lh-l4v/lib/Enumeration.thy

348 lines
9.5 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(* Author: Gerwin Klein and Thomas Sewell
Type class for enumerations.
*)
chapter "Enumerations"
theory Enumeration
imports "~~/src/HOL/Main"
begin
abbreviation
"enum \<equiv> enum_class.enum"
abbreviation
"enum_all \<equiv> enum_class.enum_all"
abbreviation
"enum_ex \<equiv> enum_class.enum_ex"
primrec (nonexhaustive)
the_index :: "'a list \<Rightarrow> 'a \<Rightarrow> nat"
where
"the_index (x # xs) y = (if x = y then 0 else Suc (the_index xs y))"
lemma the_index_bounded:
"x \<in> set xs \<Longrightarrow> the_index xs x < length xs"
by (induct xs, clarsimp+)
lemma nth_the_index:
"x \<in> set xs \<Longrightarrow> xs ! the_index xs x = x"
by (induct xs, clarsimp+)
lemma distinct_the_index_is_index[simp]:
"\<lbrakk> distinct xs ; n < length xs \<rbrakk> \<Longrightarrow> the_index xs (xs ! n) = n"
apply (subst nth_eq_iff_index_eq[symmetric])
apply assumption
apply (rule the_index_bounded)
apply simp_all
apply (rule nth_the_index)
apply simp
done
lemma the_index_last_distinct:
"distinct xs \<and> xs \<noteq> [] \<Longrightarrow> the_index xs (last xs) = length xs - 1"
apply safe
apply (subgoal_tac "xs ! (length xs - 1) = last xs")
apply (subgoal_tac "xs ! the_index xs (last xs) = last xs")
apply (subst nth_eq_iff_index_eq[symmetric])
apply assumption
apply (rule the_index_bounded)
apply simp_all
apply (rule nth_the_index)
apply simp
apply (induct xs, auto)
done
context enum begin
(* These two are added for historical reasons.
* We had an enum class first, and these are the two
* assumptions we had, which were added to the simp set.
*)
lemmas enum_surj[simp] = enum_UNIV
declare enum_distinct[simp]
lemma enum_nonempty[simp]: "(enum :: 'a list) \<noteq> []"
apply (rule classical, simp)
apply (subgoal_tac "\<exists>X. X \<in> set (enum :: 'a list)")
apply simp
apply (subst enum_surj)
apply simp
done
definition
maxBound :: 'a where
"maxBound \<equiv> last enum"
definition
minBound :: 'a where
"minBound \<equiv> hd enum"
definition
toEnum :: "nat \<Rightarrow> 'a" where
"toEnum n \<equiv> if n < length (enum :: 'a list) then enum ! n else the None"
definition
fromEnum :: "'a \<Rightarrow> nat" where
"fromEnum x \<equiv> the_index enum x"
lemma maxBound_is_length:
"fromEnum maxBound = length (enum :: 'a list) - 1"
apply (simp add: maxBound_def fromEnum_def)
apply (subst the_index_last_distinct)
apply simp
apply simp
done
lemma maxBound_less_length:
"(x \<le> fromEnum maxBound) = (x < length (enum :: 'a list))"
apply (simp only: maxBound_is_length)
apply (case_tac "length (enum :: 'a list)")
apply simp
apply simp
apply arith
done
lemma maxBound_is_bound [simp]:
"fromEnum x \<le> fromEnum maxBound"
apply (simp only: maxBound_less_length)
apply (simp add: fromEnum_def)
apply (rule the_index_bounded)
by simp
lemma to_from_enum [simp]:
fixes x :: 'a
shows "toEnum (fromEnum x) = x"
proof -
have "x \<in> set enum" by simp
thus ?thesis
by (simp add: toEnum_def fromEnum_def nth_the_index the_index_bounded)
qed
lemma from_to_enum [simp]:
"x \<le> fromEnum maxBound \<Longrightarrow> fromEnum (toEnum x) = x"
apply (simp only: maxBound_less_length)
apply (simp add: toEnum_def fromEnum_def)
done
lemma map_enum:
fixes x :: 'a
shows "map f enum ! fromEnum x = f x"
proof -
have "fromEnum x \<le> fromEnum (maxBound :: 'a)"
by (rule maxBound_is_bound)
hence "fromEnum x < length (enum::'a list)"
by (simp add: maxBound_less_length)
hence "map f enum ! fromEnum x = f (enum ! fromEnum x)" by simp
also
have "x \<in> set enum" by simp
hence "enum ! fromEnum x = x"
by (simp add: fromEnum_def nth_the_index)
finally
show ?thesis .
qed
definition
assocs :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list" where
"assocs f \<equiv> map (\<lambda>x. (x, f x)) enum"
end
(* For historical naming reasons. *)
lemmas enum_bool = enum_bool_def
lemma fromEnumTrue [simp]: "fromEnum True = 1"
by (simp add: fromEnum_def enum_bool)
lemma fromEnumFalse [simp]: "fromEnum False = 0"
by (simp add: fromEnum_def enum_bool)
class enum_alt =
fixes enum_alt :: "nat \<Rightarrow> 'a option"
class enumeration_alt = enum_alt +
assumes enum_alt_one_bound:
"enum_alt x = (None :: 'a option) \<Longrightarrow> enum_alt (Suc x) = (None :: 'a option)"
assumes enum_alt_surj: "range enum_alt \<union> {None} = UNIV"
assumes enum_alt_inj:
"(enum_alt x :: 'a option) = enum_alt y \<Longrightarrow> (x = y) \<or> (enum_alt x = (None :: 'a option))"
begin
lemma enum_alt_inj_2:
"\<lbrakk> enum_alt x = (enum_alt y :: 'a option);
enum_alt x \<noteq> (None :: 'a option) \<rbrakk>
\<Longrightarrow> x = y"
apply (subgoal_tac "(x = y) \<or> (enum_alt x = (None :: 'a option))")
apply clarsimp
apply (rule enum_alt_inj)
apply simp
done
lemma enum_alt_surj_2:
"\<exists>x. enum_alt x = Some y"
apply (subgoal_tac "Some y \<in> range enum_alt")
apply (erule rangeE)
apply (rule exI)
apply simp
apply (subgoal_tac "Some y \<in> range enum_alt \<union> {None}")
apply simp
apply (subst enum_alt_surj)
apply simp
done
end
definition
alt_from_ord :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option" where
"alt_from_ord L \<equiv> \<lambda>n. if (n < length L) then Some (L ! n) else None"
lemma handy_enum_lemma1: "((if P then Some A else None) = None) = (\<not> P)"
apply simp
done
lemma handy_enum_lemma2: "Some x \<notin> empty ` S"
apply safe
done
lemma handy_enum_lemma3: "((if P then Some A else None) = Some B) = (P \<and> (A = B))"
apply simp
done
class enumeration_both = enum_alt + enum +
assumes enum_alt_rel: "enum_alt = alt_from_ord enum"
instance enumeration_both < enumeration_alt
apply (intro_classes)
apply (simp_all add: enum_alt_rel alt_from_ord_def)
apply (simp add: handy_enum_lemma1)
apply (safe, simp_all)
apply (simp add: handy_enum_lemma2)
apply (rule rev_image_eqI, simp_all)
defer
apply (subst nth_the_index, simp_all)
apply (simp add: handy_enum_lemma3)
apply (subst nth_eq_iff_index_eq[symmetric], simp_all)
apply safe
apply (rule the_index_bounded)
apply simp
done
instantiation bool :: enumeration_both
begin
definition
enum_alt_bool: "enum_alt \<equiv> alt_from_ord [False, True]"
instance
by (intro_classes, simp add: enum_bool_def enum_alt_bool)
end
definition
toEnumAlt :: "nat \<Rightarrow> ('a :: enum_alt)" where
"toEnumAlt n \<equiv> the (enum_alt n)"
definition
fromEnumAlt :: "('a :: enum_alt) \<Rightarrow> nat" where
"fromEnumAlt x \<equiv> THE n. enum_alt n = Some x"
definition
upto_enum :: "('a :: enumeration_alt) \<Rightarrow> 'a \<Rightarrow> 'a list" ("(1[_.e._])") where
"upto_enum n m \<equiv> map toEnumAlt [fromEnumAlt n ..< Suc (fromEnumAlt m)]"
lemma fromEnum_alt_red[simp]:
"fromEnumAlt = (fromEnum :: ('a :: enumeration_both) \<Rightarrow> nat)"
apply (rule ext)
apply (simp add: fromEnumAlt_def fromEnum_def)
apply (simp add: enum_alt_rel alt_from_ord_def)
apply (rule theI2)
apply safe
apply (rule nth_the_index, simp)
apply (rule the_index_bounded, simp)
apply simp_all
done
lemma toEnum_alt_red[simp]:
"toEnumAlt = (toEnum :: nat \<Rightarrow> ('a :: enumeration_both))"
apply (rule ext)
apply (unfold toEnum_def toEnumAlt_def)
apply (simp add: enum_alt_rel alt_from_ord_def)
done
lemma upto_enum_red:
"[(n :: ('a :: enumeration_both)) .e. m] = map toEnum [fromEnum n ..< Suc (fromEnum m)]"
apply (unfold upto_enum_def)
apply simp
done
instantiation nat :: enumeration_alt
begin
definition
enum_alt_nat: "enum_alt \<equiv> Some"
instance
apply (intro_classes)
apply (simp_all add: enum_alt_nat)
apply (safe, simp_all)
apply (case_tac x, simp_all)
done
end
lemma toEnumAlt_nat[simp]: "toEnumAlt = id"
apply (rule ext)
apply (simp add: toEnumAlt_def enum_alt_nat)
done
lemma fromEnumAlt_nat[simp]: "fromEnumAlt = id"
apply (rule ext)
apply (simp add: fromEnumAlt_def enum_alt_nat)
done
lemma upto_enum_nat[simp]: "[n .e. m] = [n ..< Suc m]"
apply (subst upto_enum_def)
apply simp
done
definition
zipE1 :: "('a :: enum_alt) \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
"zipE1 x L \<equiv> zip (map toEnumAlt [(fromEnumAlt x) ..< (fromEnumAlt x) + length L]) L"
definition
zipE2 :: "('a :: enum_alt) \<Rightarrow> 'a \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
"zipE2 x xn L \<equiv> zip (map (\<lambda>n. toEnumAlt ((fromEnumAlt x) + ((fromEnumAlt xn) - (fromEnumAlt x)) * n)) [0 ..< length L]) L"
definition
zipE3 :: "'a list \<Rightarrow> ('b :: enum_alt) \<Rightarrow> ('a \<times> 'b) list" where
"zipE3 L x \<equiv> zip L (map toEnumAlt [(fromEnumAlt x) ..< (fromEnumAlt x) + length L])"
definition
zipE4 :: "'a list \<Rightarrow> ('b :: enum_alt) \<Rightarrow> 'b \<Rightarrow> ('a \<times> 'b) list" where
"zipE4 L x xn \<equiv> zip L (map (\<lambda>n. toEnumAlt ((fromEnumAlt x) + ((fromEnumAlt xn) - (fromEnumAlt x)) * n)) [0 ..< length L])"
lemma handy_lemma: "a = Some b \<Longrightarrow> the a = b"
by (simp)
lemma to_from_enum_alt[simp]:
"toEnumAlt (fromEnumAlt x) = (x :: ('a :: enumeration_alt))"
apply (simp add: fromEnumAlt_def toEnumAlt_def)
apply (rule handy_lemma)
apply (rule theI')
apply safe
apply (rule enum_alt_surj_2)
apply (rule enum_alt_inj_2)
apply auto
done
end