map_disj_None_left':
"\<lbrakk> h\<^sub>0 x = Some y ; h\<^sub>1 \<bottom> h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>1 x = None "
by (auto simp: map_disj_def)
lemma map_disj_None_right':
"\<lbrakk> h\<^sub>1 x = Some y ; h\<^sub>1 \<bottom> h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>0 x = None "
by (auto simp: map_disj_def)
lemma map_disj_common:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; h\<^sub>0 p = Some v ; h\<^sub>1 p = Some v' \<rbrakk> \<Longrightarrow> False"
by (frule (1) map_disj_None_left', simp)
lemma map_disj_eq_dom_left:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; dom h\<^sub>0' = dom h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>0' \<bottom> h\<^sub>1"
by (auto simp: map_disj_def)
subsection {* Map disjunction and addition *}
lemma map_add_eval_left:
"\<lbrakk> x \<in> dom h ; h \<bottom> h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
by (auto dest!: map_disj_None_right simp: map_add_def cong: option.case_cong)
lemma map_add_eval_right:
"\<lbrakk> x \<in> dom h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
by (auto elim!: map_disjD simp: map_add_comm map_add_eval_left map_disj_com)
lemma map_add_eval_left':
"\<lbrakk> x \<notin> dom h' \<rbrakk> \<Longrightarrow> (h ++ h') x = h x"
by (clarsimp simp: map_disj_def map_add_def split: option.splits)
lemma map_add_eval_right':
"\<lbrakk> x \<notin> dom h \<rbrakk> \<Longrightarrow> (h ++ h') x = h' x"
by (clarsimp simp: map_disj_def map_add_def split: option.splits)
lemma map_add_left_dom_eq:
assumes eq: "h\<^sub>0 ++ h\<^sub>1 = h\<^sub>0' ++ h\<^sub>1'"
assumes etc: "h\<^sub>0 \<bottom> h\<^sub>1" "h\<^sub>0' \<bottom> h\<^sub>1'" "dom h\<^sub>0 = dom h\<^sub>0'"
shows "h\<^sub>0 = h\<^sub>0'"
proof -
from eq have "h\<^sub>1 ++ h\<^sub>0 = h\<^sub>1' ++ h\<^sub>0'" using etc by (simp add: map_add_ac)
thus ?thesis using etc
by (fastforce elim!: map_add_right_dom_eq simp: map_add_ac)
qed
lemma map_add_left_eq:
assumes eq: "h\<^sub>0 ++ h = h\<^sub>1 ++ h"
assumes disj: "h\<^sub>0 \<bottom> h" "h\<^sub>1 \<bottom> h"
shows "h\<^sub>0 = h\<^sub>1"
proof (rule ext)
fix x
from eq have eq': "(h\<^sub>0 ++ h) x = (h\<^sub>1 ++ h) x" by (auto intro!: ext)
{ assume "x \<in> dom h"
hence "h\<^sub>0 x = h\<^sub>1 x" using disj by (simp add: map_disj_None_left)
} moreover {
assume "x \<notin> dom h"
hence "h\<^sub>0 x = h\<^sub>1 x" using disj eq' by (simp add: map_add_eval_left')
}
ultimately show "h\<^sub>0 x = h\<^sub>1 x" by cases
qed
lemma map_add_right_eq:
"\<lbrakk>h ++ h\<^sub>0 = h ++ h\<^sub>1; h\<^sub>0 \<bottom> h; h\<^sub>1 \<bottom> h\<rbrakk> \<Longrightarrow> h\<^sub>0 = h\<^sub>1"
by (rule_tac h=h in map_add_left_eq, auto simp: map_add_ac)
lemma map_disj_add_eq_dom_right_eq:
assumes merge: "h\<^sub>0 ++ h\<^sub>1 = h\<^sub>0' ++ h\<^sub>1'" and d: "dom h\<^sub>0 = dom h\<^sub>0'" and
ab_disj: "h\<^sub>0 \<bottom> h\<^sub>1" and cd_disj: "h\<^sub>0' \<bottom> h\<^sub>1'"
shows "h\<^sub>1 = h\<^sub>1'"
proof (rule ext)
fix x
from merge have merge_x: "(h\<^sub>0 ++ h\<^sub>1) x = (h\<^sub>0' ++ h\<^sub>1') x" by simp
with d ab_disj cd_disj show "h\<^sub>1 x = h\<^sub>1' x"
by - (case_tac "h\<^sub>1 x", case_tac "h\<^sub>1' x", simp, fastforce simp: map_disj_def,
case_tac "h\<^sub>1' x", clarsimp, simp add: Some_com,
force simp: map_disj_def, simp)
qed
lemma map_disj_add_eq_dom_left_eq:
assumes add: "h\<^sub>0 ++ h\<^sub>1 = h\<^sub>0' ++ h\<^sub>1'" and
dom: "dom h\<^sub>1 = dom h\<^sub>1'" and
disj: "h\<^sub>0 \<bottom> h\<^sub>1" "h\<^sub>0' \<bottom> h\<^sub>1'"
shows "h\<^sub>0 = h\<^sub>0'"
proof -
have "h\<^sub>1 ++ h\<^sub>0 = h\<^sub>1' ++ h\<^sub>0'" using add disj by (simp add: map_add_ac)
thus ?thesis using dom disj
by - (rule map_disj_add_eq_dom_right_eq, auto simp: map_disj_com)
qed
lemma map_add_left_cancel:
assumes disj: "h\<^sub>0 \<bottom> h\<^sub>1" "h\<^sub>0 \<bottom> h\<^sub>1'"
shows "(h\<^sub>0 ++ h\<^sub>1 = h\<^sub>0 ++ h\<^sub>1') = (h\<^sub>1 = h\<^sub>1')"
proof (rule iffI, rule ext)
fix x
assume "(h\<^sub>0 ++ h\<^sub>1) = (h\<^sub>0 ++ h\<^sub>1')"
hence "(h\<^sub>0 ++ h\<^sub>1) x = (h\<^sub>0 ++ h\<^sub>1') x" by (auto intro!: ext)
hence "h\<^sub>1 x = h\<^sub>1' x" using disj
by - (cases "x \<in> dom h\<^sub>0",
simp_all add: map_disj_None_right map_add_eval_right')
thus "h\<^sub>1 x = h\<^sub>1' x" by (auto intro!: ext)
qed auto
lemma map_add_lr_disj:
"\<lbrakk> h\<^sub>0 ++ h\<^sub>1 = h\<^sub>0' ++ h\<^sub>1'; h\<^sub>1 \<bottom> h\<^sub>1' \<rbrakk> \<Longrightarrow> dom h\<^sub>1 \<subseteq> dom h\<^sub>0'"
by (clarsimp simp: map_disj_def map_add_def, drule_tac x=x in fun_cong)
(auto split: option.splits)
subsection {* Map disjunction and map updates *}
lemma map_disj_update_left [simp]:
"p \<in> dom h\<^sub>1 \<Longrightarrow> h\<^sub>0 \<bottom> h\<^sub>1(p \<mapsto> v) = h\<^sub>0 \<bottom> h\<^sub>1"
by (clarsimp simp add: map_disj_def, blast)
lemma map_disj_update_right [simp]:
"p \<in> dom h\<^sub>1 \<Longrightarrow> h\<^sub>1(p \<mapsto> v) \<bottom> h\<^sub>0 = h\<^sub>1 \<bottom> h\<^sub>0"
by (simp add: map_disj_com)
lemma map_add_update_left:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; p \<in> dom h\<^sub>0 \<rbrakk> \<Longrightarrow> (h\<^sub>0 ++ h\<^sub>1)(p \<mapsto> v) = (h\<^sub>0(p \<mapsto> v) ++ h\<^sub>1)"
by (drule (1) map_disj_None_right)
(auto intro: ext simp: map_add_def cong: option.case_cong)
lemma map_add_update_right:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; p \<in> dom h\<^sub>1 \<rbrakk> \<Longrightarrow> (h\<^sub>0 ++ h\<^sub>1)(p \<mapsto> v) = (h\<^sub>0 ++ h\<^sub>1 (p \<mapsto> v))"
by (drule (1) map_disj_None_left)
(auto intro: ext simp: map_add_def cong: option.case_cong)
lemma map_add3_update:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; h\<^sub>1 \<bottom> h\<^sub>2 ; h\<^sub>0 \<bottom> h\<^sub>2 ; p \<in> dom h\<^sub>0 \<rbrakk>
\<Longrightarrow> (h\<^sub>0 ++ h\<^sub>1 ++ h\<^sub>2)(p \<mapsto> v) = h\<^sub>0(p \<mapsto> v) ++ h\<^sub>1 ++ h\<^sub>2"
by (auto simp: map_add_update_left[symmetric] map_add_ac)
subsection {* Map disjunction and @{term "map_le"} *}
lemma map_le_override [simp]:
"\<lbrakk> h \<bottom> h' \<rbrakk> \<Longrightarrow> h \<subseteq>\<^sub>m h ++ h'"
by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
lemma map_leI_left:
"\<lbrakk> h = h\<^sub>0 ++ h\<^sub>1 ; h\<^sub>0 \<bottom> h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>0 \<subseteq>\<^sub>m h" by auto
lemma map_leI_right:
"\<lbrakk> h = h\<^sub>0 ++ h\<^sub>1 ; h\<^sub>0 \<bottom> h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>1 \<subseteq>\<^sub>m h" by auto
lemma map_disj_map_le:
"\<lbrakk> h\<^sub>0' \<subseteq>\<^sub>m h\<^sub>0; h\<^sub>0 \<bottom> h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>0' \<bottom> h\<^sub>1"
by (force simp: map_disj_def map_le_def)
lemma map_le_on_disj_left:
"\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^sub>0 \<bottom> h\<^sub>1 ; h' = h\<^sub>0 ++ h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>0 \<subseteq>\<^sub>m h"
unfolding map_le_def
by (rule ballI, erule_tac x=a in ballE, auto simp: map_add_eval_left)+
lemma map_le_on_disj_right:
"\<lbrakk> h' \<subseteq>\<^sub>m h ; h\<^sub>0 \<bottom> h\<^sub>1 ; h' = h\<^sub>1 ++ h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>0 \<subseteq>\<^sub>m h"
by (auto simp: map_le_on_disj_left map_add_ac)
lemma map_le_add_cancel:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1 ; h\<^sub>0' \<subseteq>\<^sub>m h\<^sub>0 \<rbrakk> \<Longrightarrow> h\<^sub>0' ++ h\<^sub>1 \<subseteq>\<^sub>m h\<^sub>0 ++ h\<^sub>1"
by (auto simp: map_le_def map_add_def map_disj_def split: option.splits)
lemma map_le_override_bothD:
assumes subm: "h\<^sub>0' ++ h\<^sub>1 \<subseteq>\<^sub>m h\<^sub>0 ++ h\<^sub>1"
assumes disj': "h\<^sub>0' \<bottom> h\<^sub>1"
assumes disj: "h\<^sub>0 \<bottom> h\<^sub>1"
shows "h\<^sub>0' \<subseteq>\<^sub>m h\<^sub>0"
unfolding map_le_def
proof (rule ballI)
fix a
assume a: "a \<in> dom h\<^sub>0'"
hence sumeq: "(h\<^sub>0' ++ h\<^sub>1) a = (h\<^sub>0 ++ h\<^sub>1) a"
using subm unfolding map_le_def by auto
from a have "a \<notin> dom h\<^sub>1" using disj' by (auto dest!: map_disj_None_right)
thus "h\<^sub>0' a = h\<^sub>0 a" using a sumeq disj disj'
by (simp add: map_add_eval_left map_add_eval_left')
qed
lemma map_le_conv:
"(h\<^sub>0' \<subseteq>\<^sub>m h\<^sub>0 \<and> h\<^sub>0' \<noteq> h\<^sub>0) = (\<exists>h\<^sub>1. h\<^sub>0 = h\<^sub>0' ++ h\<^sub>1 \<and> h\<^sub>0' \<bottom> h\<^sub>1 \<and> h\<^sub>0' \<noteq> h\<^sub>0)"
unfolding map_le_def map_disj_def map_add_def
by (rule iffI,
clarsimp intro!: exI[where x="\<lambda>x. if x \<notin> dom h\<^sub>0' then h\<^sub>0 x else None"])
(fastforce intro: ext intro: split: option.splits split_if_asm)+
lemma map_le_conv2:
"h\<^sub>0' \<subseteq>\<^sub>m h\<^sub>0 = (\<exists>h\<^sub>1. h\<^sub>0 = h\<^sub>0' ++ h\<^sub>1 \<and> h\<^sub>0' \<bottom> h\<^sub>1)"
by (case_tac "h\<^sub>0'=h\<^sub>0", insert map_le_conv, auto intro: exI[where x=empty])
subsection {* Map disjunction and restriction *}
lemma map_disj_comp [simp]:
"h\<^sub>0 \<bottom> h\<^sub>1 |` (UNIV - dom h\<^sub>0)"
by (force simp: map_disj_def)
lemma restrict_map_disj:
"S \<inter> T = {} \<Longrightarrow> h |` S \<bottom> h |` T"
by (auto simp: map_disj_def restrict_map_def dom_def)
lemma map_disj_restrict_dom [simp]:
"h\<^sub>0 \<bottom> h\<^sub>1 |` (dom h\<^sub>1 - dom h\<^sub>0)"
by (force simp: map_disj_def)
lemma restrict_map_disj_dom_empty:
"h \<bottom> h' \<Longrightarrow> h |` dom h' = empty"
by (fastforce simp: map_disj_def restrict_map_def intro: ext)
lemma restrict_map_univ_disj_eq:
"h \<bottom> h' \<Longrightarrow> h |` (UNIV - dom h') = h"
by (rule ext, auto simp: map_disj_def restrict_map_def)
lemma restrict_map_disj_dom:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h |` dom h\<^sub>0 \<bottom> h |` dom h\<^sub>1"
by (auto simp: map_disj_def restrict_map_def dom_def)
lemma map_add_restrict_dom_left:
"h \<bottom> h' \<Longrightarrow> (h ++ h') |` dom h = h"
by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
split: option.splits)
lemma map_add_restrict_dom_left':
"h \<bottom> h' \<Longrightarrow> S = dom h \<Longrightarrow> (h ++ h') |` S = h"
by (rule ext, auto simp: restrict_map_def map_add_def dom_def map_disj_def
split: option.splits)
lemma restrict_map_disj_left:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 |` S \<bottom> h\<^sub>1"
by (auto simp: map_disj_def)
lemma restrict_map_disj_right:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 \<bottom> h\<^sub>1 |` S"
by (auto simp: map_disj_def)
lemmas restrict_map_disj_both = restrict_map_disj_right restrict_map_disj_left
lemma map_dom_disj_restrict_right:
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> (h\<^sub>0 ++ h\<^sub>0') |` dom h\<^sub>1 = h\<^sub>0' |` dom h\<^sub>1"
by (simp add: map_add_restrict restrict_map_empty map_disj_def)
lemma restrict_map_on_disj:
"h\<^sub>0' \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 |` dom h\<^sub>0' \<bottom> h\<^sub>1"
unfolding map_disj_def by auto
lemma restrict_map_on_disj':
"h\<^sub>0 \<bottom> h\<^sub>1 \<Longrightarrow> h\<^sub>0 \<bottom> h\<^sub>1 |` S"
by (auto simp: map_disj_def map_add_def)
lemma map_le_sub_dom:
"\<lbrakk> h\<^sub>0 ++ h\<^sub>1 \<subseteq>\<^sub>m h ; h\<^sub>0 \<bottom> h\<^sub>1 \<rbrakk> \<Longrightarrow> h\<^sub>0 \<subseteq>\<^sub>m h |` (dom h - dom h\<^sub>1)"
by (rule map_le_override_bothD, subst map_le_dom_restrict_sub_add)
(auto elim: map_add_le_mapE simp: map_add_ac)
lemma map_submap_break:
"\<lbrakk> h \<subseteq>\<^sub>m h' \<rbrakk> \<Longrightarrow> h' = (h' |` (UNIV - dom h)) ++ h"
by (fastforce intro!: ext split: option.splits
simp: map_le_restrict restrict_map_def map_le_def map_add_def
dom_def)
lemma map_add_disj_restrict_both:
"\<lbrakk> h\<^sub>0 \<bottom> h\<^sub>1; S \<inter> S' = {}; T \<inter> T' = {} \<rbrakk>
\<Longrightarrow> (h\<^sub>0 |` S) ++ (h\<^sub>1 |` T) \<bottom> (h\<^sub>0 |` S') ++ (h\<^sub>1 |` T')"
by (auto simp: map_add_ac intro!: restrict_map_disj_both restrict_map_disj)
end