lh-l4v/proof/infoflow/Noninterference_Base.thy

1380 lines
48 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the GNU General Public License version 2. Note that NO WARRANTY is provided.
* See "LICENSE_GPLv2.txt" for details.
*
* @TAG(NICTA_GPL)
*)
theory Noninterference_Base
imports "../../lib/Simulation"
begin
text {*
Toby's extended noninterference definitions to handle dynamic assignment,
that depends on the current state, of
the domain that each action is assigned to. This is the gory details
reported in the the CPP 2012 paper
\emph{Noninterference for Operating System Kernels}.
*}
lemma un_eq:
"\<lbrakk>S = S'; T = T'\<rbrakk> \<Longrightarrow> S \<union> T = S' \<union> T'"
apply auto
done
lemma Un_eq:
"\<lbrakk>\<And> x y. \<lbrakk>x \<in> xs; y \<in> ys\<rbrakk> \<Longrightarrow> P x = Q y; \<exists> x. x \<in> xs; \<exists> y. y \<in> ys\<rbrakk> \<Longrightarrow> (\<Union>x\<in>xs. P x) = (\<Union>y\<in>ys. Q y)"
apply auto
done
lemma Int_eq:
"\<lbrakk>\<And> x y. \<lbrakk>x \<in> xs; y \<in> ys\<rbrakk> \<Longrightarrow> P x = Q y; \<exists> x. x \<in> xs; \<exists> y. y \<in> ys\<rbrakk> \<Longrightarrow> (\<Inter>x\<in>xs. P x) = (\<Inter>y\<in>ys. Q y)"
apply auto
done
lemma Un_eq_Int:
assumes ex: "\<exists> x. x \<in> xs"
assumes ey: "\<exists> y. y \<in> ys"
assumes a: "\<And> x y. \<lbrakk>x \<in> xs; y \<in> ys\<rbrakk> \<Longrightarrow> S x = S' y"
shows "(\<Union>x\<in>xs. S x) = (\<Inter>x\<in>ys. S' x)"
apply(rule equalityI)
apply(clarsimp)
apply(drule a, assumption, simp)
apply clarsimp
apply(insert ex ey)
apply clarsimp
apply(frule a, assumption)
apply fastforce
done
primrec Run :: "('e \<Rightarrow> ('s \<times> 's) set) \<Rightarrow> 'e list \<Rightarrow> ('s \<times> 's) set" where
"Run Stepf [] = Id" |
"Run Stepf (a#as) = Stepf a O Run Stepf as"
lemma Run_mid':
shows
"\<forall> s u bs. (s,u) \<in> Run Stepf (as @ bs) \<longrightarrow> (\<exists> t. (s,t) \<in> Run Stepf as \<and> (t,u) \<in> Run Stepf bs)"
proof(induct as)
case Nil show ?case
apply(clarsimp)
done
next
case (Cons a as) show ?case
apply(clarsimp simp: relcomp_def)
apply(drule "Cons.hyps"[rule_format])
apply fastforce
done
qed
lemma Run_mid:
"(s,u) \<in> Run Stepf (as @ bs) \<Longrightarrow> (\<exists> t. (s,t) \<in> Run Stepf as \<and> (t,u) \<in> Run Stepf bs)"
apply(erule Run_mid'[rule_format])
done
lemma Run_trans':
"\<forall> s t u bs. (s,t) \<in> Run Stepf as \<and> (t,u) \<in> Run Stepf bs \<longrightarrow> (s,u) \<in> Run Stepf (as @ bs)"
by (induct_tac as) auto
lemma Run_trans:
"\<lbrakk>(s,t) \<in> Run Stepf as; (t,u) \<in> Run Stepf bs\<rbrakk> \<Longrightarrow> (s,u) \<in> Run Stepf (as @ bs)"
by(blast intro: Run_trans'[rule_format])
lemma Run_app:
"Run Stepf (as @ bs) = (Run Stepf as) O (Run Stepf bs)"
apply(rule equalityI)
apply(fastforce dest: Run_mid)
apply(fastforce intro: Run_trans)
done
(* An ADT with an initial state. *)
locale system =
fixes A :: "('a,'s,'e) data_type"
and s0 :: "'s" (* an initial state *)
context system begin
(* State 's' is reachable from the initial state 's0'. *)
definition reachable where
"reachable s \<equiv> \<exists> js. s \<in> execution A s0 js"
definition Step where
"Step a \<equiv> {(s,s') . s' \<in> execution A s [a]}"
(* The system is "observationally deterministic": that is, the
* observable part of the system is always deterministic. *)
definition obs_det where
"obs_det \<equiv> \<forall> s js. (\<exists> s'. execution A s js = {s'})"
lemma obs_detD:
"obs_det \<Longrightarrow> \<exists> s'. execution A s js = {s'}" by (simp add: obs_det_def)
(* The abstraction/concretisation functions "Init"/"Fin"
* don't abstract away information. *)
definition no_abs where
"no_abs \<equiv> \<forall> x s as . reachable s \<longrightarrow> x \<in> steps (Simulation.Step A) (Init A s) as \<longrightarrow> Init A (Fin A x) = {x}"
lemma no_absD:
"no_abs \<Longrightarrow> reachable s \<Longrightarrow> x \<in> steps (Simulation.Step A) (Init A s) as \<Longrightarrow> Init A (Fin A x) = {x}" by (auto simp: no_abs_def)
end
(*
* A system that is always enabled.
*
* In particular, the system will never be in deadlock, and there
* is always an enabled transition from every reachable state.
*)
locale enabled_system = system +
assumes enabled: "(\<exists> js. s \<in> execution A s0 js) \<Longrightarrow> \<exists> s'. s' \<in> execution A s js"
context enabled_system begin
lemma reachable_enabled:
"reachable s \<Longrightarrow> \<exists> s'. s' \<in> execution A s js"
apply(simp add: reachable_def)
apply(erule enabled)
done
lemma enabled_Step:
"reachable s \<Longrightarrow> \<exists> s'. (s,s') \<in> Step a"
apply(simp add: Step_def, blast intro: reachable_enabled)
done
end
(* we define the unwinding conditions for systems for which a running
a sequence of events is equivalent to performing a sequence of individual
steps: one for each event in the sequence in turn *)
locale Step_system = system A s0
for A :: "('a,'s,'e) data_type" and s0 :: "'s" +
assumes reachable_s0: "reachable s0"
assumes execution_Run: "reachable s \<Longrightarrow> execution A s as = {s'. (s,s') \<in> Run Step as}"
context Step_system begin
lemma execution_Run':
"s \<in> execution A s0 js \<Longrightarrow> execution A s as = {s'. (s,s') \<in> Run Step as}"
apply(rule execution_Run)
apply(fastforce simp: reachable_def)
done
lemma reachable_Run:
"reachable s \<Longrightarrow> \<exists>as. (s0,s) \<in> Run Step as"
apply (clarsimp simp add: reachable_def)
apply (cut_tac as=js in execution_Run[OF reachable_s0])
apply blast
done
lemma Run_reachable:
"\<exists>as. (s0,s) \<in> Run Step as \<Longrightarrow> reachable s"
apply (clarsimp simp add: reachable_def)
apply (cut_tac as=as in execution_Run[OF reachable_s0])
apply blast
done
lemma reachable_execution:
"\<lbrakk>reachable s; s' \<in> execution A s js\<rbrakk> \<Longrightarrow> reachable s'"
apply(clarsimp simp: reachable_def)
apply(rule_tac x="jsa @ js" in exI)
apply(frule execution_Run'[where s=s and as=js])
apply(simp add: execution_Run[where s=s0, simplified reachable_s0])
apply(fastforce simp: Run_app)
done
lemma reachable_Step:
"\<lbrakk>reachable s; (s,s') \<in> Step a\<rbrakk> \<Longrightarrow> reachable s'"
apply(erule reachable_execution)
apply(simp add: Step_def)
done
lemma reachable_induct_helper: assumes a:
"\<And>s s' a.
\<lbrakk>reachable s; P s;
(s, s') \<in> Step a\<rbrakk>
\<Longrightarrow> P s'"
shows "\<lbrakk>(s0, s1) \<in> Run Step as; P s0\<rbrakk>
\<Longrightarrow> P s1"
apply (induct as arbitrary: s1 rule: rev_induct)
apply simp
apply(fastforce dest: Run_mid intro: a Run_reachable)
done
lemma reachable_induct: "(\<And>s s' a. reachable s \<Longrightarrow> (s,s') \<in> (Step a) \<Longrightarrow> P s \<Longrightarrow> P s') \<Longrightarrow> reachable s1 \<Longrightarrow> P s0 \<Longrightarrow> P s1"
apply (drule reachable_Run)
apply (elim exE)
apply (rule reachable_induct_helper)
apply simp+
done
end
locale Init_Fin_system = system A s0
for A :: "('a,'s,'e) data_type" and s0 :: "'s" +
assumes reachable_s0: "reachable s0"
assumes Fin_Init: "reachable s \<Longrightarrow> Fin A ` Init A s = {s}"
assumes Init_Fin: "reachable s \<Longrightarrow> x \<in> steps (Simulation.Step A) (Init A s) as \<Longrightarrow> x \<in> Init A (Fin A x)"
assumes obs_det_or_no_abs: "obs_det \<or> no_abs"
context Init_Fin_system begin
lemma execution_subset_Run:
"reachable s \<Longrightarrow> execution A s as \<subseteq> {s'. (s,s') \<in> Run Step as}"
apply(induct as arbitrary: s rule: rev_induct)
apply(simp add: execution_def steps_def Fin_Init)
apply(simp add: execution_def steps_def)
apply(rule subsetI)
apply clarsimp
apply(rule Run_trans)
apply blast
apply(cut_tac x=xc and s=s and as=xs in Init_Fin, (simp add: steps_def)+)
apply(clarsimp simp: Step_def execution_def steps_def)
apply blast
done
lemma Run_subset_execution:
"\<lbrakk>no_abs; reachable s\<rbrakk> \<Longrightarrow> {s'. (s,s') \<in> Run Step as} \<subseteq> execution A s as"
apply(induct as arbitrary: s rule: rev_induct)
apply(simp add: execution_def steps_def Fin_Init)
apply(simp add: execution_def steps_def)
apply(rule subsetI)
apply clarsimp
apply(drule Run_mid)
apply clarsimp
apply(drule_tac x=s in meta_spec)
apply clarsimp
apply(drule_tac subsetD)
apply blast
apply(clarsimp simp: Image_def image_def Step_def execution_def steps_def)
apply(rule_tac x=xc in exI)
apply clarsimp
apply(rule_tac x=xd in bexI)
apply assumption
apply(drule_tac x=xb in no_absD)
apply(simp add: steps_def Image_def)+
done
lemma Run_det:
"obs_det \<Longrightarrow> \<exists> s'. {s'. (s,s') \<in> Run Step as} = {s'}"
apply(induct as arbitrary: s rule: rev_induct)
apply simp
apply(simp add: Run_app relcomp_def)
apply(drule_tac x=s in meta_spec)
apply clarsimp
apply(drule_tac s=s' and js="[x]" in obs_detD)
apply (clarsimp simp: Step_def)
apply(rule_tac x="s'a" in exI)
apply (auto dest: equalityD1)
done
lemma eq:
"\<lbrakk>S \<subseteq> T; \<exists> x. S = {x}; \<exists> y. T = {y}\<rbrakk> \<Longrightarrow> S = T"
apply blast
done
lemma execution_Run:
"reachable s \<Longrightarrow> execution A s as = {s'. (s,s') \<in> Run Step as}"
apply(rule disjE[OF obs_det_or_no_abs])
apply(rule eq)
apply(erule execution_subset_Run)
apply(erule obs_detD)
apply(erule Run_det)
apply(rule equalityI)
apply(erule execution_subset_Run)
apply(erule (1) Run_subset_execution)
done
end
lemma Init_Fin_system_Step_system:
"Init_Fin_system A s0 \<Longrightarrow> Step_system A s0"
apply(unfold_locales)
apply(erule Init_Fin_system.reachable_s0)
apply(erule (1) Init_Fin_system.execution_Run)
done
sublocale Init_Fin_system \<subseteq> Step_system
apply(rule Init_Fin_system_Step_system)
apply(unfold_locales)
done
(* when Init is the inverse image of Fin, the above assumptions are met by a system
for which Fin is injective, or one that appears deterministic to an observer *)
locale Init_inv_Fin_system = system A s0
for A :: "('a,'s,'e) data_type" and s0 :: "'s" +
assumes Fin_Init_s0: "s0 \<in> Fin A ` Init A s0"
assumes Init_inv_Fin: "reachable s \<Longrightarrow> Init A s = {s'. Fin A s' = s}"
assumes Fin_inj: "inj (Fin A)"
context Init_inv_Fin_system begin
lemma s0_reachable:
"reachable s0"
apply(simp add: system.reachable_def)
apply(rule_tac x="[]" in exI)
apply(simp add: execution_def steps_def)
apply(simp add: Fin_Init_s0)
done
lemma foldl_foldl_Step:
"\<lbrakk>x \<in> foldl (\<lambda>S j. data_type.Step A j `` S) M as;
M \<subseteq> foldl (\<lambda>S j. data_type.Step A j `` S) B js\<rbrakk>
\<Longrightarrow> x \<in> foldl (\<lambda>S j. data_type.Step A j `` S)
(foldl (\<lambda>S j. data_type.Step A j `` S) B js) as"
apply(induct as arbitrary: x M js B rule: rev_induct)
apply fastforce
apply simp
apply(erule ImageE)
apply(drule_tac x=xb in meta_spec)
apply(drule_tac x=M in meta_spec)
apply simp
apply(drule_tac x=js in meta_spec)
apply(drule_tac x=B in meta_spec, simp)
apply(blast)
done
lemma reachable_Fin:
"\<lbrakk>reachable s;
x \<in> steps (Simulation.Step A) (Init A s) as\<rbrakk>
\<Longrightarrow> reachable (Fin A x)"
apply(cut_tac s=s in Init_inv_Fin, assumption)
apply(clarsimp simp: reachable_def execution_def steps_def)
apply(rule_tac x="js@as" in exI)
apply(rule imageI)
apply(subgoal_tac "{s'. Fin A s' = Fin A xa} = {xa}")
apply simp
apply(erule foldl_foldl_Step)
apply blast
apply(blast dest: injD[OF Fin_inj])
done
end
lemma Init_inv_Fin_system_Init_Fin_system:
"Init_inv_Fin_system A s0 \<Longrightarrow> Init_Fin_system A s0"
apply(unfold_locales)
apply(erule Init_inv_Fin_system.s0_reachable)
apply(simp add: Init_inv_Fin_system.Init_inv_Fin)
apply(simp add: image_def)
apply(fastforce simp: system.reachable_def execution_def)
apply(cut_tac s="Fin A x" in Init_inv_Fin_system.Init_inv_Fin)
apply assumption
apply(blast intro: Init_inv_Fin_system.reachable_Fin)
apply simp
apply(rule disjI2)
apply(clarsimp simp: system.no_abs_def)
apply(frule Init_inv_Fin_system.Fin_inj)
apply(cut_tac s="Fin A x" in Init_inv_Fin_system.Init_inv_Fin)
apply assumption
apply(blast intro: Init_inv_Fin_system.reachable_Fin)
apply simp
apply(fastforce dest: injD)
done
sublocale Init_inv_Fin_system \<subseteq> Init_Fin_system
apply(rule Init_inv_Fin_system_Init_Fin_system)
apply(unfold_locales)
done
locale noninterference_policy =
fixes dom :: "'e \<Rightarrow> 's \<Rightarrow> 'd" (* dynamic dom assignment *)
fixes uwr :: "'d \<Rightarrow> ('s \<times> 's) set"
fixes policy :: "('d \<times> 'd) set" (* who can send info to whom *)
fixes out :: "'d \<Rightarrow> 's \<Rightarrow> 'p" (* observable parts of d in state s *)
fixes schedDomain :: "'d"
assumes uwr_equiv_rel: "equiv UNIV (uwr u)"
assumes schedIncludesCurrentDom:
"(s,t) \<in> uwr schedDomain \<Longrightarrow> dom e s = dom e t"
assumes schedFlowsToAll:
"(schedDomain,d) \<in> policy"
assumes schedNotGlobalChannel:
"(x,schedDomain) \<in> policy \<Longrightarrow> x = schedDomain"
context noninterference_policy begin
abbreviation uwr2 :: "'s \<Rightarrow> 'd \<Rightarrow> 's \<Rightarrow> bool" ("(_/ \<sim>_\<sim>/ _)" [50,100,50] 1000)
where "s \<sim>u\<sim> t \<equiv> (s,t) \<in> uwr u"
abbreviation policy2 :: "'d \<Rightarrow> 'd \<Rightarrow> bool" (infix "\<leadsto>" 50) where
"u \<leadsto> v \<equiv> (u,v) \<in> policy"
lemma uwr_refl:
"s \<sim>(u::'d)\<sim> s"
apply(cut_tac u=u in uwr_equiv_rel)
apply(clarsimp simp: equiv_def)
apply(blast dest: refl_onD)
done
lemma uwr_sym:
"x \<sim>(u::'d)\<sim> y \<Longrightarrow> y \<sim>u\<sim> x"
apply(cut_tac u=u in uwr_equiv_rel)
apply(clarsimp simp: equiv_def)
apply(blast dest: symD)
done
lemma uwr_trans:
"\<lbrakk>x \<sim>(u::'d)\<sim> y; y \<sim>u\<sim> z\<rbrakk> \<Longrightarrow> x \<sim>u\<sim> z"
apply(cut_tac u=u in uwr_equiv_rel)
apply(clarsimp simp: equiv_def)
apply(blast dest: transD)
done
definition sameFor_dom :: "'s \<Rightarrow> 'd set \<Rightarrow> 's \<Rightarrow> bool" ("(_/ \<approx>_\<approx>/ _)" [50,100,50] 1000) where
"s \<approx>us\<approx> t \<equiv> \<forall>u\<in>us. (s,t) \<in> uwr u"
lemma sameFor_subset_dom: "\<lbrakk>s \<approx>(x::'d set)\<approx> t; y \<subseteq> x\<rbrakk> \<Longrightarrow> s \<approx>y\<approx> t"
by(fastforce simp: sameFor_dom_def)
lemma sameFor_inter_domI: "s \<approx>(S::'d set)\<approx> t \<Longrightarrow> s \<approx>(S \<inter> B)\<approx> t"
by(auto simp: sameFor_dom_def)
lemma sameFor_sym_dom:
"s \<approx>(S::'d set)\<approx> t \<Longrightarrow> t \<approx>S\<approx> s"
by(auto simp: sameFor_dom_def uwr_sym)
end
locale noninterference_system = enabled_system A s0 + noninterference_policy dom uwr policy out schedDomain
for A :: "('a,'s,'e) data_type"
and s0 :: "'s"
and dom :: "'e \<Rightarrow> 's \<Rightarrow> 'd"
and uwr :: "'d \<Rightarrow> ('s \<times> 's) set"
and policy :: "('d \<times> 'd) set"
and out :: "'d \<Rightarrow> 's \<Rightarrow> 'p"
and schedDomain :: "'d"
context noninterference_system begin
(* The set of domains (which carry out actions in the list "as") which
* may influence "u", assuming we start in state "s". *)
primrec
sources :: "'e list \<Rightarrow> 's \<Rightarrow> 'd \<Rightarrow> 'd set" where
sources_Nil: "sources [] s u = {u}"|
sources_Cons: "sources (a#as) s u = (\<Union>{sources as s' u| s'. (s,s') \<in> Step a}) \<union>
{w. w = dom a s \<and> (\<exists> v s'. dom a s \<leadsto> v \<and> (s,s') \<in> Step a \<and> v \<in> sources as s' u)}"
declare sources_Nil [simp del]
declare sources_Cons [simp del]
definition
obs_equiv :: "'s \<Rightarrow> 'e list \<Rightarrow> 's \<Rightarrow> 'e list \<Rightarrow> 'd \<Rightarrow> bool"
where
"obs_equiv s as t bs d \<equiv> \<forall> s' t'. s' \<in> execution A s as \<and> t' \<in> execution A t bs \<longrightarrow>
out d s' = out d t'"
definition
uwr_equiv :: "'s \<Rightarrow> 'e list \<Rightarrow> 's \<Rightarrow> 'e list \<Rightarrow> 'd \<Rightarrow> bool"
where
"uwr_equiv s as t bs d \<equiv> \<forall> s' t'. s' \<in> execution A s as \<and> t' \<in> execution A t bs \<longrightarrow>
s' \<sim>d\<sim> t'"
text {* Nonleakage *}
definition
Nonleakage :: "bool" where
"Nonleakage \<equiv> \<forall>as s u t. reachable s \<and> reachable t \<longrightarrow>
s \<sim>schedDomain\<sim> t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> obs_equiv s as t as u"
text {* A generalisation of Nonleakage. *}
definition Nonleakage_gen :: "bool" where
"Nonleakage_gen \<equiv> \<forall>as s u t. reachable s \<and> reachable t \<longrightarrow>
s \<sim>schedDomain\<sim> t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> uwr_equiv s as t as u"
lemma uwr_equiv_sym:
"uwr_equiv s as t bs u \<Longrightarrow> uwr_equiv t bs s as u"
apply(fastforce simp: uwr_equiv_def uwr_sym)
done
lemma uwr_equiv_trans:
"\<lbrakk>reachable t; uwr_equiv s as t bs x; uwr_equiv t bs u cs x\<rbrakk> \<Longrightarrow> uwr_equiv s as u cs x"
apply(clarsimp simp: uwr_equiv_def)
apply(cut_tac s=t and js=bs in reachable_enabled)
apply assumption
apply(blast intro: uwr_trans)
done
primrec gen_purge :: "('e list \<Rightarrow> 's \<Rightarrow> 'd \<Rightarrow> 'd set) \<Rightarrow> 'd \<Rightarrow> 'e list \<Rightarrow> 's set \<Rightarrow> 'e list"
where
Nil : "gen_purge sf u [] ss = []" |
Cons: "gen_purge sf u (a#as) ss =
(if (\<exists>s\<in>ss. dom a s \<in> sf (a#as) s u) then
a#gen_purge sf u as (\<Union>s\<in>ss. {s'. (s,s') \<in> Step a})
else
gen_purge sf u as ss)"
definition ipurge where
"ipurge \<equiv> gen_purge sources"
lemma ipurge_Nil:
"ipurge u [] ss = []"
by(auto simp: ipurge_def)
lemma ipurge_Cons:
"ipurge u (a#as) ss =
(if (\<exists> s\<in>ss. dom a s \<in> sources (a#as) s u) then
a#ipurge u as (\<Union>s\<in>ss. {s'. (s,s') \<in> Step a})
else
ipurge u as ss)"
by (auto simp: ipurge_def)
lemma gen_purge_shortens:
"length (gen_purge sf u as ss) \<le> length as"
apply(induct as arbitrary: ss)
apply(simp)
apply(clarsimp)
apply(rule le_trans)
apply assumption
apply simp
done
lemma INT_cong':
assumes a: "\<And> x. Q x \<Longrightarrow> P x = P' x"
shows
"\<Inter>{P x|x. Q x} = \<Inter>{P' x|x. Q x}"
apply (auto simp: a)
done
text {* Standard Noninterfernce *}
definition
Noninterference :: "bool" where
"Noninterference \<equiv>
\<forall> u as s. reachable s \<longrightarrow>
(obs_equiv s as s (ipurge u as {s}) u)"
text {* Strong Noninterference *}
definition
Noninterference_strong :: "bool" where
"Noninterference_strong \<equiv>
\<forall> u as bs s. reachable s \<longrightarrow>
(ipurge u as {s}) = (ipurge u bs {s}) \<longrightarrow>
(obs_equiv s as s bs u)"
lemma obs_equiv_sym:
"obs_equiv s as t bs u \<Longrightarrow> obs_equiv t bs s as u"
apply(clarsimp simp: obs_equiv_def)
done
lemma obs_equiv_trans:
"\<lbrakk>reachable t; obs_equiv s as t bs u; obs_equiv t bs x cs u\<rbrakk> \<Longrightarrow> obs_equiv s as x cs u"
apply(clarsimp simp: obs_equiv_def)
apply(cut_tac s=t and js=bs in reachable_enabled, assumption, blast)
done
lemma Noninterference_Noninterference_strong:
"\<lbrakk>Noninterference\<rbrakk> \<Longrightarrow> Noninterference_strong
"
apply(clarsimp simp: Noninterference_def Noninterference_strong_def)
apply(drule_tac x=u in spec)
apply(frule_tac x=as in spec, drule_tac x=s in spec)
apply(drule_tac x=bs in spec, drule_tac x=s in spec)
apply clarsimp
apply(rule obs_equiv_trans)
apply assumption
apply assumption
apply(erule obs_equiv_sym)
done
text {* Noninfluence -- the combination of Noninterference and
Nonleakage.
We add the assumption about equivalence wrt the scheduler's domain, as
is common in e.g. GVW.*}
definition
Noninfluence :: "bool" where
"Noninfluence \<equiv>
\<forall> u as s t. reachable s \<and> reachable t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> s \<sim>schedDomain\<sim> t \<longrightarrow>
obs_equiv s as t (ipurge u as {t}) u"
definition
Noninfluence_strong :: "bool" where
"Noninfluence_strong \<equiv>
\<forall> u as bs s t. reachable s \<and> reachable t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> s \<sim>schedDomain\<sim> t \<longrightarrow>
ipurge u as {s} = ipurge u bs {s} \<longrightarrow>
obs_equiv s as t bs u"
lemma notin_policyI:
"\<lbrakk>dom a s \<notin> sources (a # list) s u; \<exists> s'. (s,s') \<in> Step a \<and> ua \<in> sources list s' u\<rbrakk> \<Longrightarrow>
(dom a s,ua) \<notin> policy"
apply(clarsimp simp: sources_Cons)
done
lemma Noninfluence_strong_Noninterference_strong:
"Noninfluence_strong \<Longrightarrow> Noninterference_strong"
apply(clarsimp simp: Noninfluence_strong_def Noninterference_strong_def)
apply(drule_tac x=u in spec, drule_tac x=as in spec, drule_tac x=bs in spec)
apply(fastforce simp: sameFor_dom_def uwr_refl)
done
lemma Noninfluence_strong_Nonleakage:
"Noninfluence_strong \<Longrightarrow> Nonleakage"
apply(clarsimp simp: Noninfluence_strong_def Nonleakage_def)
done
text {* This stronger condition is needed
to make the induction proof work for Noninterference. It can be viewed
as a generalisation of Noninfluence; hence its name here.
*}
definition
Noninfluence_gen :: "bool" where
"Noninfluence_gen \<equiv>
\<forall> u as s ts. reachable s \<and> (\<forall> t \<in> ts. reachable t) \<longrightarrow>
(\<forall>t \<in> ts. s \<approx>(sources as s u)\<approx> t) \<longrightarrow> (\<forall>t \<in> ts. s \<sim>schedDomain\<sim> t) \<longrightarrow>
(\<forall>t \<in> ts. uwr_equiv s as t (ipurge u as ts) u)"
definition
Noninfluence_uwr :: "bool" where
"Noninfluence_uwr \<equiv>
\<forall> u as s t. reachable s \<and> reachable t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> s \<sim>schedDomain\<sim> t \<longrightarrow>
uwr_equiv s as t (ipurge u as {t}) u"
definition
Noninfluence_strong_uwr :: "bool" where
"Noninfluence_strong_uwr \<equiv>
\<forall> u as bs s t. reachable s \<and> reachable t \<longrightarrow>
s \<approx>(sources as s u)\<approx> t \<longrightarrow> s \<sim>schedDomain\<sim> t \<longrightarrow>
ipurge u as {s} = ipurge u bs {s} \<longrightarrow>
uwr_equiv s as t bs u"
definition output_consistent :: "bool" where
"output_consistent \<equiv> \<forall> u s s'. s \<sim>u\<sim> s' \<longrightarrow> (out u s = out u s')"
definition confidentiality_u :: "bool" where
"confidentiality_u \<equiv> \<forall> a u s t. reachable s \<and> reachable t \<longrightarrow>
s \<sim>schedDomain\<sim> t \<longrightarrow>
((dom a s \<leadsto> u) \<longrightarrow> s \<sim>dom a s\<sim> t) \<longrightarrow>
s \<sim>u\<sim> t \<longrightarrow>
(\<forall> s' t'. (s,s') \<in> Step a \<and> (t,t') \<in> Step a \<longrightarrow>
s' \<sim>u\<sim> t')"
lemma no_domain_visible_nondeterminism:
"\<lbrakk>confidentiality_u; reachable s; (s,s') \<in> Step a; (s,s'') \<in> Step a\<rbrakk> \<Longrightarrow> s' \<sim>d\<sim> s''"
apply(clarsimp simp: confidentiality_u_def)
apply(fastforce intro: uwr_refl)
done
definition integrity_u :: "bool" where
"integrity_u \<equiv> \<forall> a u s. reachable s \<longrightarrow>
(dom a s,u) \<notin> policy \<longrightarrow>
(\<forall> s'. (s,s') \<in> Step a \<longrightarrow> s \<sim>u\<sim> s')"
(*<*)
(* integrity_u actually guarantees this (seemingly) stronger condition *)
definition integrity_u_more :: "bool" where
"integrity_u_more \<equiv> \<forall> a u s. reachable s \<longrightarrow>
(dom a s,u) \<notin> policy \<longrightarrow>
(\<forall> s' t. s \<sim>u\<sim> t \<and> (s,s') \<in> Step a \<longrightarrow> s' \<sim>u\<sim> t)"
lemma integrity_u_more:
"integrity_u \<Longrightarrow> integrity_u_more"
apply(clarsimp simp: integrity_u_more_def integrity_u_def)
apply(blast dest: uwr_sym uwr_trans)
done
(*>*)
lemma integrity_uD:
"\<lbrakk>integrity_u; reachable s; (dom a s,u) \<notin> policy;
s \<sim>u\<sim> t; (s,s') \<in> Step a\<rbrakk> \<Longrightarrow>
s' \<sim>u\<sim> t"
apply(drule integrity_u_more)
apply(simp add: integrity_u_more_def)
done
text {*
A weaker version of @{prop confidentiality_u} that, with
@{prop integrity_u}, implies it.
*}
definition confidentiality_u_weak where
"confidentiality_u_weak \<equiv> \<forall> a u s t. reachable s \<and> reachable t \<longrightarrow>
s \<sim>schedDomain\<sim> t \<longrightarrow> dom a s \<leadsto> u \<longrightarrow> s \<sim>(dom a s)\<sim> t \<longrightarrow>
s \<sim>u\<sim> t \<longrightarrow>
(\<forall> s' t'. (s,s') \<in> Step a \<and> (t,t') \<in> Step a \<longrightarrow> s' \<sim>u\<sim> t')"
lemma confidentiality_u_confidentiality_u_weak:
"confidentiality_u \<Longrightarrow> confidentiality_u_weak"
apply (simp add: confidentiality_u_def confidentiality_u_weak_def)
apply blast
done
lemma impCE':
"\<lbrakk>P \<longrightarrow> Q; \<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R; \<not> P \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
apply auto
done
lemma confidentiality_u_weak:
"\<lbrakk>confidentiality_u_weak; integrity_u\<rbrakk> \<Longrightarrow>
confidentiality_u"
apply(clarsimp simp: confidentiality_u_def)
apply(erule impCE')
apply(subst (asm) confidentiality_u_weak_def, blast)
apply(frule integrity_uD, simp+)
apply(drule_tac s=t and t="s'" in integrity_uD)
apply assumption
apply(drule_tac e=a in schedIncludesCurrentDom)
apply simp
apply(blast intro: uwr_sym)
apply assumption
apply(erule uwr_sym)
done
lemma obs_equivI:
"\<lbrakk>output_consistent; uwr_equiv s as t bs ob\<rbrakk> \<Longrightarrow> obs_equiv s as t bs ob"
apply(clarsimp simp: obs_equiv_def)
apply(auto simp: uwr_equiv_def output_consistent_def)
done
lemma Noninfluence_uwr_Noninfluence:
"\<lbrakk>output_consistent; Noninfluence_uwr\<rbrakk> \<Longrightarrow> Noninfluence"
apply(clarsimp simp: Noninfluence_def)
apply(erule obs_equivI)
apply(auto simp: Noninfluence_uwr_def)
done
lemma Noninfluence_strong_uwr_Noninfluence_strong:
"\<lbrakk>output_consistent; Noninfluence_strong_uwr\<rbrakk> \<Longrightarrow> Noninfluence_strong"
apply(clarsimp simp: Noninfluence_strong_def)
apply(erule obs_equivI)
apply(auto simp: Noninfluence_strong_uwr_def)
done
lemma sched_equiv_preserved:
"\<lbrakk>confidentiality_u; reachable s; reachable t;
s \<sim>schedDomain\<sim> t; (s,s') \<in> Step a; (t,t') \<in> Step a\<rbrakk> \<Longrightarrow>
s' \<sim>schedDomain\<sim> t'"
apply(case_tac "dom a s = schedDomain")
apply(subst (asm) confidentiality_u_def)
apply(drule_tac x=a in spec)
apply(drule_tac x=schedDomain in spec)
apply(drule_tac x=s in spec)
apply(drule_tac x=t in spec)
apply simp
apply(subst (asm) confidentiality_u_def)
apply(blast intro: schedNotGlobalChannel)
done
lemma sched_equiv_preserved_left:
"\<lbrakk>integrity_u; s \<sim>schedDomain\<sim> t;
dom a s \<noteq> schedDomain; (s,s') \<in> Step a; reachable s\<rbrakk> \<Longrightarrow>
s' \<sim>schedDomain\<sim> t"
apply(blast intro: integrity_uD schedNotGlobalChannel)
done
lemma Noninfluence_gen_Noninterference:
"\<lbrakk>output_consistent; Noninfluence_gen\<rbrakk> \<Longrightarrow> Noninterference"
apply(clarsimp simp: Noninterference_def Noninfluence_gen_def)
apply(erule_tac x=u in allE)
apply(erule_tac x=as in allE)
apply(erule_tac x=s in allE)
apply(erule_tac x="{s}" in allE)
apply(clarsimp simp: sameFor_dom_def uwr_refl)
apply(blast intro: obs_equivI)
done
lemma Noninfluence_gen_Noninfluence:
"\<lbrakk>output_consistent; Noninfluence_gen\<rbrakk> \<Longrightarrow> Noninfluence"
apply(clarsimp simp: Noninfluence_def Noninfluence_gen_def)
apply(erule_tac x=u in allE)
apply(erule_tac x=as in allE)
apply(erule_tac x=s in allE)
apply(erule_tac x="{t}" in allE)
apply(blast intro: obs_equivI)
done
lemma Noninfluence_gen_Noninfluence_uwr:
"\<lbrakk>Noninfluence_gen\<rbrakk> \<Longrightarrow> Noninfluence_uwr"
apply(clarsimp simp: Noninfluence_uwr_def Noninfluence_gen_def)
done
lemma Noninfluence_gen_Noninterference_strong:
"\<lbrakk>output_consistent; Noninfluence_gen\<rbrakk> \<Longrightarrow> Noninterference_strong"
apply(rule Noninterference_Noninterference_strong)
apply(blast intro: Noninfluence_gen_Noninterference)
done
end
locale enabled_Step_system = enabled_system A s0 + Step_system A s0
for A :: "('a,'s,'e) data_type" and s0 :: "'s"
(* we define the unwinding conditions for any system *)
locale unwinding_system = enabled_Step_system A s0 + noninterference_policy dom uwr policy out schedDomain
for A :: "('a,'s,'e) data_type"
and s0 :: "'s"
and dom :: "'e \<Rightarrow> 's \<Rightarrow> 'd"
and uwr :: "'d \<Rightarrow> ('s \<times> 's) set"
and policy :: "('d \<times> 'd) set"
and out :: "'d \<Rightarrow> 's \<Rightarrow> 'p"
and schedDomain :: "'d"
sublocale unwinding_system \<subseteq> noninterference_system
apply(unfold_locales)
done
context unwinding_system begin
lemma sources_refl:
"reachable s \<Longrightarrow> u \<in> sources as s u"
apply(induct as arbitrary: s)
apply(simp add: sources_Nil)
apply(simp add: sources_Cons)
apply(frule_tac a=a in enabled_Step)
apply (auto simp: reachable_Step)
done
lemma schedDomain_in_sources_Cons:
"reachable s \<Longrightarrow> dom a s = schedDomain \<Longrightarrow> dom a s \<in> sources (a#as) s u"
apply(unfold sources_Cons)
apply(erule ssubst)
apply(rule UnI2)
apply(clarsimp)
apply(rule_tac x=u in exI)
apply(safe)
apply(rule schedFlowsToAll)
apply(frule_tac a=a in enabled_Step)
apply(fastforce dest: sources_refl reachable_Step)
done
lemma sources_eq':
"confidentiality_u \<and> s \<sim>schedDomain\<sim> t \<and> reachable s \<and> reachable t \<longrightarrow> sources as s u = sources as t u"
proof (induct as arbitrary: s t)
case Nil show ?case
apply(simp add: sources_Nil)
done
next
case (Cons a as) show ?case
apply(clarsimp simp: sources_Cons)
apply(rule un_eq)
apply(simp only: Union_eq, simp only: UNION_eq[symmetric])
apply(rule Un_eq, clarsimp)
apply(metis "Cons.hyps"[rule_format] sched_equiv_preserved reachable_Step)
apply(fastforce intro: enabled_Step)
apply(fastforce intro: enabled_Step)
apply(clarsimp simp: schedIncludesCurrentDom)
apply(rule Collect_cong)
apply(rule conj_cong, rule refl)
apply(rule iff_exI)
apply(metis "Cons.hyps"[rule_format] sched_equiv_preserved reachable_Step enabled_Step)
done
qed
lemma sources_eq:
"\<lbrakk>confidentiality_u; s \<sim>schedDomain\<sim> t; reachable s; reachable t\<rbrakk> \<Longrightarrow>
sources as s u = sources as t u"
apply(rule sources_eq'[rule_format], simp)
done
lemma sameFor_sources_dom:
"\<lbrakk>s \<approx>(sources (a#as) s u)\<approx> t; dom a s \<leadsto> x; x \<in> sources as s' u; (s,s') \<in> Step a\<rbrakk> \<Longrightarrow>
s \<sim>(dom a s)\<sim> t"
apply(simp add: sameFor_dom_def)
apply(erule bspec)
apply(subst sources_Cons)
apply(rule UnI2)
apply blast
done
lemma sources_unwinding_step:
"\<lbrakk>s \<approx>(sources (a#as) s u)\<approx> t; s \<sim>schedDomain\<sim> t; confidentiality_u;
(s,s') \<in> Step a; (t,t') \<in> Step a; reachable s; reachable t\<rbrakk> \<Longrightarrow>
s' \<approx>(sources as s' u)\<approx> t'"
apply(clarsimp simp: sameFor_dom_def sources_Cons)
apply(subst (asm) confidentiality_u_def)
apply(drule_tac x=a in spec)
apply(drule_tac x=ua in spec)
apply(drule_tac x=s in spec)
apply(drule_tac x=t in spec)
apply(fastforce intro: sameFor_sources_dom)
done
lemma ipurge_eq'_helper:
"\<lbrakk>s \<in> ss; dom a s \<in> sources (a # as) s u; \<forall>s\<in>ts. dom a s \<notin> sources (a # as) s u;
(\<forall>s t. s \<in> ss \<and> t \<in> ts \<longrightarrow> s \<sim>schedDomain\<sim> t \<and> reachable s \<and> reachable t); t \<in> ts; confidentiality_u\<rbrakk> \<Longrightarrow>
False"
apply(cut_tac s=s and t=t and as=as and u=u in sources_eq, simp+)
apply(clarsimp simp: sources_Cons | safe)+
apply(rename_tac s')
apply(drule_tac x=t in bspec, simp)
apply clarsimp
apply(cut_tac s=t in enabled_Step, simp)
apply(erule exE, rename_tac t')
apply(drule_tac x="sources as t' u" in spec)
apply(cut_tac s=s' and t=t' and u=u in sources_eq, simp+)
apply(fastforce elim: sched_equiv_preserved)
apply(fastforce intro: reachable_Step)
apply(fastforce intro: reachable_Step)
apply(fastforce simp: schedIncludesCurrentDom)
apply(drule_tac x=t in bspec, simp)
apply clarsimp
apply(rename_tac v s')
apply(drule_tac x=v in spec, erule impE, fastforce simp: schedIncludesCurrentDom)
apply(cut_tac s=t in enabled_Step[where a=a], simp, clarsimp, rename_tac t')
apply(cut_tac s=s' and t=t' and u=u in sources_eq, simp+)
apply(fastforce elim: sched_equiv_preserved)
apply(fastforce intro: reachable_Step)
apply(fastforce intro: reachable_Step)
apply(fastforce simp: schedIncludesCurrentDom)
done
lemma ipurge_eq':
"(\<forall> s t. s\<in>ss \<and> t\<in>ts \<longrightarrow> s \<sim>schedDomain\<sim> t \<and> reachable s \<and> reachable t) \<and> (\<exists> s. s \<in> ss) \<and> (\<exists> t. t \<in> ts) \<and> confidentiality_u \<longrightarrow> ipurge u as ss = ipurge u as ts"
proof (induct as arbitrary: ss ts)
case Nil show ?case
apply(simp add: ipurge_def)
done
next
case (Cons a as) show ?case
apply(clarsimp simp: ipurge_Cons schedIncludesCurrentDom)
apply(intro conjI impI)
apply(rule "Cons.hyps"[rule_format])
apply clarsimp
apply(metis sched_equiv_preserved reachable_Step enabled_Step)
apply clarsimp
apply(drule ipurge_eq'_helper, simp+)[1]
apply clarsimp
apply(drule ipurge_eq'_helper, (simp add: uwr_sym)+)[1]
apply(rule "Cons.hyps"[rule_format], auto)
done
qed
lemma ipurge_eq:
"\<lbrakk>s \<sim>schedDomain\<sim> t; reachable s; reachable t;
confidentiality_u\<rbrakk> \<Longrightarrow>
ipurge u as {s} = ipurge u as {t}"
apply(rule ipurge_eq'[rule_format], simp)
done
lemma Noninfluence_uwr_Noninfluence_strong_uwr:
"\<lbrakk>confidentiality_u; Noninfluence_uwr\<rbrakk> \<Longrightarrow> Noninfluence_strong_uwr"
apply(clarsimp simp: Noninfluence_uwr_def Noninfluence_strong_uwr_def)
apply(frule_tac s=s and t=t and as=as and u=u in ipurge_eq)
apply assumption+
apply(frule_tac s=s and t=t and as=bs and u=u in ipurge_eq)
apply assumption+
apply clarsimp
apply(drule_tac x=u in spec)
apply(frule_tac x=as in spec)
apply(drule_tac x=s in spec, drule_tac x=t in spec)
apply(drule_tac x=bs in spec)
apply(drule_tac x=t in spec, drule_tac x=t in spec)
apply clarsimp
apply(rule_tac t=t in uwr_equiv_trans)
apply assumption
apply assumption
apply(rule uwr_equiv_sym)
apply(clarsimp simp: sameFor_dom_def uwr_refl)
done
lemma Noninfluence_Noninfluence_strong:
"\<lbrakk>confidentiality_u; Noninfluence\<rbrakk> \<Longrightarrow> Noninfluence_strong"
apply(clarsimp simp: Noninfluence_def Noninfluence_strong_def)
apply(frule_tac s=s and t=t and as=as and u=u in ipurge_eq)
apply assumption+
apply(frule_tac s=s and t=t and as=bs and u=u in ipurge_eq)
apply assumption+
apply clarsimp
apply(drule_tac x=u in spec)
apply(frule_tac x=as in spec)
apply(drule_tac x=s in spec, drule_tac x=t in spec)
apply(drule_tac x=bs in spec)
apply(drule_tac x=t in spec, drule_tac x=t in spec)
apply clarsimp
apply(rule_tac t=t in obs_equiv_trans)
apply assumption
apply assumption
apply(rule obs_equiv_sym)
apply(clarsimp simp: sameFor_dom_def uwr_refl)
done
lemma dom_in_sources_Cons:
"\<lbrakk>confidentiality_u; reachable s; reachable t;
s \<approx>(sources (a#as) s u)\<approx> t; s \<sim>schedDomain\<sim> t;
(dom a s \<in> sources (a#as) s u)\<rbrakk> \<Longrightarrow>
(dom a t \<in> sources (a#as) t u)"
apply(subgoal_tac "dom a s = dom a t")
apply(fastforce dest: sources_eq)
apply(blast intro: schedIncludesCurrentDom)
done
lemma uwr_equiv_Cons_bothI:
"\<lbrakk>reachable s; reachable t;
\<forall> s' t'. (s,s') \<in> Step a \<and> (t,t') \<in> Step b \<longrightarrow> uwr_equiv s' as t' bs u\<rbrakk> \<Longrightarrow>
uwr_equiv s (a # as) t (b # bs) u"
apply(clarsimp simp: uwr_equiv_def)
apply(clarsimp simp: execution_Run)
apply(fastforce simp: execution_Run reachable_Step)
done
lemma uwr_equiv_Cons_leftI:
"\<lbrakk>reachable s; \<forall> s'. (s,s') \<in> Step a \<longrightarrow> uwr_equiv s' as t bs u\<rbrakk> \<Longrightarrow>
uwr_equiv s (a # as) t bs u"
apply(fastforce simp: uwr_equiv_def execution_Run reachable_Step)
done
lemma notin_policyI':
"\<lbrakk>reachable s;
dom a s \<notin> sources (a # list) s u; (s,s') \<in> Step a; ua \<in> sources list s' u\<rbrakk> \<Longrightarrow>
(dom a s,ua) \<notin> policy"
apply(rule notin_policyI)
apply auto
done
lemma sources_eq_Step:
"\<lbrakk>integrity_u; confidentiality_u; reachable s; (s,s') \<in> Step a; dom a s \<noteq> schedDomain\<rbrakk> \<Longrightarrow>
(sources as s' u) = (sources as s u)"
apply(rule sources_eq, simp+)
apply(rule_tac t=s and s=s and a=a in sched_equiv_preserved_left, (simp add: uwr_refl reachable_Step)+)
done
lemma sources_equiv_preserved_left:
"\<lbrakk>integrity_u; confidentiality_u; reachable s; reachable t; s \<sim>schedDomain\<sim> t;
dom a s \<notin> sources (a#as) s u; s \<approx>sources (a#as) s u\<approx> t; (s,s') \<in> Step a; dom a s \<noteq> schedDomain\<rbrakk> \<Longrightarrow>
s' \<approx>sources as s' u\<approx> t"
apply(clarsimp simp: sameFor_dom_def)
apply(rename_tac v)
apply(case_tac "(dom a s, v) \<in> policy")
apply(fastforce simp: sources_Cons)
apply(fastforce dest: integrity_uD simp: sources_Cons)
done
lemma Noninfluence_gen:
"\<lbrakk>confidentiality_u; integrity_u\<rbrakk> \<Longrightarrow> Noninfluence_gen"
apply(subst Noninfluence_gen_def)
apply(intro allI)
proof -
assume conf: "confidentiality_u"
assume integ: "integrity_u"
fix u as s ts
show "reachable s \<and> Ball ts reachable \<longrightarrow>
Ball ts (sameFor_dom s (sources as s u)) \<longrightarrow> (\<forall>t\<in>ts. s \<sim>schedDomain\<sim> t) \<longrightarrow> (\<forall>t\<in>ts. uwr_equiv s as t (ipurge u as ts) u)"
proof(induct as arbitrary: s ts)
case Nil
show ?case
apply(clarsimp simp: sameFor_dom_def ipurge_Nil sources_Nil uwr_equiv_def)
apply(clarsimp simp: execution_Run)
done
next
case (Cons a as)
show ?case
apply(clarsimp simp: ipurge_Cons | safe)+
apply(rule uwr_equiv_Cons_bothI)
apply assumption
apply blast
apply(clarify)
apply(rename_tac ta tb s' tb')
apply(rule Cons.hyps[rule_format])
apply(blast intro: reachable_Step)
apply(clarsimp)
apply(rename_tac tc' tc)
using conf apply(rule_tac s=s and t=tc and a=a in sources_unwinding_step, simp+)[1]
apply(clarsimp, rename_tac tc' tc)
apply(rule sched_equiv_preserved[OF conf], (auto simp: sources_refl))[1]
apply blast
apply(rename_tac ta)
apply(rule uwr_equiv_Cons_leftI, blast)
apply(clarsimp, rename_tac s')
apply(case_tac "dom a s = schedDomain")
apply(cut_tac s=s and a=a and as=as and u=u in schedDomain_in_sources_Cons, assumption+)
apply(metis schedIncludesCurrentDom sources_eq[OF conf])
apply(rule Cons.hyps[rule_format])
apply(blast intro: reachable_Step)
apply(rename_tac tb)
apply(rule_tac a=a in sources_equiv_preserved_left[OF integ conf], simp+)
apply(fastforce simp: schedIncludesCurrentDom sources_eq[OF conf])
apply blast
apply assumption
apply assumption
apply(rule_tac s=s and a=a in sched_equiv_preserved_left[OF integ], simp+)
done
qed
qed
lemma Nonleakage_gen:
"\<lbrakk>confidentiality_u\<rbrakk> \<Longrightarrow> Nonleakage_gen"
apply(subst Nonleakage_gen_def)
apply(rule allI)
apply(induct_tac as)
apply(simp add: sources_Nil uwr_equiv_def execution_Run sameFor_dom_def)
apply(clarsimp)
apply(rule uwr_equiv_Cons_bothI)
apply assumption
apply assumption
apply clarsimp
apply(drule_tac x=s' in spec, drule_tac x=u in spec, drule_tac x=t' in spec)
apply(clarsimp simp: reachable_Step)
apply(erule impE)
apply(blast intro: sched_equiv_preserved)
apply(erule mp)
apply(blast intro: sources_unwinding_step)
done
lemma Noninterference:
"\<lbrakk>confidentiality_u_weak; output_consistent; integrity_u\<rbrakk> \<Longrightarrow>
Noninterference"
apply(rule Noninfluence_gen_Noninterference)
apply assumption
apply(blast intro: Noninfluence_gen confidentiality_u_weak)
done
lemma Noninterference_strong:
"\<lbrakk>confidentiality_u_weak; output_consistent; integrity_u\<rbrakk> \<Longrightarrow>
Noninterference_strong"
apply(rule Noninfluence_gen_Noninterference_strong)
apply assumption
apply(blast intro: Noninfluence_gen confidentiality_u_weak)
done
lemma Noninfluence:
"\<lbrakk>confidentiality_u_weak; output_consistent; integrity_u\<rbrakk> \<Longrightarrow>
Noninfluence"
apply(rule Noninfluence_gen_Noninfluence)
apply assumption
apply(blast intro: Noninfluence_gen confidentiality_u_weak)
done
lemma Noninfluence_strong:
"\<lbrakk>confidentiality_u_weak; output_consistent; integrity_u\<rbrakk> \<Longrightarrow>
Noninfluence_strong"
apply(rule Noninfluence_Noninfluence_strong)
apply(blast intro: confidentiality_u_weak)
apply(blast intro: Noninfluence)
done
lemma Noninfluence_uwr:
"\<lbrakk>confidentiality_u_weak; integrity_u\<rbrakk> \<Longrightarrow>
Noninfluence_uwr"
apply(rule Noninfluence_gen_Noninfluence_uwr)
apply(blast intro: Noninfluence_gen confidentiality_u_weak)
done
lemma Noninfluence_strong_uwr:
"\<lbrakk>confidentiality_u_weak; integrity_u\<rbrakk> \<Longrightarrow>
Noninfluence_strong_uwr"
apply(rule Noninfluence_uwr_Noninfluence_strong_uwr)
apply(blast intro: confidentiality_u_weak)
apply(blast intro: Noninfluence_uwr)
done
lemma sources_Step:
"\<lbrakk>reachable s; (dom a s, u) \<notin> policy\<rbrakk> \<Longrightarrow>
sources [a] s u = {u}"
apply(auto simp: sources_Cons sources_Nil enabled_Step dest: enabled_Step)
done
lemma sources_Step_2:
"\<lbrakk>reachable s; (dom a s, u) \<in> policy\<rbrakk> \<Longrightarrow>
sources [a] s u = {dom a s,u}"
apply(auto simp: sources_Cons sources_Nil enabled_Step dest: enabled_Step)
done
lemma execution_Nil:
"reachable s \<Longrightarrow> execution A s [] = {s}"
apply(simp add: execution_Run)
done
lemma Noninfluence_gen_confidentiality_u_weak:
"Noninfluence_gen \<Longrightarrow> confidentiality_u_weak"
apply(clarsimp simp: Noninfluence_gen_def confidentiality_u_weak_def)
apply(drule_tac x=u in spec, drule_tac x="[a]" in spec)
apply(drule_tac x=s in spec, drule_tac x="{t}" in spec)
apply(simp add: sources_Step_2 sameFor_dom_def uwr_equiv_def Step_def ipurge_Cons ipurge_Nil split: if_splits add: schedIncludesCurrentDom)
done
lemma Noninfluence_strong_uwr_confidentiality_u_weak:
"Noninfluence_strong_uwr \<Longrightarrow> confidentiality_u_weak"
apply(clarsimp simp: Noninfluence_strong_uwr_def confidentiality_u_weak_def)
apply(drule_tac x=u in spec, drule_tac x="[a]" in spec, drule_tac x="[a]" in spec)
apply(drule_tac x=s in spec, drule_tac x=t in spec)
apply(simp add: sources_Step_2 sameFor_dom_def uwr_equiv_def Step_def)
done
lemma Nonleakage_gen_confidentiality_u:
"Nonleakage_gen \<Longrightarrow> confidentiality_u"
apply(clarsimp simp: Nonleakage_gen_def confidentiality_u_def)
apply(drule_tac x="[a]" in spec, drule_tac x=s in spec)
apply(drule_tac x=u in spec, drule_tac x=t in spec)
apply(case_tac "dom a s \<leadsto> u")
apply(simp add: sources_Step_2 uwr_equiv_def sameFor_dom_def Step_def)
apply(simp add: sources_Step uwr_equiv_def sameFor_dom_def Step_def)
done
lemma Nonleakage_gen_equiv_confidentiality_u:
"Nonleakage_gen = confidentiality_u"
apply(blast intro: Nonleakage_gen_confidentiality_u Nonleakage_gen)
done
lemma non_sched_doms_cannot_schedule:
"\<lbrakk>integrity_u; reachable s; dom a s \<noteq> schedDomain; (s,s') \<in> Step a\<rbrakk> \<Longrightarrow> s \<sim>schedDomain\<sim> s'"
apply(drule_tac u=schedDomain in integrity_uD)
apply assumption
apply(erule contrapos_nn)
apply(erule schedNotGlobalChannel)
apply(rule uwr_refl)
apply assumption
apply(erule uwr_sym)
done
text {*
In systems with just a single event, @{prop integrity_u} is a very strong
condition. It implies that once the scheduler is not
running, it can never run again.
This is one explanation for why seL4 (whose automaton has only a single
event) doesn't satisfy @{prop integrity_u}.
*}
lemma integrity_u_and_single_event_systems:
"\<lbrakk>integrity_u; reachable s; dom a s \<noteq> schedDomain; s' \<in> execution A s as;
\<forall> y::'e. y = a\<rbrakk> \<Longrightarrow> dom e s' \<noteq> schedDomain"
apply(frule_tac x=e in spec)
apply(erule ssubst)
apply(rule_tac P="\<lambda>x. x \<noteq> schedDomain" in subst[rotated])
apply assumption
apply(induct as arbitrary: s s' a rule: rev_induct)
apply(simp add: execution_Run)
apply(simp add: execution_Run)
apply(drule Run_mid)
apply(erule exE, rename_tac t)
apply(drule_tac x=s in meta_spec)
apply(drule_tac x=t in meta_spec)
apply(drule_tac x=a in meta_spec)
apply simp
apply(rule schedIncludesCurrentDom)
apply(rule non_sched_doms_cannot_schedule)
apply assumption
apply(rule reachable_execution)
apply assumption
apply(fastforce simp: execution_Run)
apply assumption
apply(drule_tac x=x in spec)
apply blast
done
end
text {* The unwinding conditions are not only sound but also complete *}
locale complete_unwinding_system = unwinding_system +
assumes policy_refl:
"(u,u) \<in> policy"
context complete_unwinding_system begin
lemma Noninfluence_gen_integrity_u:
"Noninfluence_gen \<Longrightarrow> integrity_u"
apply(clarsimp simp: Noninfluence_gen_def integrity_u_def)
apply(drule_tac x=u in spec, drule_tac x="[a]" in spec)
apply(drule_tac x=s in spec, drule_tac x="{s}" in spec)
apply(simp add: sources_Step sameFor_dom_def uwr_equiv_def Step_def ipurge_Cons ipurge_Nil split: if_splits add: uwr_refl policy_refl execution_Nil uwr_sym)
done
lemma Noninfluence_strong_uwr_integrity_u: "Noninfluence_strong_uwr \<Longrightarrow> integrity_u"
apply(clarsimp simp: Noninfluence_strong_uwr_def integrity_u_def)
apply(drule_tac x=u in spec, drule_tac x="[a]" in spec, drule_tac x="[]" in spec)
apply(drule_tac x=s in spec, drule_tac x=s in spec)
apply(simp add: sources_Step sameFor_dom_def uwr_refl uwr_equiv_def Step_def ipurge_Cons ipurge_Nil split: if_splits)
apply(simp add: policy_refl)
apply(simp add: execution_Nil)
apply(blast intro: uwr_sym)
done
text {*
@{prop Noninfluence_gen} actually turns out to be equivalent to @{prop Noninfluence_strong_uwr},
when the policy is reflexive. So the two unwinding conditions for integrity
and confidentiality actually turn out to be sound and sufficient for the
condition we were using them to prove in the first place.
*}
lemma Noninfluence_gen_equiv_Noninfluence_strong_uwr:
"Noninfluence_gen = Noninfluence_strong_uwr"
apply(rule iffI)
apply(rule Noninfluence_strong_uwr)
apply(erule Noninfluence_gen_confidentiality_u_weak)
apply(erule Noninfluence_gen_integrity_u)
apply(rule Noninfluence_gen)
apply(rule confidentiality_u_weak)
apply(erule Noninfluence_strong_uwr_confidentiality_u_weak)
apply(erule Noninfluence_strong_uwr_integrity_u)+
done
end
end