lh-l4v/lib/sep_algebra/Sep_Heap_Instance.thy

153 lines
3.9 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* Author: Gerwin Klein, 2012
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
chapter "Standard Heaps as an Instance of Separation Algebra"
theory Sep_Heap_Instance
imports Separation_Algebra
begin
text \<open>
Example instantiation of a the separation algebra to a map, i.e.\ a
function from any type to @{typ "'a option"}.
\<close>
class opt =
fixes none :: 'a
begin
definition "domain f \<equiv> {x. f x \<noteq> none}"
end
instantiation option :: (type) opt
begin
definition none_def [simp]: "none \<equiv> None"
instance ..
end
instantiation "fun" :: (type, opt) zero
begin
definition zero_fun_def: "0 \<equiv> \<lambda>s. none"
instance ..
end
instantiation "fun" :: (type, opt) sep_algebra
begin
definition
plus_fun_def: "m1 + m2 \<equiv> \<lambda>x. if m2 x = none then m1 x else m2 x"
definition
sep_disj_fun_def: "sep_disj m1 m2 \<equiv> domain m1 \<inter> domain m2 = {}"
instance
apply intro_classes
apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
apply (fastforce simp: sep_disj_fun_def)
apply (simp add: plus_fun_def zero_fun_def)
apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
apply (rule ext)
apply fastforce
apply (rule ext)
apply (simp add: plus_fun_def)
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
apply fastforce
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
apply fastforce
done
end
text \<open>
For the actual option type @{const domain} and @{text "+"} are
just @{const dom} and @{text "++"}:
\<close>
lemma domain_conv: "domain = dom"
by (rule ext) (simp add: domain_def dom_def)
lemma plus_fun_conv: "a + b = a ++ b"
by (auto simp: plus_fun_def map_add_def split: option.splits)
lemmas map_convs = domain_conv plus_fun_conv
text \<open>
Any map can now act as a separation heap without further work:
\<close>
lemma
fixes h :: "(nat => nat) => 'foo option"
shows "(P ** Q ** H) h = (Q ** H ** P) h"
by (simp add: sep_conj_ac)
section \<open>@{typ unit} Instantiation\<close>
text \<open>
The @{typ unit} type also forms a separation algebra. Although
typically not useful as a state space by itself, it may be
a type parameter to more complex state space.
\<close>
instantiation "unit" :: stronger_sep_algebra
begin
definition "plus_unit (a :: unit) (b :: unit) \<equiv> ()"
definition "sep_disj_unit (a :: unit) (b :: unit) \<equiv> True"
instance
apply intro_classes
apply (simp add: plus_unit_def sep_disj_unit_def)+
done
end
lemma unit_disj_sep_unit [simp]: "(a :: unit) ## b"
by (clarsimp simp: sep_disj_unit_def)
lemma unit_plus_unit [simp]: "(a :: unit) + b = ()"
by (rule unit_eq)
section \<open>@{typ "'a option"} Instantiation\<close>
text \<open>
The @{typ "'a option"} is a seperation algebra, with @{term None}
indicating emptyness.
\<close>
instantiation option :: (type) stronger_sep_algebra
begin
definition
"zero_option \<equiv> None"
definition
"plus_option (a :: 'a option) (b :: 'a option) \<equiv> (case b of None \<Rightarrow> a | Some x \<Rightarrow> b)"
definition
"sep_disj_option (a :: 'a option) (b :: 'a option) \<equiv> a = None \<or> b = None"
instance
by intro_classes
(auto simp: zero_option_def sep_disj_option_def plus_option_def split: option.splits)
end
lemma disj_sep_None [simp]:
"a ## None"
"None ## a"
by (auto simp: sep_disj_option_def)
lemma disj_sep_Some_Some [simp]:
"\<not> (Some a ## Some b)"
by (auto simp: sep_disj_option_def)
lemma None_plus [simp]:
"a + None = a"
"None + a = a"
by (auto simp: plus_option_def split: option.splits)
lemma None_plus_distrib:
"(a :: 'a option) + (b + c) = (a + b) + c"
by (clarsimp simp: plus_option_def split: option.splits)
end