lh-l4v/lib/Word_Lib/Word_Lemmas.thy

1932 lines
76 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
section "Lemmas with Generic Word Length"
theory Word_Lemmas
imports
Type_Syntax
Signed_Division_Word
Signed_Words
More_Word
Most_significant_bit
Enumeration_Word
Aligned
Bit_Shifts_Infix_Syntax
Boolean_Inequalities
Word_EqI
begin
lemmas take_bit_Suc_numeral[simp] = take_bit_Suc[where a="numeral w" for w]
context
includes bit_operations_syntax
begin
lemma word_max_le_or:
"max x y \<le> x OR y" for x :: "'a::len word"
by (simp add: word_bool_le_funs)
lemma word_and_le_min:
"x AND y \<le> min x y" for x :: "'a::len word"
by (simp add: word_bool_le_funs)
lemma word_not_le_eq:
"(NOT x \<le> y) = (NOT y \<le> x)" for x :: "'a::len word"
by transfer (auto simp: take_bit_not_eq_mask_diff)
lemma word_not_le_not_eq[simp]:
"(NOT y \<le> NOT x) = (x \<le> y)" for x :: "'a::len word"
by (subst word_not_le_eq) simp
lemma not_min_eq:
"NOT (min x y) = max (NOT x) (NOT y)" for x :: "'a::len word"
unfolding min_def max_def
by auto
lemma not_max_eq:
"NOT (max x y) = min (NOT x) (NOT y)" for x :: "'a::len word"
unfolding min_def max_def
by auto
lemma ucast_le_ucast_eq:
fixes x y :: "'a::len word"
assumes x: "x < 2 ^ n"
assumes y: "y < 2 ^ n"
assumes n: "n = LENGTH('b::len)"
shows "(UCAST('a \<rightarrow> 'b) x \<le> UCAST('a \<rightarrow> 'b) y) = (x \<le> y)"
apply (rule iffI)
apply (cases "LENGTH('b) < LENGTH('a)")
apply (subst less_mask_eq[OF x, symmetric])
apply (subst less_mask_eq[OF y, symmetric])
apply (unfold n)
apply (subst ucast_ucast_mask[symmetric])+
apply (simp add: ucast_le_ucast)+
apply (erule ucast_mono_le[OF _ y[unfolded n]])
done
lemma ucast_zero_is_aligned:
\<open>is_aligned w n\<close> if \<open>UCAST('a::len \<rightarrow> 'b::len) w = 0\<close> \<open>n \<le> LENGTH('b)\<close>
proof (rule is_aligned_bitI)
fix q
assume \<open>q < n\<close>
moreover have \<open>bit (UCAST('a::len \<rightarrow> 'b::len) w) q = bit 0 q\<close>
using that by simp
with \<open>q < n\<close> \<open>n \<le> LENGTH('b)\<close> show \<open>\<not> bit w q\<close>
by (simp add: bit_simps)
qed
lemma unat_ucast_eq_unat_and_mask:
"unat (UCAST('b::len \<rightarrow> 'a::len) w) = unat (w AND mask LENGTH('a))"
apply (simp flip: take_bit_eq_mask)
apply transfer
apply (simp add: ac_simps)
done
lemma le_max_word_ucast_id:
\<open>UCAST('b \<rightarrow> 'a) (UCAST('a \<rightarrow> 'b) x) = x\<close>
if \<open>x \<le> UCAST('b::len \<rightarrow> 'a) (- 1)\<close>
for x :: \<open>'a::len word\<close>
proof -
from that have a1: \<open>x \<le> word_of_int (uint (word_of_int (2 ^ LENGTH('b) - 1) :: 'b word))\<close>
by (simp add: of_int_mask_eq)
have f2: "((\<exists>i ia. (0::int) \<le> i \<and> \<not> 0 \<le> i + - 1 * ia \<and> i mod ia \<noteq> i) \<or>
\<not> (0::int) \<le> - 1 + 2 ^ LENGTH('b) \<or> (0::int) \<le> - 1 + 2 ^ LENGTH('b) + - 1 * 2 ^ LENGTH('b) \<or>
(- (1::int) + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b) =
- 1 + 2 ^ LENGTH('b)) = ((\<exists>i ia. (0::int) \<le> i \<and> \<not> 0 \<le> i + - 1 * ia \<and> i mod ia \<noteq> i) \<or>
\<not> (1::int) \<le> 2 ^ LENGTH('b) \<or>
2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)) = 1)"
by force
have f3: "\<forall>i ia. \<not> (0::int) \<le> i \<or> 0 \<le> i + - 1 * ia \<or> i mod ia = i"
using mod_pos_pos_trivial by force
have "(1::int) \<le> 2 ^ LENGTH('b)"
by simp
then have "2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ len_of TYPE ('b)) = 1"
using f3 f2 by blast
then have f4: "- (1::int) + 2 ^ LENGTH('b) = (- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)"
by linarith
have f5: "x \<le> word_of_int (uint (word_of_int (- 1 + 2 ^ LENGTH('b))::'b word))"
using a1 by force
have f6: "2 ^ LENGTH('b) + - (1::int) = - 1 + 2 ^ LENGTH('b)"
by force
have f7: "- (1::int) * 1 = - 1"
by auto
have "\<forall>x0 x1. (x1::int) - x0 = x1 + - 1 * x0"
by force
then have "x \<le> 2 ^ LENGTH('b) - 1"
using f7 f6 f5 f4 by (metis uint_word_of_int wi_homs(2) word_arith_wis(8) word_of_int_2p)
then have \<open>uint x \<le> uint (2 ^ LENGTH('b) - (1 :: 'a word))\<close>
by (simp add: word_le_def)
then have \<open>uint x \<le> 2 ^ LENGTH('b) - 1\<close>
by (simp add: uint_word_ariths)
(metis \<open>1 \<le> 2 ^ LENGTH('b)\<close> \<open>uint x \<le> uint (2 ^ LENGTH('b) - 1)\<close> linorder_not_less lt2p_lem uint_1 uint_minus_simple_alt uint_power_lower word_le_def zle_diff1_eq)
then show ?thesis
apply (simp add: unsigned_ucast_eq take_bit_word_eq_self_iff)
apply (meson \<open>x \<le> 2 ^ LENGTH('b) - 1\<close> not_le word_less_sub_le)
done
qed
lemma uint_shiftr_eq:
\<open>uint (w >> n) = uint w div 2 ^ n\<close>
by word_eqI
lemma bit_shiftl_word_iff [bit_simps]:
\<open>bit (w << m) n \<longleftrightarrow> m \<le> n \<and> n < LENGTH('a) \<and> bit w (n - m)\<close>
for w :: \<open>'a::len word\<close>
by (simp add: bit_simps)
lemma bit_shiftr_word_iff:
\<open>bit (w >> m) n \<longleftrightarrow> bit w (m + n)\<close>
for w :: \<open>'a::len word\<close>
by (simp add: bit_simps)
lemma uint_sshiftr_eq:
\<open>uint (w >>> n) = take_bit LENGTH('a) (sint w div 2 ^ n)\<close>
for w :: \<open>'a::len word\<close>
by (word_eqI_solve dest: test_bit_lenD)
lemma sshiftr_n1: "-1 >>> n = -1"
by (simp add: sshiftr_def)
lemma nth_sshiftr:
"bit (w >>> m) n = (n < size w \<and> (if n + m \<ge> size w then bit w (size w - 1) else bit w (n + m)))"
apply (auto simp add: bit_simps word_size ac_simps not_less)
apply (meson bit_imp_le_length bit_shiftr_word_iff leD)
done
lemma sshiftr_numeral:
\<open>(numeral k >>> numeral n :: 'a::len word) =
word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral k) >> numeral n)\<close>
using signed_drop_bit_word_numeral [of n k] by (simp add: sshiftr_def shiftr_def)
lemma sshiftr_div_2n: "sint (w >>> n) = sint w div 2 ^ n"
by word_eqI (cases \<open>n < LENGTH('a)\<close>; fastforce simp: le_diff_conv2)
lemma mask_eq:
\<open>mask n = (1 << n) - (1 :: 'a::len word)\<close>
by (simp add: mask_eq_exp_minus_1 shiftl_def)
lemma nth_shiftl': "bit (w << m) n \<longleftrightarrow> n < size w \<and> n >= m \<and> bit w (n - m)"
for w :: "'a::len word"
by (simp add: bit_simps word_size ac_simps)
lemmas nth_shiftl = nth_shiftl' [unfolded word_size]
lemma nth_shiftr: "bit (w >> m) n = bit w (n + m)"
for w :: "'a::len word"
by (simp add: bit_simps ac_simps)
lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n"
by (fact uint_shiftr_eq)
lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)"
by word_eqI_solve
lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)"
by (simp add: shiftl_rev)
lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)"
by (simp add: rev_shiftl)
lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)"
by (simp add: shiftr_rev)
lemmas ucast_up =
rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]]
lemmas ucast_down =
rc2 [simplified rev_shiftr revcast_ucast [symmetric]]
lemma shiftl_zero_size: "size x \<le> n \<Longrightarrow> x << n = 0"
for x :: "'a::len word"
by (simp add: shiftl_def word_size)
lemma shiftl_t2n: "shiftl w n = 2 ^ n * w"
for w :: "'a::len word"
by (simp add: shiftl_def push_bit_eq_mult)
lemma word_shift_by_2:
"x * 4 = (x::'a::len word) << 2"
by (simp add: shiftl_t2n)
lemma word_shift_by_3:
"x * 8 = (x::'a::len word) << 3"
by (simp add: shiftl_t2n)
lemma slice_shiftr: "slice n w = ucast (w >> n)"
by word_eqI (cases \<open>n \<le> LENGTH('b)\<close>; fastforce simp: ac_simps dest: bit_imp_le_length)
lemma shiftr_zero_size: "size x \<le> n \<Longrightarrow> x >> n = 0"
for x :: "'a :: len word"
by word_eqI
lemma shiftr_x_0 [simp]: "x >> 0 = x"
for x :: "'a::len word"
by (simp add: shiftr_def)
lemma shiftl_x_0 [simp]: "x << 0 = x"
for x :: "'a::len word"
by (simp add: shiftl_def)
lemmas shiftl0 = shiftl_x_0
lemma shiftr_1 [simp]: "(1::'a::len word) >> n = (if n = 0 then 1 else 0)"
by (simp add: shiftr_def)
lemma and_not_mask:
"w AND NOT (mask n) = (w >> n) << n"
for w :: \<open>'a::len word\<close>
by word_eqI_solve
lemma and_mask:
"w AND mask n = (w << (size w - n)) >> (size w - n)"
for w :: \<open>'a::len word\<close>
by word_eqI_solve
lemma shiftr_div_2n_w: "w >> n = w div (2^n :: 'a :: len word)"
by (fact shiftr_eq_div)
lemma le_shiftr:
"u \<le> v \<Longrightarrow> u >> (n :: nat) \<le> (v :: 'a :: len word) >> n"
apply (unfold shiftr_def)
apply transfer
apply (simp add: take_bit_drop_bit)
apply (simp add: drop_bit_eq_div zdiv_mono1)
done
lemma le_shiftr':
"\<lbrakk> u >> n \<le> v >> n ; u >> n \<noteq> v >> n \<rbrakk> \<Longrightarrow> (u::'a::len word) \<le> v"
by (metis le_cases le_shiftr verit_la_disequality)
lemma shiftr_mask_le:
"n <= m \<Longrightarrow> mask n >> m = (0 :: 'a::len word)"
by word_eqI
lemma shiftr_mask [simp]:
\<open>mask m >> m = (0::'a::len word)\<close>
by (rule shiftr_mask_le) simp
lemma le_mask_iff:
"(w \<le> mask n) = (w >> n = 0)"
for w :: \<open>'a::len word\<close>
apply safe
apply (rule word_le_0_iff [THEN iffD1])
apply (rule xtrans(3))
apply (erule_tac [2] le_shiftr)
apply simp
apply (rule word_leI)
apply (rename_tac n')
apply (drule_tac x = "n' - n" in word_eqD)
apply (simp add : nth_shiftr word_size bit_simps)
apply (case_tac "n <= n'")
by auto
lemma and_mask_eq_iff_shiftr_0:
"(w AND mask n = w) = (w >> n = 0)"
for w :: \<open>'a::len word\<close>
by (simp flip: take_bit_eq_mask add: shiftr_def take_bit_eq_self_iff_drop_bit_eq_0)
lemma mask_shiftl_decompose:
"mask m << n = mask (m + n) AND NOT (mask n :: 'a::len word)"
by word_eqI_solve
lemma shiftl_over_and_dist:
fixes a::"'a::len word"
shows "(a AND b) << c = (a << c) AND (b << c)"
by (unfold shiftl_def) (fact push_bit_and)
lemma shiftr_over_and_dist:
fixes a::"'a::len word"
shows "a AND b >> c = (a >> c) AND (b >> c)"
by (unfold shiftr_def) (fact drop_bit_and)
lemma sshiftr_over_and_dist:
fixes a::"'a::len word"
shows "a AND b >>> c = (a >>> c) AND (b >>> c)"
by word_eqI
lemma shiftl_over_or_dist:
fixes a::"'a::len word"
shows "a OR b << c = (a << c) OR (b << c)"
by (unfold shiftl_def) (fact push_bit_or)
lemma shiftr_over_or_dist:
fixes a::"'a::len word"
shows "a OR b >> c = (a >> c) OR (b >> c)"
by (unfold shiftr_def) (fact drop_bit_or)
lemma sshiftr_over_or_dist:
fixes a::"'a::len word"
shows "a OR b >>> c = (a >>> c) OR (b >>> c)"
by word_eqI
lemmas shift_over_ao_dists =
shiftl_over_or_dist shiftr_over_or_dist
sshiftr_over_or_dist shiftl_over_and_dist
shiftr_over_and_dist sshiftr_over_and_dist
lemma shiftl_shiftl:
fixes a::"'a::len word"
shows "a << b << c = a << (b + c)"
by (word_eqI_solve simp: add.commute add.left_commute)
lemma shiftr_shiftr:
fixes a::"'a::len word"
shows "a >> b >> c = a >> (b + c)"
by word_eqI (simp add: add.left_commute add.commute)
lemma shiftl_shiftr1:
fixes a::"'a::len word"
shows "c \<le> b \<Longrightarrow> a << b >> c = a AND (mask (size a - b)) << (b - c)"
by word_eqI (auto simp: ac_simps)
lemma shiftl_shiftr2:
fixes a::"'a::len word"
shows "b < c \<Longrightarrow> a << b >> c = (a >> (c - b)) AND (mask (size a - c))"
by word_eqI_solve
lemma shiftr_shiftl1:
fixes a::"'a::len word"
shows "c \<le> b \<Longrightarrow> a >> b << c = (a >> (b - c)) AND (NOT (mask c))"
by word_eqI_solve
lemma shiftr_shiftl2:
fixes a::"'a::len word"
shows "b < c \<Longrightarrow> a >> b << c = (a << (c - b)) AND (NOT (mask c))"
by word_eqI (auto simp: ac_simps)
lemmas multi_shift_simps =
shiftl_shiftl shiftr_shiftr
shiftl_shiftr1 shiftl_shiftr2
shiftr_shiftl1 shiftr_shiftl2
lemma shiftr_mask2:
"n \<le> LENGTH('a) \<Longrightarrow> (mask n >> m :: ('a :: len) word) = mask (n - m)"
by word_eqI_solve
lemma word_shiftl_add_distrib:
fixes x :: "'a :: len word"
shows "(x + y) << n = (x << n) + (y << n)"
by (simp add: shiftl_t2n ring_distribs)
lemma mask_shift:
"(x AND NOT (mask y)) >> y = x >> y"
for x :: \<open>'a::len word\<close>
by word_eqI
lemma shiftr_div_2n':
"unat (w >> n) = unat w div 2 ^ n"
by word_eqI
lemma shiftl_shiftr_id:
"\<lbrakk> n < LENGTH('a); x < 2 ^ (LENGTH('a) - n) \<rbrakk> \<Longrightarrow> x << n >> n = (x::'a::len word)"
by word_eqI (metis add.commute less_diff_conv)
lemma ucast_shiftl_eq_0:
fixes w :: "'a :: len word"
shows "\<lbrakk> n \<ge> LENGTH('b) \<rbrakk> \<Longrightarrow> ucast (w << n) = (0 :: 'b :: len word)"
by (transfer fixing: n) (simp add: take_bit_push_bit)
lemma word_shift_nonzero:
"\<lbrakk> (x::'a::len word) \<le> 2 ^ m; m + n < LENGTH('a::len); x \<noteq> 0\<rbrakk>
\<Longrightarrow> x << n \<noteq> 0"
apply (simp only: word_neq_0_conv word_less_nat_alt
shiftl_t2n mod_0 unat_word_ariths
unat_power_lower word_le_nat_alt)
apply (subst mod_less)
apply (rule order_le_less_trans)
apply (erule mult_le_mono2)
apply (subst power_add[symmetric])
apply (rule power_strict_increasing)
apply simp
apply simp
apply simp
done
lemma word_shiftr_lt:
fixes w :: "'a::len word"
shows "unat (w >> n) < (2 ^ (LENGTH('a) - n))"
apply (subst shiftr_div_2n')
apply transfer
apply (simp flip: drop_bit_eq_div add: drop_bit_nat_eq drop_bit_take_bit)
done
lemma shiftr_less_t2n':
"\<lbrakk> x AND mask (n + m) = x; m < LENGTH('a) \<rbrakk> \<Longrightarrow> x >> n < 2 ^ m" for x :: "'a :: len word"
apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask)
apply transfer
apply (simp add: take_bit_drop_bit ac_simps)
done
lemma shiftr_less_t2n:
"x < 2 ^ (n + m) \<Longrightarrow> x >> n < 2 ^ m" for x :: "'a :: len word"
apply (rule shiftr_less_t2n')
apply (erule less_mask_eq)
apply (rule ccontr)
apply (simp add: not_less)
apply (subst (asm) p2_eq_0[symmetric])
apply (simp add: power_add)
done
lemma shiftr_eq_0:
"n \<ge> LENGTH('a) \<Longrightarrow> ((w::'a::len word) >> n) = 0"
apply (cut_tac shiftr_less_t2n'[of w n 0], simp)
apply (simp add: mask_eq_iff)
apply (simp add: lt2p_lem)
apply simp
done
lemma shiftl_less_t2n:
fixes x :: "'a :: len word"
shows "\<lbrakk> x < (2 ^ (m - n)); m < LENGTH('a) \<rbrakk> \<Longrightarrow> (x << n) < 2 ^ m"
apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask)
apply transfer
apply (simp add: take_bit_push_bit)
done
lemma shiftl_less_t2n':
"(x::'a::len word) < 2 ^ m \<Longrightarrow> m+n < LENGTH('a) \<Longrightarrow> x << n < 2 ^ (m + n)"
by (rule shiftl_less_t2n) simp_all
lemma scast_bit_test [simp]:
"scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n"
by word_eqI
lemma signed_shift_guard_to_word:
\<open>unat x * 2 ^ y < 2 ^ n \<longleftrightarrow> x = 0 \<or> x < 1 << n >> y\<close>
if \<open>n < LENGTH('a)\<close> \<open>0 < n\<close>
for x :: \<open>'a::len word\<close>
proof (cases \<open>x = 0\<close>)
case True
then show ?thesis
by simp
next
case False
then have \<open>unat x \<noteq> 0\<close>
by (simp add: unat_eq_0)
then have \<open>unat x \<ge> 1\<close>
by simp
show ?thesis
proof (cases \<open>y < n\<close>)
case False
then have \<open>n \<le> y\<close>
by simp
then obtain q where \<open>y = n + q\<close>
using le_Suc_ex by blast
moreover have \<open>(2 :: nat) ^ n >> n + q \<le> 1\<close>
by (simp add: drop_bit_eq_div power_add shiftr_def)
ultimately show ?thesis
using \<open>x \<noteq> 0\<close> \<open>unat x \<ge> 1\<close> \<open>n < LENGTH('a)\<close>
by (simp add: power_add not_less word_le_nat_alt unat_drop_bit_eq shiftr_def shiftl_def)
next
case True
with that have \<open>y < LENGTH('a)\<close>
by simp
show ?thesis
proof (cases \<open>2 ^ n = unat x * 2 ^ y\<close>)
case True
moreover have \<open>unat x * 2 ^ y < 2 ^ LENGTH('a)\<close>
using \<open>n < LENGTH('a)\<close> by (simp flip: True)
moreover have \<open>(word_of_nat (2 ^ n) :: 'a word) = word_of_nat (unat x * 2 ^ y)\<close>
using True by simp
then have \<open>2 ^ n = x * 2 ^ y\<close>
by simp
ultimately show ?thesis
using \<open>y < LENGTH('a)\<close>
by (auto simp add: drop_bit_eq_div word_less_nat_alt unat_div unat_word_ariths
shiftr_def shiftl_def)
next
case False
with \<open>y < n\<close> have *: \<open>unat x \<noteq> 2 ^ n div 2 ^ y\<close>
by (auto simp flip: power_sub power_add)
have \<open>unat x * 2 ^ y < 2 ^ n \<longleftrightarrow> unat x * 2 ^ y \<le> 2 ^ n\<close>
using False by (simp add: less_le)
also have \<open>\<dots> \<longleftrightarrow> unat x \<le> 2 ^ n div 2 ^ y\<close>
by (simp add: less_eq_div_iff_mult_less_eq)
also have \<open>\<dots> \<longleftrightarrow> unat x < 2 ^ n div 2 ^ y\<close>
using * by (simp add: less_le)
finally show ?thesis
using that \<open>x \<noteq> 0\<close>
by (simp flip: push_bit_eq_mult drop_bit_eq_div
add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat])
qed
qed
qed
lemma shiftr_not_mask_0:
"n+m \<ge> LENGTH('a :: len) \<Longrightarrow> ((w::'a::len word) >> n) AND NOT (mask m) = 0"
by word_eqI
lemma shiftl_mask_is_0[simp]:
"(x << n) AND mask n = 0"
for x :: \<open>'a::len word\<close>
by (simp flip: take_bit_eq_mask add: take_bit_push_bit shiftl_def)
lemma rshift_sub_mask_eq:
"(a >> (size a - b)) AND mask b = a >> (size a - b)"
for a :: \<open>'a::len word\<close>
using shiftl_shiftr2[where a=a and b=0 and c="size a - b"]
apply (cases "b < size a")
apply simp
apply (simp add: linorder_not_less mask_eq_decr_exp word_size
p2_eq_0[THEN iffD2])
done
lemma shiftl_shiftr3:
"b \<le> c \<Longrightarrow> a << b >> c = (a >> c - b) AND mask (size a - c)"
for a :: \<open>'a::len word\<close>
apply (cases "b = c")
apply (simp add: shiftl_shiftr1)
apply (simp add: shiftl_shiftr2)
done
lemma and_mask_shiftr_comm:
"m \<le> size w \<Longrightarrow> (w AND mask m) >> n = (w >> n) AND mask (m-n)"
for w :: \<open>'a::len word\<close>
by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3)
lemma and_mask_shiftl_comm:
"m+n \<le> size w \<Longrightarrow> (w AND mask m) << n = (w << n) AND mask (m+n)"
for w :: \<open>'a::len word\<close>
by (simp add: and_mask word_size shiftl_shiftl) (simp add: shiftl_shiftr1)
lemma le_mask_shiftl_le_mask: "s = m + n \<Longrightarrow> x \<le> mask n \<Longrightarrow> x << m \<le> mask s"
for x :: \<open>'a::len word\<close>
by (simp add: le_mask_iff shiftl_shiftr3)
lemma word_and_1_shiftl:
"x AND (1 << n) = (if bit x n then (1 << n) else 0)" for x :: "'a :: len word"
by word_eqI_solve
lemmas word_and_1_shiftls'
= word_and_1_shiftl[where n=0]
word_and_1_shiftl[where n=1]
word_and_1_shiftl[where n=2]
lemmas word_and_1_shiftls = word_and_1_shiftls' [simplified]
lemma word_and_mask_shiftl:
"x AND (mask n << m) = ((x >> m) AND mask n) << m"
for x :: \<open>'a::len word\<close>
by word_eqI_solve
lemma shift_times_fold:
"(x :: 'a :: len word) * (2 ^ n) << m = x << (m + n)"
by (simp add: shiftl_t2n ac_simps power_add)
lemma of_bool_nth:
"of_bool (bit x v) = (x >> v) AND 1"
for x :: \<open>'a::len word\<close>
by (simp add: bit_iff_odd_drop_bit word_and_1 shiftr_def)
lemma shiftr_mask_eq:
"(x >> n) AND mask (size x - n) = x >> n" for x :: "'a :: len word"
by (word_eqI_solve dest: test_bit_lenD)
lemma shiftr_mask_eq':
"m = (size x - n) \<Longrightarrow> (x >> n) AND mask m = x >> n" for x :: "'a :: len word"
by (simp add: shiftr_mask_eq)
lemma and_eq_0_is_nth:
fixes x :: "'a :: len word"
shows "y = 1 << n \<Longrightarrow> ((x AND y) = 0) = (\<not> (bit x n))"
by (simp add: and_exp_eq_0_iff_not_bit shiftl_def)
lemma word_shift_zero:
"\<lbrakk> x << n = 0; x \<le> 2^m; m + n < LENGTH('a)\<rbrakk> \<Longrightarrow> (x::'a::len word) = 0"
apply (rule ccontr)
apply (drule (2) word_shift_nonzero)
apply simp
done
lemma mask_shift_and_negate[simp]:"(w AND mask n << m) AND NOT (mask n << m) = 0"
for w :: \<open>'a::len word\<close>
by word_eqI
(* The seL4 bitfield generator produces functions containing mask and shift operations, such that
* invoking two of them consecutively can produce something like the following.
*)
lemma bitfield_op_twice:
"(x AND NOT (mask n << m) OR ((y AND mask n) << m)) AND NOT (mask n << m) = x AND NOT (mask n << m)"
for x :: \<open>'a::len word\<close>
by word_eqI_solve
lemma bitfield_op_twice'':
"\<lbrakk>NOT a = b << c; \<exists>x. b = mask x\<rbrakk> \<Longrightarrow> (x AND a OR (y AND b << c)) AND a = x AND a"
for a b :: \<open>'a::len word\<close>
by word_eqI_solve
lemma shiftr1_unfold: "x div 2 = x >> 1"
by (simp add: drop_bit_eq_div shiftr_def)
lemma shiftr1_is_div_2: "(x::('a::len) word) >> 1 = x div 2"
by (simp add: drop_bit_eq_div shiftr_def)
lemma shiftl1_is_mult: "(x << 1) = (x :: 'a::len word) * 2"
by (metis One_nat_def mult_2 mult_2_right one_add_one
power_0 power_Suc shiftl_t2n)
lemma shiftr1_lt:"x \<noteq> 0 \<Longrightarrow> (x::('a::len) word) >> 1 < x"
apply (subst shiftr1_is_div_2)
apply (rule div_less_dividend_word)
apply simp+
done
lemma shiftr1_0_or_1:"(x::('a::len) word) >> 1 = 0 \<Longrightarrow> x = 0 \<or> x = 1"
apply (subst (asm) shiftr1_is_div_2)
apply (drule word_less_div)
apply (case_tac "LENGTH('a) = 1")
apply (simp add:degenerate_word)
apply (erule disjE)
apply (subgoal_tac "(2::'a word) \<noteq> 0")
apply simp
apply (rule not_degenerate_imp_2_neq_0)
apply (subgoal_tac "LENGTH('a) \<noteq> 0")
apply arith
apply simp
apply (rule x_less_2_0_1', simp+)
done
lemma shiftr1_irrelevant_lsb: "bit (x::('a::len) word) 0 \<or> x >> 1 = (x + 1) >> 1"
by (auto simp add: bit_0 shiftr_def drop_bit_Suc ac_simps elim: evenE)
lemma shiftr1_0_imp_only_lsb:"((x::('a::len) word) + 1) >> 1 = 0 \<Longrightarrow> x = 0 \<or> x + 1 = 0"
by (metis One_nat_def shiftr1_0_or_1 word_less_1 word_overflow)
lemma shiftr1_irrelevant_lsb': "\<not> (bit (x::('a::len) word) 0) \<Longrightarrow> x >> 1 = (x + 1) >> 1"
using shiftr1_irrelevant_lsb [of x] by simp
(* Perhaps this one should be a simp lemma, but it seems a little dangerous. *)
lemma cast_chunk_assemble_id:
"\<lbrakk>n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\<rbrakk> \<Longrightarrow>
(((ucast ((ucast (x::'b word))::'a word))::'b word) OR (((ucast ((ucast (x >> n))::'a word))::'b word) << n)) = x"
apply (subgoal_tac "((ucast ((ucast (x >> n))::'a word))::'b word) = x >> n")
apply clarsimp
apply (subst and_not_mask[symmetric])
apply (subst ucast_ucast_mask)
apply (subst word_ao_dist2[symmetric])
apply clarsimp
apply (rule ucast_ucast_len)
apply (rule shiftr_less_t2n')
apply (subst and_mask_eq_iff_le_mask)
apply (simp_all add: mask_eq_decr_exp flip: mult_2_right)
apply (metis add_diff_cancel_left' len_gt_0 mult_2_right zero_less_diff)
done
lemma cast_chunk_scast_assemble_id:
"\<lbrakk>n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\<rbrakk> \<Longrightarrow>
(((ucast ((scast (x::'b word))::'a word))::'b word) OR
(((ucast ((scast (x >> n))::'a word))::'b word) << n)) = x"
apply (subgoal_tac "((scast x)::'a word) = ((ucast x)::'a word)")
apply (subgoal_tac "((scast (x >> n))::'a word) = ((ucast (x >> n))::'a word)")
apply (simp add:cast_chunk_assemble_id)
apply (subst down_cast_same[symmetric], subst is_down, arith, simp)+
done
lemma unat_shiftr_less_t2n:
fixes x :: "'a :: len word"
shows "unat x < 2 ^ (n + m) \<Longrightarrow> unat (x >> n) < 2 ^ m"
by (simp add: shiftr_div_2n' power_add mult.commute less_mult_imp_div_less)
lemma ucast_less_shiftl_helper:
"\<lbrakk> LENGTH('b) + 2 < LENGTH('a); 2 ^ (LENGTH('b) + 2) \<le> n\<rbrakk>
\<Longrightarrow> (ucast (x :: 'b::len word) << 2) < (n :: 'a::len word)"
apply (erule order_less_le_trans[rotated])
using ucast_less[where x=x and 'a='a]
apply (simp only: shiftl_t2n field_simps)
apply (rule word_less_power_trans2; simp)
done
(* negating a mask which has been shifted to the very left *)
lemma NOT_mask_shifted_lenword:
"NOT (mask len << (LENGTH('a) - len) ::'a::len word) = mask (LENGTH('a) - len)"
by word_eqI_solve
(* Comparisons between different word sizes. *)
lemma shiftr_less:
"(w::'a::len word) < k \<Longrightarrow> w >> n < k"
by (metis div_le_dividend le_less_trans shiftr_div_2n' unat_arith_simps(2))
lemma word_and_notzeroD:
"w AND w' \<noteq> 0 \<Longrightarrow> w \<noteq> 0 \<and> w' \<noteq> 0"
by auto
lemma shiftr_le_0:
"unat (w::'a::len word) < 2 ^ n \<Longrightarrow> w >> n = (0::'a::len word)"
by (auto simp add: take_bit_word_eq_self_iff word_less_nat_alt shiftr_def
simp flip: take_bit_eq_self_iff_drop_bit_eq_0
intro: ccontr)
lemma of_nat_shiftl:
"(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)"
proof -
have "(of_nat x::'a word) << n = of_nat (2 ^ n) * of_nat x"
using shiftl_t2n by (metis word_unat_power)
thus ?thesis by simp
qed
lemma shiftl_1_not_0:
"n < LENGTH('a) \<Longrightarrow> (1::'a::len word) << n \<noteq> 0"
by (simp add: shiftl_t2n)
(* continue sorting out from here *)
(* usually: x,y = (len_of TYPE ('a)) *)
lemma bitmagic_zeroLast_leq_or1Last:
"(a::('a::len) word) AND (mask len << x - len) \<le> a OR mask (y - len)"
by (meson le_word_or2 order_trans word_and_le2)
lemma zero_base_lsb_imp_set_eq_as_bit_operation:
fixes base ::"'a::len word"
assumes valid_prefix: "mask (LENGTH('a) - len) AND base = 0"
shows "(base = NOT (mask (LENGTH('a) - len)) AND a) \<longleftrightarrow>
(a \<in> {base .. base OR mask (LENGTH('a) - len)})"
proof
have helper3: "x OR y = x OR y AND NOT x" for x y ::"'a::len word" by (simp add: word_oa_dist2)
from assms show "base = NOT (mask (LENGTH('a) - len)) AND a \<Longrightarrow>
a \<in> {base..base OR mask (LENGTH('a) - len)}"
apply(simp add: word_and_le1)
apply(metis helper3 le_word_or2 word_bw_comms(1) word_bw_comms(2))
done
next
assume "a \<in> {base..base OR mask (LENGTH('a) - len)}"
hence a: "base \<le> a \<and> a \<le> base OR mask (LENGTH('a) - len)" by simp
show "base = NOT (mask (LENGTH('a) - len)) AND a"
proof -
have f2: "\<forall>x\<^sub>0. base AND NOT (mask x\<^sub>0) \<le> a AND NOT (mask x\<^sub>0)"
using a neg_mask_mono_le by blast
have f3: "\<forall>x\<^sub>0. a AND NOT (mask x\<^sub>0) \<le> (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>0)"
using a neg_mask_mono_le by blast
have f4: "base = base AND NOT (mask (LENGTH('a) - len))"
using valid_prefix by (metis mask_eq_0_eq_x word_bw_comms(1))
hence f5: "\<forall>x\<^sub>6. (base OR x\<^sub>6) AND NOT (mask (LENGTH('a) - len)) =
base OR x\<^sub>6 AND NOT (mask (LENGTH('a) - len))"
using word_ao_dist by (metis)
have f6: "\<forall>x\<^sub>2 x\<^sub>3. a AND NOT (mask x\<^sub>2) \<le> x\<^sub>3 \<or>
\<not> (base OR mask (LENGTH('a) - len)) AND NOT (mask x\<^sub>2) \<le> x\<^sub>3"
using f3 dual_order.trans by auto
have "base = (base OR mask (LENGTH('a) - len)) AND NOT (mask (LENGTH('a) - len))"
using f5 by auto
hence "base = a AND NOT (mask (LENGTH('a) - len))"
using f2 f4 f6 by (metis eq_iff)
thus "base = NOT (mask (LENGTH('a) - len)) AND a"
by (metis word_bw_comms(1))
qed
qed
lemma of_nat_eq_signed_scast:
"(of_nat x = (y :: ('a::len) signed word))
= (of_nat x = (scast y :: 'a word))"
by (metis scast_of_nat scast_scast_id(2))
lemma word_aligned_add_no_wrap_bounded:
"\<lbrakk> w + 2^n \<le> x; w + 2^n \<noteq> 0; is_aligned w n \<rbrakk> \<Longrightarrow> (w::'a::len word) < x"
by (blast dest: is_aligned_no_overflow le_less_trans word_leq_le_minus_one)
lemma mask_Suc:
"mask (Suc n) = (2 :: 'a::len word) ^ n + mask n"
by (simp add: mask_eq_decr_exp)
lemma mask_mono:
"sz' \<le> sz \<Longrightarrow> mask sz' \<le> (mask sz :: 'a::len word)"
by (simp add: le_mask_iff shiftr_mask_le)
lemma aligned_mask_disjoint:
"\<lbrakk> is_aligned (a :: 'a :: len word) n; b \<le> mask n \<rbrakk> \<Longrightarrow> a AND b = 0"
by (metis and_zero_eq is_aligned_mask le_mask_imp_and_mask word_bw_lcs(1))
lemma word_and_or_mask_aligned:
"\<lbrakk> is_aligned a n; b \<le> mask n \<rbrakk> \<Longrightarrow> a + b = a OR b"
by (simp add: aligned_mask_disjoint word_plus_and_or_coroll)
lemma word_and_or_mask_aligned2:
\<open>is_aligned b n \<Longrightarrow> a \<le> mask n \<Longrightarrow> a + b = a OR b\<close>
using word_and_or_mask_aligned [of b n a] by (simp add: ac_simps)
lemma is_aligned_ucastI:
"is_aligned w n \<Longrightarrow> is_aligned (ucast w) n"
by (simp add: bit_ucast_iff is_aligned_nth)
lemma ucast_le_maskI:
"a \<le> mask n \<Longrightarrow> UCAST('a::len \<rightarrow> 'b::len) a \<le> mask n"
by (metis and_mask_eq_iff_le_mask ucast_and_mask)
lemma ucast_add_mask_aligned:
"\<lbrakk> a \<le> mask n; is_aligned b n \<rbrakk> \<Longrightarrow> UCAST ('a::len \<rightarrow> 'b::len) (a + b) = ucast a + ucast b"
by (metis add.commute is_aligned_ucastI ucast_le_maskI ucast_or_distrib word_and_or_mask_aligned)
lemma ucast_shiftl:
"LENGTH('b) \<le> LENGTH ('a) \<Longrightarrow> UCAST ('a::len \<rightarrow> 'b::len) x << n = ucast (x << n)"
by word_eqI_solve
lemma ucast_leq_mask:
"LENGTH('a) \<le> n \<Longrightarrow> ucast (x::'a::len word) \<le> mask n"
apply (simp add: less_eq_mask_iff_take_bit_eq_self)
apply transfer
apply (simp add: ac_simps)
done
lemma shiftl_inj:
\<open>x = y\<close>
if \<open>x << n = y << n\<close> \<open>x \<le> mask (LENGTH('a) - n)\<close> \<open>y \<le> mask (LENGTH('a) - n)\<close>
for x y :: \<open>'a::len word\<close>
proof (cases \<open>n < LENGTH('a)\<close>)
case False
with that show ?thesis
by simp
next
case True
moreover from that have \<open>take_bit (LENGTH('a) - n) x = x\<close> \<open>take_bit (LENGTH('a) - n) y = y\<close>
by (simp_all add: less_eq_mask_iff_take_bit_eq_self)
ultimately show ?thesis
using \<open>x << n = y << n\<close> by (metis diff_less gr_implies_not0 linorder_cases linorder_not_le shiftl_shiftr_id shiftl_x_0 take_bit_word_eq_self_iff)
qed
lemma distinct_word_add_ucast_shift_inj:
\<open>p' = p \<and> off' = off\<close>
if *: \<open>p + (UCAST('a::len \<rightarrow> 'b::len) off << n) = p' + (ucast off' << n)\<close>
and \<open>is_aligned p n'\<close> \<open>is_aligned p' n'\<close> \<open>n' = n + LENGTH('a)\<close> \<open>n' < LENGTH('b)\<close>
proof -
from \<open>n' = n + LENGTH('a)\<close>
have [simp]: \<open>n' - n = LENGTH('a)\<close> \<open>n + LENGTH('a) = n'\<close>
by simp_all
from \<open>is_aligned p n'\<close> obtain q
where p: \<open>p = push_bit n' (word_of_nat q)\<close> \<open>q < 2 ^ (LENGTH('b) - n')\<close>
by (rule is_alignedE')
from \<open>is_aligned p' n'\<close> obtain q'
where p': \<open>p' = push_bit n' (word_of_nat q')\<close> \<open>q' < 2 ^ (LENGTH('b) - n')\<close>
by (rule is_alignedE')
define m :: nat where \<open>m = unat off\<close>
then have off: \<open>off = word_of_nat m\<close>
by simp
define m' :: nat where \<open>m' = unat off'\<close>
then have off': \<open>off' = word_of_nat m'\<close>
by simp
have \<open>push_bit n' q + take_bit n' (push_bit n m) < 2 ^ LENGTH('b)\<close>
by (metis id_apply is_aligned_no_wrap''' of_nat_eq_id of_nat_push_bit p(1) p(2) take_bit_nat_eq_self_iff take_bit_nat_less_exp take_bit_push_bit that(2) that(5) unsigned_of_nat)
moreover have \<open>push_bit n' q' + take_bit n' (push_bit n m') < 2 ^ LENGTH('b)\<close>
by (metis \<open>n' - n = LENGTH('a)\<close> id_apply is_aligned_no_wrap''' m'_def of_nat_eq_id of_nat_push_bit off' p'(1) p'(2) take_bit_nat_eq_self_iff take_bit_push_bit that(3) that(5) unsigned_of_nat)
ultimately have \<open>push_bit n' q + take_bit n' (push_bit n m) = push_bit n' q' + take_bit n' (push_bit n m')\<close>
using * by (simp add: p p' off off' push_bit_of_nat push_bit_take_bit word_of_nat_inj unsigned_of_nat shiftl_def flip: of_nat_add)
then have \<open>int (push_bit n' q + take_bit n' (push_bit n m))
= int (push_bit n' q' + take_bit n' (push_bit n m'))\<close>
by simp
then have \<open>concat_bit n' (int (push_bit n m)) (int q)
= concat_bit n' (int (push_bit n m')) (int q')\<close>
by (simp add: of_nat_push_bit of_nat_take_bit concat_bit_eq)
then show ?thesis
by (simp add: p p' off off' take_bit_of_nat take_bit_push_bit word_of_nat_eq_iff concat_bit_eq_iff)
(simp add: push_bit_eq_mult)
qed
lemma word_upto_Nil:
"y < x \<Longrightarrow> [x .e. y ::'a::len word] = []"
by (simp add: upto_enum_red not_le word_less_nat_alt)
lemma word_enum_decomp_elem:
assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
shows "x \<le> a \<and> a \<le> y"
proof -
have "set as \<subseteq> set [x .e. y] \<and> a \<in> set [x .e. y]"
using assms by (auto dest: arg_cong[where f=set])
then show ?thesis by auto
qed
lemma word_enum_prefix:
"[x .e. (y ::'a::len word)] = as @ a # bs \<Longrightarrow> as = (if x < a then [x .e. a - 1] else [])"
apply (induct as arbitrary: x; clarsimp)
apply (case_tac "x < y")
prefer 2
apply (case_tac "x = y", simp)
apply (simp add: not_less)
apply (drule (1) dual_order.not_eq_order_implies_strict)
apply (simp add: word_upto_Nil)
apply (simp add: word_upto_Cons_eq)
apply (case_tac "x < y")
prefer 2
apply (case_tac "x = y", simp)
apply (simp add: not_less)
apply (drule (1) dual_order.not_eq_order_implies_strict)
apply (simp add: word_upto_Nil)
apply (clarsimp simp: word_upto_Cons_eq)
apply (frule word_enum_decomp_elem)
apply clarsimp
apply (rule conjI)
prefer 2
apply (subst word_Suc_le[symmetric]; clarsimp)
apply (drule meta_spec)
apply (drule (1) meta_mp)
apply clarsimp
apply (rule conjI; clarsimp)
apply (subst (2) word_upto_Cons_eq)
apply unat_arith
apply simp
done
lemma word_enum_decomp_set:
"[x .e. (y ::'a::len word)] = as @ a # bs \<Longrightarrow> a \<notin> set as"
by (metis distinct_append distinct_enum_upto' not_distinct_conv_prefix)
lemma word_enum_decomp:
assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
shows "x \<le> a \<and> a \<le> y \<and> a \<notin> set as \<and> (\<forall>z \<in> set as. x \<le> z \<and> z \<le> y)"
proof -
from assms
have "set as \<subseteq> set [x .e. y] \<and> a \<in> set [x .e. y]"
by (auto dest: arg_cong[where f=set])
with word_enum_decomp_set[OF assms]
show ?thesis by auto
qed
lemma of_nat_unat_le_mask_ucast:
"\<lbrakk>of_nat (unat t) = w; t \<le> mask LENGTH('a)\<rbrakk> \<Longrightarrow> t = UCAST('a::len \<rightarrow> 'b::len) w"
by (clarsimp simp: ucast_nat_def ucast_ucast_mask simp flip: and_mask_eq_iff_le_mask)
lemma less_diff_gt0:
"a < b \<Longrightarrow> (0 :: 'a :: len word) < b - a"
by unat_arith
lemma unat_plus_gt:
"unat ((a :: 'a :: len word) + b) \<le> unat a + unat b"
by (clarsimp simp: unat_plus_if_size)
lemma const_less:
"\<lbrakk> (a :: 'a :: len word) - 1 < b; a \<noteq> b \<rbrakk> \<Longrightarrow> a < b"
by (metis less_1_simp word_le_less_eq)
lemma add_mult_aligned_neg_mask:
\<open>(x + y * m) AND NOT(mask n) = (x AND NOT(mask n)) + y * m\<close>
if \<open>m AND (2 ^ n - 1) = 0\<close>
for x y m :: \<open>'a::len word\<close>
by (metis (no_types, opaque_lifting)
add.assoc add.commute add.right_neutral add_uminus_conv_diff
mask_eq_decr_exp mask_eqs(2) mask_eqs(6) mult.commute mult_zero_left
subtract_mask(1) that)
lemma unat_of_nat_minus_1:
"\<lbrakk> n < 2 ^ LENGTH('a); n \<noteq> 0 \<rbrakk> \<Longrightarrow> unat ((of_nat n:: 'a :: len word) - 1) = n - 1"
by (simp add: of_nat_diff unat_eq_of_nat)
lemma word_eq_zeroI:
"a \<le> a - 1 \<Longrightarrow> a = 0" for a :: "'a :: len word"
by (simp add: word_must_wrap)
lemma word_add_format:
"(-1 :: 'a :: len word) + b + c = b + (c - 1)"
by simp
lemma upto_enum_word_nth:
"\<lbrakk> i \<le> j; k \<le> unat (j - i) \<rbrakk> \<Longrightarrow> [i .e. j] ! k = i + of_nat k"
apply (clarsimp simp: upto_enum_def nth_append)
apply (clarsimp simp: word_le_nat_alt[symmetric])
apply (rule conjI, clarsimp)
apply (subst toEnum_of_nat, unat_arith)
apply unat_arith
apply (clarsimp simp: not_less unat_sub[symmetric])
apply unat_arith
done
lemma upto_enum_step_nth:
"\<lbrakk> a \<le> c; n \<le> unat ((c - a) div (b - a)) \<rbrakk>
\<Longrightarrow> [a, b .e. c] ! n = a + of_nat n * (b - a)"
by (clarsimp simp: upto_enum_step_def not_less[symmetric] upto_enum_word_nth)
lemma upto_enum_inc_1_len:
"a < - 1 \<Longrightarrow> [(0 :: 'a :: len word) .e. 1 + a] = [0 .e. a] @ [1 + a]"
apply (simp add: upto_enum_word)
apply (subgoal_tac "unat (1+a) = 1 + unat a")
apply simp
apply (subst unat_plus_simple[THEN iffD1])
apply (metis add.commute no_plus_overflow_neg olen_add_eqv)
apply unat_arith
done
lemma neg_mask_add:
"y AND mask n = 0 \<Longrightarrow> x + y AND NOT(mask n) = (x AND NOT(mask n)) + y"
for x y :: \<open>'a::len word\<close>
by (clarsimp simp: mask_out_sub_mask mask_eqs(7)[symmetric] mask_twice)
lemma shiftr_shiftl_shiftr[simp]:
"(x :: 'a :: len word) >> a << a >> a = x >> a"
by (word_eqI_solve dest: bit_imp_le_length)
lemma add_right_shift:
"\<lbrakk> x AND mask n = 0; y AND mask n = 0; x \<le> x + y \<rbrakk>
\<Longrightarrow> (x + y :: ('a :: len) word) >> n = (x >> n) + (y >> n)"
apply (simp add: no_olen_add_nat is_aligned_mask[symmetric])
apply (simp add: unat_arith_simps shiftr_div_2n' split del: if_split)
apply (subst if_P)
apply (erule order_le_less_trans[rotated])
apply (simp add: add_mono)
apply (simp add: shiftr_div_2n' is_aligned_iff_dvd_nat)
done
lemma sub_right_shift:
"\<lbrakk> x AND mask n = 0; y AND mask n = 0; y \<le> x \<rbrakk>
\<Longrightarrow> (x - y) >> n = (x >> n :: 'a :: len word) - (y >> n)"
using add_right_shift[where x="x - y" and y=y and n=n]
by (simp add: aligned_sub_aligned is_aligned_mask[symmetric] word_sub_le)
lemma and_and_mask_simple:
"y AND mask n = mask n \<Longrightarrow> (x AND y) AND mask n = x AND mask n"
by (simp add: ac_simps)
lemma and_and_mask_simple_not:
"y AND mask n = 0 \<Longrightarrow> (x AND y) AND mask n = 0"
by (simp add: ac_simps)
lemma word_and_le':
"b \<le> c \<Longrightarrow> (a :: 'a :: len word) AND b \<le> c"
by (metis word_and_le1 order_trans)
lemma word_and_less':
"b < c \<Longrightarrow> (a :: 'a :: len word) AND b < c"
by transfer simp
lemma shiftr_w2p:
"x < LENGTH('a) \<Longrightarrow> 2 ^ x = (2 ^ (LENGTH('a) - 1) >> (LENGTH('a) - 1 - x) :: 'a :: len word)"
by word_eqI_solve
lemma t2p_shiftr:
"\<lbrakk> b \<le> a; a < LENGTH('a) \<rbrakk> \<Longrightarrow> (2 :: 'a :: len word) ^ a >> b = 2 ^ (a - b)"
by word_eqI_solve
lemma scast_1[simp]:
"scast (1 :: 'a :: len signed word) = (1 :: 'a word)"
by simp
lemma unsigned_uminus1 [simp]:
\<open>(unsigned (-1::'b::len word)::'c::len word) = mask LENGTH('b)\<close>
by (fact unsigned_minus_1_eq_mask)
lemma ucast_ucast_mask_eq:
"\<lbrakk> UCAST('a::len \<rightarrow> 'b::len) x = y; x AND mask LENGTH('b) = x \<rbrakk> \<Longrightarrow> x = ucast y"
by (drule sym) (simp flip: take_bit_eq_mask add: unsigned_ucast_eq)
lemma ucast_up_eq:
"\<lbrakk> ucast x = (ucast y::'b::len word); LENGTH('a) \<le> LENGTH ('b) \<rbrakk>
\<Longrightarrow> ucast x = (ucast y::'a::len word)"
by (simp add: word_eq_iff bit_simps)
lemma ucast_up_neq:
"\<lbrakk> ucast x \<noteq> (ucast y::'b::len word); LENGTH('b) \<le> LENGTH ('a) \<rbrakk>
\<Longrightarrow> ucast x \<noteq> (ucast y::'a::len word)"
by (fastforce dest: ucast_up_eq)
lemma mask_AND_less_0:
"\<lbrakk> x AND mask n = 0; m \<le> n \<rbrakk> \<Longrightarrow> x AND mask m = 0"
for x :: \<open>'a::len word\<close>
by (metis mask_twice2 word_and_notzeroD)
lemma mask_len_id [simp]:
"(x :: 'a :: len word) AND mask LENGTH('a) = x"
using uint_lt2p [of x] by (simp add: mask_eq_iff)
lemma scast_ucast_down_same:
"LENGTH('b) \<le> LENGTH('a) \<Longrightarrow> SCAST('a \<rightarrow> 'b) = UCAST('a::len \<rightarrow> 'b::len)"
by (simp add: down_cast_same is_down)
lemma word_aligned_0_sum:
"\<lbrakk> a + b = 0; is_aligned (a :: 'a :: len word) n; b \<le> mask n; n < LENGTH('a) \<rbrakk>
\<Longrightarrow> a = 0 \<and> b = 0"
by (simp add: word_plus_and_or_coroll aligned_mask_disjoint word_or_zero)
lemma mask_eq1_nochoice:
"\<lbrakk> LENGTH('a) > 1; (x :: 'a :: len word) AND 1 = x \<rbrakk> \<Longrightarrow> x = 0 \<or> x = 1"
by (metis word_and_1)
lemma shiftr_and_eq_shiftl:
"(w >> n) AND x = y \<Longrightarrow> w AND (x << n) = (y << n)" for y :: "'a:: len word"
apply (drule sym)
apply simp
apply (rule bit_word_eqI)
apply (auto simp add: bit_simps)
done
lemma add_mask_lower_bits':
"\<lbrakk> len = LENGTH('a); is_aligned (x :: 'a :: len word) n;
\<forall>n' \<ge> n. n' < len \<longrightarrow> \<not> bit p n' \<rbrakk>
\<Longrightarrow> x + p AND NOT(mask n) = x"
using add_mask_lower_bits by auto
lemma leq_mask_shift:
"(x :: 'a :: len word) \<le> mask (low_bits + high_bits) \<Longrightarrow> (x >> low_bits) \<le> mask high_bits"
by (simp add: le_mask_iff shiftr_shiftr ac_simps)
lemma ucast_ucast_eq_mask_shift:
"(x :: 'a :: len word) \<le> mask (low_bits + LENGTH('b))
\<Longrightarrow> ucast((ucast (x >> low_bits)) :: 'b :: len word) = x >> low_bits"
by (meson and_mask_eq_iff_le_mask eq_ucast_ucast_eq not_le_imp_less shiftr_less_t2n'
ucast_ucast_len)
lemma const_le_unat:
"\<lbrakk> b < 2 ^ LENGTH('a); of_nat b \<le> a \<rbrakk> \<Longrightarrow> b \<le> unat (a :: 'a :: len word)"
by (simp add: word_le_nat_alt unsigned_of_nat take_bit_nat_eq_self)
lemma upt_enum_offset_trivial:
"\<lbrakk> x < 2 ^ LENGTH('a) - 1 ; n \<le> unat x \<rbrakk>
\<Longrightarrow> ([(0 :: 'a :: len word) .e. x] ! n) = of_nat n"
apply (induct x arbitrary: n)
apply simp
by (simp add: upto_enum_word_nth)
lemma word_le_mask_out_plus_2sz:
"x \<le> (x AND NOT(mask sz)) + 2 ^ sz - 1"
for x :: \<open>'a::len word\<close>
by (metis add_diff_eq word_neg_and_le)
lemma ucast_add:
"ucast (a + (b :: 'a :: len word)) = ucast a + (ucast b :: ('a signed word))"
by transfer (simp add: take_bit_add)
lemma ucast_minus:
"ucast (a - (b :: 'a :: len word)) = ucast a - (ucast b :: ('a signed word))"
apply (insert ucast_add[where a=a and b="-b"])
apply (metis (no_types, opaque_lifting) add_diff_eq diff_add_cancel ucast_add)
done
lemma scast_ucast_add_one [simp]:
"scast (ucast (x :: 'a::len word) + (1 :: 'a signed word)) = x + 1"
apply (subst ucast_1[symmetric])
apply (subst ucast_add[symmetric])
apply clarsimp
done
lemma word_and_le_plus_one:
"a > 0 \<Longrightarrow> (x :: 'a :: len word) AND (a - 1) < a"
by (simp add: gt0_iff_gem1 word_and_less')
lemma unat_of_ucast_then_shift_eq_unat_of_shift[simp]:
"LENGTH('b) \<ge> LENGTH('a)
\<Longrightarrow> unat ((ucast (x :: 'a :: len word) :: 'b :: len word) >> n) = unat (x >> n)"
by (simp add: shiftr_div_2n' unat_ucast_up_simp)
lemma unat_of_ucast_then_mask_eq_unat_of_mask[simp]:
"LENGTH('b) \<ge> LENGTH('a)
\<Longrightarrow> unat ((ucast (x :: 'a :: len word) :: 'b :: len word) AND mask m) = unat (x AND mask m)"
by (metis ucast_and_mask unat_ucast_up_simp)
lemma shiftr_less_t2n3:
"\<lbrakk> (2 :: 'a word) ^ (n + m) = 0; m < LENGTH('a) \<rbrakk>
\<Longrightarrow> (x :: 'a :: len word) >> n < 2 ^ m"
by (fastforce intro: shiftr_less_t2n' simp: mask_eq_decr_exp power_overflow)
lemma unat_shiftr_le_bound:
"\<lbrakk> 2 ^ (LENGTH('a :: len) - n) - 1 \<le> bnd; 0 < n \<rbrakk>
\<Longrightarrow> unat ((x :: 'a word) >> n) \<le> bnd"
apply transfer
apply (simp add: take_bit_drop_bit)
apply (simp add: drop_bit_take_bit)
apply (rule order_trans)
defer
apply assumption
apply (simp add: nat_le_iff of_nat_diff)
done
lemma shiftr_eqD:
"\<lbrakk> x >> n = y >> n; is_aligned x n; is_aligned y n \<rbrakk>
\<Longrightarrow> x = y"
by (metis is_aligned_shiftr_shiftl)
lemma word_shiftr_shiftl_shiftr_eq_shiftr:
"a \<ge> b \<Longrightarrow> (x :: 'a :: len word) >> a << b >> b = x >> a"
apply (rule bit_word_eqI)
apply (auto simp add: bit_simps dest: bit_imp_le_length)
done
lemma of_int_uint_ucast:
"of_int (uint (x :: 'a::len word)) = (ucast x :: 'b::len word)"
by (fact Word.of_int_uint)
lemma mod_mask_drop:
"\<lbrakk> m = 2 ^ n; 0 < m; mask n AND msk = mask n \<rbrakk>
\<Longrightarrow> (x mod m) AND msk = x mod m"
for x :: \<open>'a::len word\<close>
by (simp add: word_mod_2p_is_mask word_bw_assocs)
lemma mask_eq_ucast_eq:
"\<lbrakk> x AND mask LENGTH('a) = (x :: ('c :: len word));
LENGTH('a) \<le> LENGTH('b)\<rbrakk>
\<Longrightarrow> ucast (ucast x :: ('a :: len word)) = (ucast x :: ('b :: len word))"
by (metis ucast_and_mask ucast_id ucast_ucast_mask ucast_up_eq)
lemma of_nat_less_t2n:
"of_nat i < (2 :: ('a :: len) word) ^ n \<Longrightarrow> n < LENGTH('a) \<and> unat (of_nat i :: 'a word) < 2 ^ n"
by (metis order_less_trans p2_gt_0 unat_less_power word_neq_0_conv)
lemma two_power_increasing_less_1:
"\<lbrakk> n \<le> m; m \<le> LENGTH('a) \<rbrakk> \<Longrightarrow> (2 :: 'a :: len word) ^ n - 1 \<le> 2 ^ m - 1"
by (metis diff_diff_cancel le_m1_iff_lt less_imp_diff_less p2_gt_0 two_power_increasing
word_1_le_power word_le_minus_mono_left word_less_sub_1)
lemma word_sub_mono4:
"\<lbrakk> y + x \<le> z + x; y \<le> y + x; z \<le> z + x \<rbrakk> \<Longrightarrow> y \<le> z" for y :: "'a :: len word"
by (simp add: word_add_le_iff2)
lemma eq_or_less_helperD:
"\<lbrakk> n = unat (2 ^ m - 1 :: 'a :: len word) \<or> n < unat (2 ^ m - 1 :: 'a word); m < LENGTH('a) \<rbrakk>
\<Longrightarrow> n < 2 ^ m"
by (meson le_less_trans nat_less_le unat_less_power word_power_less_1)
lemma mask_sub:
"n \<le> m \<Longrightarrow> mask m - mask n = mask m AND NOT(mask n :: 'a::len word)"
by (metis (full_types) and_mask_eq_iff_shiftr_0 mask_out_sub_mask shiftr_mask_le word_bw_comms(1))
lemma neg_mask_diff_bound:
"sz'\<le> sz \<Longrightarrow> (ptr AND NOT(mask sz')) - (ptr AND NOT(mask sz)) \<le> 2 ^ sz - 2 ^ sz'"
(is "_ \<Longrightarrow> ?lhs \<le> ?rhs")
for ptr :: \<open>'a::len word\<close>
proof -
assume lt: "sz' \<le> sz"
hence "?lhs = ptr AND (mask sz AND NOT(mask sz'))"
by (metis add_diff_cancel_left' multiple_mask_trivia)
also have "\<dots> \<le> ?rhs" using lt
by (metis (mono_tags) add_diff_eq diff_eq_eq eq_iff mask_2pm1 mask_sub word_and_le')
finally show ?thesis by simp
qed
lemma mask_out_eq_0:
"\<lbrakk> idx < 2 ^ sz; sz < LENGTH('a) \<rbrakk> \<Longrightarrow> (of_nat idx :: 'a :: len word) AND NOT(mask sz) = 0"
by (simp add: of_nat_power less_mask_eq mask_eq_0_eq_x)
lemma is_aligned_neg_mask_eq':
"is_aligned ptr sz = (ptr AND NOT(mask sz) = ptr)"
using is_aligned_mask mask_eq_0_eq_x by blast
lemma neg_mask_mask_unat:
"sz < LENGTH('a)
\<Longrightarrow> unat ((ptr :: 'a :: len word) AND NOT(mask sz)) + unat (ptr AND mask sz) = unat ptr"
by (metis AND_NOT_mask_plus_AND_mask_eq unat_plus_simple word_and_le2)
lemma unat_pow_le_intro:
"LENGTH('a) \<le> n \<Longrightarrow> unat (x :: 'a :: len word) < 2 ^ n"
by (metis lt2p_lem not_le of_nat_le_iff of_nat_numeral semiring_1_class.of_nat_power uint_nat)
lemma unat_shiftl_less_t2n:
\<open>unat (x << n) < 2 ^ m\<close>
if \<open>unat (x :: 'a :: len word) < 2 ^ (m - n)\<close> \<open>m < LENGTH('a)\<close>
proof (cases \<open>n \<le> m\<close>)
case False
with that show ?thesis
apply (transfer fixing: m n)
apply (simp add: not_le take_bit_push_bit)
apply (metis diff_le_self order_le_less_trans push_bit_of_0 take_bit_0 take_bit_int_eq_self
take_bit_int_less_exp take_bit_nonnegative take_bit_tightened)
done
next
case True
moreover define q r where \<open>q = m - n\<close> and \<open>r = LENGTH('a) - n - q\<close>
ultimately have \<open>m - n = q\<close> \<open>m = n + q\<close> \<open>LENGTH('a) = r + q + n\<close>
using that by simp_all
with that show ?thesis
apply (transfer fixing: m n q r)
apply (simp add: not_le take_bit_push_bit)
apply (simp add: push_bit_eq_mult power_add)
using take_bit_tightened_less_eq_int [of \<open>r + q\<close> \<open>r + q + n\<close>]
apply (rule le_less_trans)
apply simp_all
done
qed
lemma unat_is_aligned_add:
"\<lbrakk> is_aligned p n; unat d < 2 ^ n \<rbrakk>
\<Longrightarrow> unat (p + d AND mask n) = unat d \<and> unat (p + d AND NOT(mask n)) = unat p"
by (metis add.right_neutral and_mask_eq_iff_le_mask and_not_mask le_mask_iff mask_add_aligned
mask_out_add_aligned mult_zero_right shiftl_t2n shiftr_le_0)
lemma unat_shiftr_shiftl_mask_zero:
"\<lbrakk> c + a \<ge> LENGTH('a) + b ; c < LENGTH('a) \<rbrakk>
\<Longrightarrow> unat (((q :: 'a :: len word) >> a << b) AND NOT(mask c)) = 0"
by (fastforce intro: unat_is_aligned_add[where p=0 and n=c, simplified, THEN conjunct2]
unat_shiftl_less_t2n unat_shiftr_less_t2n unat_pow_le_intro)
lemmas of_nat_ucast = ucast_of_nat[symmetric]
lemma shift_then_mask_eq_shift_low_bits:
"x \<le> mask (low_bits + high_bits) \<Longrightarrow> (x >> low_bits) AND mask high_bits = x >> low_bits"
for x :: \<open>'a::len word\<close>
by (simp add: leq_mask_shift le_mask_imp_and_mask)
lemma leq_low_bits_iff_zero:
"\<lbrakk> x \<le> mask (low bits + high bits); x >> low_bits = 0 \<rbrakk> \<Longrightarrow> (x AND mask low_bits = 0) = (x = 0)"
for x :: \<open>'a::len word\<close>
using and_mask_eq_iff_shiftr_0 by force
lemma unat_less_iff:
"\<lbrakk> unat (a :: 'a :: len word) = b; c < 2 ^ LENGTH('a) \<rbrakk> \<Longrightarrow> (a < of_nat c) = (b < c)"
using unat_ucast_less_no_overflow_simp by blast
lemma is_aligned_no_overflow3:
"\<lbrakk> is_aligned (a :: 'a :: len word) n; n < LENGTH('a); b < 2 ^ n; c \<le> 2 ^ n; b < c \<rbrakk>
\<Longrightarrow> a + b \<le> a + (c - 1)"
by (meson is_aligned_no_wrap' le_m1_iff_lt not_le word_less_sub_1 word_plus_mono_right)
lemma mask_add_aligned_right:
"is_aligned p n \<Longrightarrow> (q + p) AND mask n = q AND mask n"
by (simp add: mask_add_aligned add.commute)
lemma leq_high_bits_shiftr_low_bits_leq_bits_mask:
"x \<le> mask high_bits \<Longrightarrow> (x :: 'a :: len word) << low_bits \<le> mask (low_bits + high_bits)"
by (metis le_mask_shiftl_le_mask)
lemma word_two_power_neg_ineq:
"2 ^ m \<noteq> (0 :: 'a word) \<Longrightarrow> 2 ^ n \<le> - (2 ^ m :: 'a :: len word)"
apply (cases "n < LENGTH('a)"; simp add: power_overflow)
apply (cases "m < LENGTH('a)"; simp add: power_overflow)
apply (simp add: word_le_nat_alt unat_minus word_size)
apply (cases "LENGTH('a)"; simp)
apply (simp add: less_Suc_eq_le)
apply (drule power_increasing[where a=2 and n=n] power_increasing[where a=2 and n=m], simp)+
apply (drule(1) add_le_mono)
apply simp
done
lemma unat_shiftl_absorb:
"\<lbrakk> x \<le> 2 ^ p; p + k < LENGTH('a) \<rbrakk> \<Longrightarrow> unat (x :: 'a :: len word) * 2 ^ k = unat (x * 2 ^ k)"
by (smt add_diff_cancel_right' add_lessD1 le_add2 le_less_trans mult.commute nat_le_power_trans
unat_lt2p unat_mult_lem unat_power_lower word_le_nat_alt)
lemma word_plus_mono_right_split:
"\<lbrakk> unat ((x :: 'a :: len word) AND mask sz) + unat z < 2 ^ sz; sz < LENGTH('a) \<rbrakk>
\<Longrightarrow> x \<le> x + z"
apply (subgoal_tac "(x AND NOT(mask sz)) + (x AND mask sz) \<le> (x AND NOT(mask sz)) + ((x AND mask sz) + z)")
apply (simp add:word_plus_and_or_coroll2 field_simps)
apply (rule word_plus_mono_right)
apply (simp add: less_le_trans no_olen_add_nat)
using of_nat_power is_aligned_no_wrap' by force
lemma mul_not_mask_eq_neg_shiftl:
"NOT(mask n :: 'a::len word) = -1 << n"
by (simp add: NOT_mask shiftl_t2n)
lemma shiftr_mul_not_mask_eq_and_not_mask:
"(x >> n) * NOT(mask n) = - (x AND NOT(mask n))"
for x :: \<open>'a::len word\<close>
by (metis NOT_mask and_not_mask mult_minus_left semiring_normalization_rules(7) shiftl_t2n)
lemma mask_eq_n1_shiftr:
"n \<le> LENGTH('a) \<Longrightarrow> (mask n :: 'a :: len word) = -1 >> (LENGTH('a) - n)"
by (metis diff_diff_cancel eq_refl mask_full shiftr_mask2)
lemma is_aligned_mask_out_add_eq:
"is_aligned p n \<Longrightarrow> (p + x) AND NOT(mask n) = p + (x AND NOT(mask n))"
by (simp add: mask_out_sub_mask mask_add_aligned)
lemmas is_aligned_mask_out_add_eq_sub
= is_aligned_mask_out_add_eq[where x="a - b" for a b, simplified field_simps]
lemma aligned_bump_down:
"is_aligned x n \<Longrightarrow> (x - 1) AND NOT(mask n) = x - 2 ^ n"
by (drule is_aligned_mask_out_add_eq[where x="-1"]) (simp add: NOT_mask)
lemma unat_2tp_if:
"unat (2 ^ n :: ('a :: len) word) = (if n < LENGTH ('a) then 2 ^ n else 0)"
by (split if_split, simp_all add: power_overflow)
lemma mask_of_mask:
"mask (n::nat) AND mask (m::nat) = (mask (min m n) :: 'a::len word)"
by word_eqI_solve
lemma unat_signed_ucast_less_ucast:
"LENGTH('a) \<le> LENGTH('b) \<Longrightarrow> unat (ucast (x :: 'a :: len word) :: 'b :: len signed word) = unat x"
by (simp add: unat_ucast_up_simp)
lemma toEnum_of_ucast:
"LENGTH('b) \<le> LENGTH('a) \<Longrightarrow>
(toEnum (unat (b::'b :: len word))::'a :: len word) = of_nat (unat b)"
by (simp add: unat_pow_le_intro)
lemma plus_mask_AND_NOT_mask_eq:
"x AND NOT(mask n) = x \<Longrightarrow> (x + mask n) AND NOT(mask n) = x" for x::\<open>'a::len word\<close>
apply (subst word_plus_and_or_coroll; word_eqI; fastforce?)
apply (erule allE, drule (1) iffD2)
apply clarsimp
done
lemmas unat_ucast_mask = unat_ucast_eq_unat_and_mask[where w=a for a]
lemma t2n_mask_eq_if:
"2 ^ n AND mask m = (if n < m then 2 ^ n else (0 :: 'a::len word))"
by word_eqI_solve
lemma unat_ucast_le:
"unat (ucast (x :: 'a :: len word) :: 'b :: len word) \<le> unat x"
by (simp add: ucast_nat_def word_unat_less_le)
lemma ucast_le_up_down_iff:
"\<lbrakk> LENGTH('a) \<le> LENGTH('b); (x :: 'b :: len word) \<le> ucast (- 1 :: 'a :: len word) \<rbrakk>
\<Longrightarrow> (ucast x \<le> (y :: 'a word)) = (x \<le> ucast y)"
using le_max_word_ucast_id ucast_le_ucast by metis
lemma ucast_ucast_mask_shift:
"a \<le> LENGTH('a) + b
\<Longrightarrow> ucast (ucast (p AND mask a >> b) :: 'a :: len word) = p AND mask a >> b"
by (metis add.commute le_mask_iff shiftr_mask_le ucast_ucast_eq_mask_shift word_and_le')
lemma unat_ucast_mask_shift:
"a \<le> LENGTH('a) + b
\<Longrightarrow> unat (ucast (p AND mask a >> b) :: 'a :: len word) = unat (p AND mask a >> b)"
by (metis linear ucast_ucast_mask_shift unat_ucast_up_simp)
lemma mask_overlap_zero:
"a \<le> b \<Longrightarrow> (p AND mask a) AND NOT(mask b) = 0"
for p :: \<open>'a::len word\<close>
by (metis NOT_mask_AND_mask mask_lower_twice2 max_def)
lemma mask_shifl_overlap_zero:
"a + c \<le> b \<Longrightarrow> (p AND mask a << c) AND NOT(mask b) = 0"
for p :: \<open>'a::len word\<close>
by (metis and_mask_0_iff_le_mask mask_mono mask_shiftl_decompose order_trans shiftl_over_and_dist word_and_le' word_and_le2)
lemma mask_overlap_zero':
"a \<ge> b \<Longrightarrow> (p AND NOT(mask a)) AND mask b = 0"
for p :: \<open>'a::len word\<close>
using mask_AND_NOT_mask mask_AND_less_0 by blast
lemma mask_rshift_mult_eq_rshift_lshift:
"((a :: 'a :: len word) >> b) * (1 << c) = (a >> b << c)"
by (simp add: shiftl_t2n)
lemma shift_alignment:
"a \<ge> b \<Longrightarrow> is_aligned (p >> a << a) b"
using is_aligned_shift is_aligned_weaken by blast
lemma mask_split_sum_twice:
"a \<ge> b \<Longrightarrow> (p AND NOT(mask a)) + ((p AND mask a) AND NOT(mask b)) + (p AND mask b) = p"
for p :: \<open>'a::len word\<close>
by (simp add: add.commute multiple_mask_trivia word_bw_comms(1) word_bw_lcs(1) word_plus_and_or_coroll2)
lemma mask_shift_eq_mask_mask:
"(p AND mask a >> b << b) = (p AND mask a) AND NOT(mask b)"
for p :: \<open>'a::len word\<close>
by (simp add: and_not_mask)
lemma mask_shift_sum:
"\<lbrakk> a \<ge> b; unat n = unat (p AND mask b) \<rbrakk>
\<Longrightarrow> (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)"
apply (simp add: shiftl_def shiftr_def flip: push_bit_eq_mult take_bit_eq_mask word_unat_eq_iff)
apply (subst disjunctive_add, fastforce simp: bit_simps)+
apply (rule bit_word_eqI)
apply (fastforce simp: bit_simps)[1]
done
lemma is_up_compose:
"\<lbrakk> is_up uc; is_up uc' \<rbrakk> \<Longrightarrow> is_up (uc' \<circ> uc)"
unfolding is_up_def by (simp add: Word.target_size Word.source_size)
lemma of_int_sint_scast:
"of_int (sint (x :: 'a :: len word)) = (scast x :: 'b :: len word)"
by (fact Word.of_int_sint)
lemma scast_of_nat_to_signed [simp]:
"scast (of_nat x :: 'a :: len word) = (of_nat x :: 'a signed word)"
by (rule bit_word_eqI) (simp add: bit_simps)
lemma scast_of_nat_signed_to_unsigned_add:
"scast (of_nat x + of_nat y :: 'a :: len signed word) = (of_nat x + of_nat y :: 'a :: len word)"
by (metis of_nat_add scast_of_nat)
lemma scast_of_nat_unsigned_to_signed_add:
"(scast (of_nat x + of_nat y :: 'a :: len word)) = (of_nat x + of_nat y :: 'a :: len signed word)"
by (metis Abs_fnat_hom_add scast_of_nat_to_signed)
lemma and_mask_cases:
fixes x :: "'a :: len word"
assumes len: "n < LENGTH('a)"
shows "x AND mask n \<in> of_nat ` set [0 ..< 2 ^ n]"
apply (simp flip: take_bit_eq_mask)
apply (rule image_eqI [of _ _ \<open>unat (take_bit n x)\<close>])
using len apply simp_all
apply transfer
apply simp
done
lemma sint_eq_uint_2pl:
"\<lbrakk> (a :: 'a :: len word) < 2 ^ (LENGTH('a) - 1) \<rbrakk>
\<Longrightarrow> sint a = uint a"
by (simp add: not_msb_from_less sint_eq_uint word_2p_lem word_size)
lemma pow_sub_less:
"\<lbrakk> a + b \<le> LENGTH('a); unat (x :: 'a :: len word) = 2 ^ a \<rbrakk>
\<Longrightarrow> unat (x * 2 ^ b - 1) < 2 ^ (a + b)"
by (smt (z3) eq_or_less_helperD le_add2 le_eq_less_or_eq le_trans power_add unat_mult_lem unat_pow_le_intro unat_power_lower word_eq_unatI)
lemma sle_le_2pl:
"\<lbrakk> (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a \<le> b \<rbrakk> \<Longrightarrow> a <=s b"
by (simp add: not_msb_from_less word_sle_msb_le)
lemma sless_less_2pl:
"\<lbrakk> (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a < b \<rbrakk> \<Longrightarrow> a <s b"
using not_msb_from_less word_sless_msb_less by blast
lemma and_mask2:
"w << n >> n = w AND mask (size w - n)"
for w :: \<open>'a::len word\<close>
by (rule bit_word_eqI) (auto simp add: bit_simps word_size)
lemma aligned_sub_aligned_simple:
"\<lbrakk> is_aligned a n; is_aligned b n \<rbrakk> \<Longrightarrow> is_aligned (a - b) n"
by (simp add: aligned_sub_aligned)
lemma minus_one_shift:
"- (1 << n) = (-1 << n :: 'a::len word)"
by (simp add: shiftl_def minus_exp_eq_not_mask)
lemma ucast_eq_mask:
"(UCAST('a::len \<rightarrow> 'b::len) x = UCAST('a \<rightarrow> 'b) y) =
(x AND mask LENGTH('b) = y AND mask LENGTH('b))"
by transfer (simp flip: take_bit_eq_mask add: ac_simps)
context
fixes w :: "'a::len word"
begin
private lemma sbintrunc_uint_ucast:
"Suc n = LENGTH('b::len) \<Longrightarrow> signed_take_bit n (uint (ucast w :: 'b word)) = signed_take_bit n (uint w)"
by word_eqI
private lemma test_bit_sbintrunc:
assumes "i < LENGTH('a)"
shows "bit (word_of_int (signed_take_bit n (uint w)) :: 'a word) i
= (if n < i then bit w n else bit w i)"
using assms by (simp add: bit_simps)
private lemma test_bit_sbintrunc_ucast:
assumes len_a: "i < LENGTH('a)"
shows "bit (word_of_int (signed_take_bit (LENGTH('b) - 1) (uint (ucast w :: 'b word))) :: 'a word) i
= (if LENGTH('b::len) \<le> i then bit w (LENGTH('b) - 1) else bit w i)"
using len_a by (auto simp add: sbintrunc_uint_ucast bit_simps)
lemma scast_ucast_high_bits:
\<open>scast (ucast w :: 'b::len word) = w
\<longleftrightarrow> (\<forall> i \<in> {LENGTH('b) ..< size w}. bit w i = bit w (LENGTH('b) - 1))\<close>
proof (cases \<open>LENGTH('a) \<le> LENGTH('b)\<close>)
case True
moreover define m where \<open>m = LENGTH('b) - LENGTH('a)\<close>
ultimately have \<open>LENGTH('b) = m + LENGTH('a)\<close>
by simp
then show ?thesis
by (simp add: signed_ucast_eq word_size) word_eqI
next
case False
define q where \<open>q = LENGTH('b) - 1\<close>
then have \<open>LENGTH('b) = Suc q\<close>
by simp
moreover define m where \<open>m = Suc LENGTH('a) - LENGTH('b)\<close>
with False \<open>LENGTH('b) = Suc q\<close> have \<open>LENGTH('a) = m + q\<close>
by (simp add: not_le)
ultimately show ?thesis
apply (simp add: signed_ucast_eq word_size)
apply (transfer fixing: m q)
apply (simp add: signed_take_bit_take_bit)
apply (rule impI)
apply (subst bit_eq_iff)
apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def)
by (auto simp add: Suc_le_eq) (meson dual_order.strict_iff_not)+
qed
lemma scast_ucast_mask_compare:
"scast (ucast w :: 'b::len word) = w
\<longleftrightarrow> (w \<le> mask (LENGTH('b) - 1) \<or> NOT(mask (LENGTH('b) - 1)) \<le> w)"
apply (clarsimp simp: le_mask_high_bits neg_mask_le_high_bits scast_ucast_high_bits word_size)
apply (rule iffI; clarsimp)
apply (rename_tac i j; case_tac "i = LENGTH('b) - 1"; case_tac "j = LENGTH('b) - 1")
by auto
lemma ucast_less_shiftl_helper':
"\<lbrakk> LENGTH('b) + (a::nat) < LENGTH('a); 2 ^ (LENGTH('b) + a) \<le> n\<rbrakk>
\<Longrightarrow> (ucast (x :: 'b::len word) << a) < (n :: 'a::len word)"
apply (erule order_less_le_trans[rotated])
using ucast_less[where x=x and 'a='a]
apply (simp only: shiftl_t2n field_simps)
apply (rule word_less_power_trans2; simp)
done
end
lemma ucast_ucast_mask2:
"is_down (UCAST ('a \<rightarrow> 'b)) \<Longrightarrow>
UCAST ('b::len \<rightarrow> 'c::len) (UCAST ('a::len \<rightarrow> 'b::len) x) = UCAST ('a \<rightarrow> 'c) (x AND mask LENGTH('b))"
by word_eqI_solve
lemma ucast_NOT:
"ucast (NOT x) = NOT(ucast x) AND mask (LENGTH('a))" for x::"'a::len word"
by word_eqI_solve
lemma ucast_NOT_down:
"is_down UCAST('a::len \<rightarrow> 'b::len) \<Longrightarrow> UCAST('a \<rightarrow> 'b) (NOT x) = NOT(UCAST('a \<rightarrow> 'b) x)"
by word_eqI
lemma upto_enum_step_shift:
"is_aligned p n \<Longrightarrow> ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) = map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]"
apply (erule is_aligned_get_word_bits)
prefer 2
apply (simp add: map_idI)
apply (clarsimp simp: upto_enum_step_def)
apply (frule is_aligned_no_overflow)
apply (simp add: linorder_not_le [symmetric])
done
lemma upto_enum_step_shift_red:
"\<lbrakk> is_aligned p sz; sz < LENGTH('a); us \<le> sz \<rbrakk>
\<Longrightarrow> [p :: 'a :: len word, p + 2 ^ us .e. p + 2 ^ sz - 1]
= map (\<lambda>x. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]"
apply (subst upto_enum_step_shift, assumption)
apply (simp add: upto_enum_step_red)
done
lemma upto_enum_step_subset:
"set [x, y .e. z] \<subseteq> {x .. z}"
apply (clarsimp simp: upto_enum_step_def linorder_not_less)
apply (drule div_to_mult_word_lt)
apply (rule conjI)
apply (erule word_random[rotated])
apply simp
apply (rule order_trans)
apply (erule word_plus_mono_right)
apply simp
apply simp
done
lemma ucast_distrib:
fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word"
fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word"
fixes L :: "int \<Rightarrow> int \<Rightarrow> int"
assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)"
assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)"
assumes distrib: "\<And>x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
= (L x y) mod (2 ^ LENGTH('b))"
assumes is_down: "is_down (ucast :: 'a word \<Rightarrow> 'b word)"
shows "ucast (M a b) = M' (ucast a) (ucast b)"
apply (simp only: ucast_eq)
apply (subst lift_M)
apply (subst of_int_uint [symmetric], subst lift_M')
apply (metis local.distrib local.is_down take_bit_eq_mod ucast_down_wi uint_word_of_int_eq word_of_int_uint)
done
lemma ucast_down_add:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)"
by (rule ucast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)
lemma ucast_down_minus:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)"
apply (rule ucast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_diff_left_eq mod_diff_right_eq)
apply simp
done
lemma ucast_down_mult:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)"
apply (rule ucast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_mult_eq)
apply simp
done
lemma scast_distrib:
fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word"
fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word"
fixes L :: "int \<Rightarrow> int \<Rightarrow> int"
assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)"
assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)"
assumes distrib: "\<And>x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
= (L x y) mod (2 ^ LENGTH('b))"
assumes is_down: "is_down (scast :: 'a word \<Rightarrow> 'b word)"
shows "scast (M a b) = M' (scast a) (scast b)"
apply (subst (1 2 3) down_cast_same [symmetric])
apply (insert is_down)
apply (clarsimp simp: is_down_def target_size source_size is_down)
apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib])
apply (insert is_down)
apply (clarsimp simp: is_down_def target_size source_size is_down)
done
lemma scast_down_add:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)"
by (rule scast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)
lemma scast_down_minus:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)"
apply (rule scast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_diff_left_eq mod_diff_right_eq)
apply simp
done
lemma scast_down_mult:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)"
apply (rule scast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_mult_eq)
apply simp
done
lemma scast_ucast_1:
"\<lbrakk> is_down (ucast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_eq ucast_down_wi)
lemma scast_ucast_3:
"\<lbrakk> is_down (ucast :: 'a word \<Rightarrow> 'c word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_eq ucast_down_wi)
lemma scast_ucast_4:
"\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_eq ucast_down_wi)
lemma scast_scast_b:
"\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow>
(scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_eq sint_up_scast)
lemma ucast_scast_1:
"\<lbrakk> is_down (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_eq ucast_down_wi)
lemma ucast_scast_3:
"\<lbrakk> is_down (scast :: 'a word \<Rightarrow> 'c word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_eq ucast_down_wi)
lemma ucast_scast_4:
"\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis down_cast_same scast_eq sint_up_scast)
lemma ucast_ucast_a:
"\<lbrakk> is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_eq ucast_down_wi)
lemma ucast_ucast_b:
"\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow>
(ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis ucast_up_ucast)
lemma scast_scast_a:
"\<lbrakk> is_down (scast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
apply (simp only: scast_eq)
apply (metis down_cast_same is_up_down scast_eq ucast_down_wi)
done
lemma scast_down_wi [OF refl]:
"uc = scast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x"
by (metis down_cast_same is_up_down ucast_down_wi)
lemmas cast_simps =
is_down is_up
scast_down_add scast_down_minus scast_down_mult
ucast_down_add ucast_down_minus ucast_down_mult
scast_ucast_1 scast_ucast_3 scast_ucast_4
ucast_scast_1 ucast_scast_3 ucast_scast_4
ucast_ucast_a ucast_ucast_b
scast_scast_a scast_scast_b
ucast_down_wi scast_down_wi
ucast_of_nat scast_of_nat
uint_up_ucast sint_up_scast
up_scast_surj up_ucast_surj
lemma sdiv_word_max:
"(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) =
((a \<noteq> - (2 ^ (size a - 1)) \<or> (b \<noteq> -1)))"
(is "?lhs = (\<not> ?a_int_min \<or> \<not> ?b_minus1)")
proof (rule classical)
assume not_thesis: "\<not> ?thesis"
have not_zero: "b \<noteq> 0"
using not_thesis
by (clarsimp)
let ?range = \<open>{- (2 ^ (size a - 1))..<2 ^ (size a - 1)} :: int set\<close>
have result_range: "sint a sdiv sint b \<in> ?range \<union> {2 ^ (size a - 1)}"
using sdiv_word_min [of a b] sdiv_word_max [of a b] by auto
have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min \<and> ?b_minus1)"
apply (rule iffI [rotated])
apply (clarsimp simp: signed_divide_int_def sgn_if word_size sint_int_min)
apply (rule classical)
apply (case_tac "?a_int_min")
apply (clarsimp simp: word_size sint_int_min)
apply (metis diff_0_right
int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2)
power_eq_0_iff sint_minus1 zero_neq_numeral)
apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)")
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
apply (clarsimp simp: word_size)
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
by (smt (verit, best) One_nat_def signed_word_eqI sint_greater_eq sint_int_min sint_less wsst_TYs(3))
have result_range_simple: "(sint a sdiv sint b \<in> ?range) \<Longrightarrow> ?thesis"
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])
apply (clarsimp simp: word_size sint_int_min)
done
show ?thesis
apply (rule UnE [OF result_range result_range_simple])
apply simp
apply (clarsimp simp: word_size)
using result_range_overflow
apply (clarsimp simp: word_size)
done
qed
lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified]
lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified]
lemma signed_arith_ineq_checks_to_eq:
"((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a + sint b = sint (a + b ))"
"((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a - sint b = sint (a - b))"
"((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1))
= ((- sint a) = sint (- a))"
"((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a * sint b = sint (a * b))"
"((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a sdiv sint b = sint (a sdiv b))"
"((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a smod sint b = sint (a smod b))"
by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith signed_take_bit_int_eq_self_iff intro: sym dest: sym)
lemma signed_arith_sint:
"((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a + b) = (sint a + sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a - b) = (sint a - sint b)"
"((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1))
\<Longrightarrow> sint (- a) = (- sint a)"
"((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a * b) = (sint a * sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a sdiv b) = (sint a sdiv sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a smod b) = (sint a smod sint b)"
by (subst (asm) signed_arith_ineq_checks_to_eq; simp)+
lemma nasty_split_lt:
\<open>x * 2 ^ n + (2 ^ n - 1) \<le> 2 ^ m - 1\<close>
if \<open>x < 2 ^ (m - n)\<close> \<open>n \<le> m\<close> \<open>m < LENGTH('a::len)\<close>
for x :: \<open>'a::len word\<close>
proof -
define q where \<open>q = m - n\<close>
with \<open>n \<le> m\<close> have \<open>m = q + n\<close>
by simp
with \<open>x < 2 ^ (m - n)\<close> have *: \<open>i < q\<close> if \<open>bit x i\<close> for i
using that by simp (metis bit_take_bit_iff take_bit_word_eq_self_iff)
from \<open>m = q + n\<close> have \<open>push_bit n x OR mask n \<le> mask m\<close>
by (auto simp add: le_mask_high_bits word_size bit_simps dest!: *)
then have \<open>push_bit n x + mask n \<le> mask m\<close>
by (simp add: disjunctive_add bit_simps)
then show ?thesis
by (simp add: mask_eq_exp_minus_1 push_bit_eq_mult)
qed
lemma nasty_split_less:
"\<lbrakk>m \<le> n; n \<le> nm; nm < LENGTH('a::len); x < 2 ^ (nm - n)\<rbrakk>
\<Longrightarrow> (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm"
apply (simp only: word_less_sub_le[symmetric])
apply (rule order_trans [OF _ nasty_split_lt])
apply (rule word_plus_mono_right)
apply (rule word_sub_mono)
apply (simp add: word_le_nat_alt)
apply simp
apply (simp add: word_sub_1_le[OF power_not_zero])
apply (simp add: word_sub_1_le[OF power_not_zero])
apply (rule is_aligned_no_wrap')
apply (rule is_aligned_mult_triv2)
apply simp
apply (erule order_le_less_trans, simp)
apply simp+
done
lemma is_aligned_shiftr_add:
"\<lbrakk>is_aligned a n; is_aligned b m; b < 2^n; m \<le> n; n < LENGTH('a)\<rbrakk>
\<Longrightarrow> a + b >> m = (a >> m) + (b >> m)" for a :: "'a::len word"
apply(simp add: shiftr_div_2n_w word_size)
apply (rule word_unat_eq_iff[THEN iffD2])
apply (subst unat_plus_simple[THEN iffD1])
apply (subst shiftr_div_2n_w[symmetric])+
apply (rule is_aligned_no_wrap')
apply (rule is_aligned_shiftr[where n = "n - m"])
apply simp
apply (rule shiftr_less_t2n)
apply simp
apply (simp add:unat_div)
apply (subst unat_plus_simple[THEN iffD1])
apply (erule is_aligned_no_wrap')
apply simp
by (meson div_plus_div_distrib_dvd_left is_aligned_iff_dvd_nat is_aligned_weaken)
lemma shiftr_eq_neg_mask_eq:
"a >> b = c >> b \<Longrightarrow> a AND NOT (mask b) = c AND NOT (mask b)" for a :: "'a::len word"
by word_eqI (metis less_eqE)
end
end