lh-l4v/lib/WordLib.thy

672 lines
20 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(* Miscellaneous additional library definitions and lemmas for the word type.
Builds on WORD image.
*)
theory WordLib
imports NICTACompat SignedWords
begin
(* stuff to move to word/* *)
lemma shiftl_power:
"(shiftl1 ^^ x) (y::'a::len word) = 2 ^ x * y"
apply (induct x)
apply simp
apply (simp add: shiftl1_2t)
done
lemmas of_bl_reasoning = to_bl_use_of_bl of_bl_append
lemma uint_of_bl_is_bl_to_bin:
"length l\<le>len_of TYPE('a) \<Longrightarrow>
uint ((of_bl::bool list\<Rightarrow> ('a :: len) word) l) = bl_to_bin l"
apply (simp add: of_bl_def)
apply (rule word_uint.Abs_inverse)
apply (simp add: uints_num bl_to_bin_ge0)
apply (rule order_less_le_trans, rule bl_to_bin_lt2p)
apply (rule order_trans, erule power_increasing)
apply simp_all
done
lemma bin_to_bl_or:
"bin_to_bl n (a OR b) = map2 (op \<or>) (bin_to_bl n a) (bin_to_bl n b)"
using bl_or_aux_bin[where n=n and v=a and w=b and bs="[]" and cs="[]"]
by simp
lemma word_ops_nth [simp]:
shows
word_or_nth: "(x || y) !! n = (x !! n \<or> y !! n)" and
word_and_nth: "(x && y) !! n = (x !! n \<and> y !! n)" and
word_xor_nth: "(x xor y) !! n = (x !! n \<noteq> y !! n)"
by ((cases "n < size x",
auto dest: test_bit_size simp: word_ops_nth_size word_size)[1])+
(* simp del to avoid warning on the simp add in iff *)
declare test_bit_1 [simp del, iff]
(* test: *)
lemma "1 < (1024::32 word) \<and> 1 \<le> (1024::32 word)" by simp
lemma and_not_mask: "w AND NOT mask n = (w >> n) << n"
apply (rule word_eqI)
apply (simp add : word_ops_nth_size word_size)
apply (simp add : nth_shiftr nth_shiftl)
by auto
lemma and_mask: "w AND mask n = (w << (size w - n)) >> (size w - n)"
apply (rule word_eqI)
apply (simp add : word_ops_nth_size word_size)
apply (simp add : nth_shiftr nth_shiftl)
by auto
lemma AND_twice:
"(w && m) && m = w && m"
by (simp add: word_eqI)
lemma nth_w2p_same: "(2^n :: 'a :: len word) !! n = (n < len_of TYPE('a::len))"
by (simp add : nth_w2p)
lemma p2_gt_0: "(0 < (2 ^ n :: 'a :: len word)) = (n < len_of TYPE('a))"
apply (simp add : word_gt_0)
apply safe
apply (erule swap)
apply (rule word_eqI)
apply (simp add : nth_w2p)
apply (drule word_eqD)
apply simp
apply (erule notE)
apply (erule nth_w2p_same [THEN iffD2])
done
lemmas uint_2p_alt = uint_2p [unfolded p2_gt_0]
lemma shiftr_div_2n_w: "n < size w \<Longrightarrow> w >> n = w div (2^n :: 'a :: len word)"
apply (unfold word_div_def)
apply (simp add : uint_2p_alt word_size)
apply (rule word_uint.Rep_inverse' [THEN sym])
apply (rule shiftr_div_2n)
done
lemmas less_def = less_eq [symmetric]
lemmas le_def = not_less [symmetric, where ?'a = nat]
lemmas p2_eq_0 = trans [OF eq_commute
iffD2 [OF Not_eq_iff p2_gt_0, folded le_def, unfolded word_gt_0 not_not]]
lemma neg_mask_is_div':
"n < size w \<Longrightarrow> w AND NOT mask n = ((w div (2 ^ n)) * (2 ^ n))"
apply (simp add : and_not_mask)
apply (simp add : shiftr_div_2n_w shiftl_t2n word_size)
done
lemma neg_mask_is_div: "w AND NOT mask n = ((w div (2 ^ n)) * (2 ^ n))"
apply (cases "n < size w")
apply (erule neg_mask_is_div')
apply (simp add : word_size)
apply (frule p2_gt_0 [THEN Not_eq_iff [THEN iffD2], THEN iffD2])
apply (simp add : word_gt_0)
apply (rule word_eqI)
apply (simp add : word_ops_nth_size word_size)
done
lemma and_mask_arith':
"0 < n \<Longrightarrow> w AND mask n = ((w * (2 ^ (size w - n))) div (2 ^ (size w - n)))"
apply (simp add : and_mask)
apply (simp add : shiftr_div_2n_w shiftl_t2n word_size)
apply (simp add : mult.commute)
done
lemma mask_0 [simp]: "mask 0 = 0"
apply (unfold mask_def)
by simp
lemmas p2len = iffD2 [OF p2_eq_0 order_refl]
lemma and_mask_arith:
"w AND mask n = ((w * (2 ^ (size w - n))) div (2 ^ (size w - n)))"
apply (cases "0 < n")
apply (erule and_mask_arith')
apply (simp add : word_size p2len)
apply (simp add : word_of_int_hom_syms word_div_def)
done
lemma mask_2pm1: "mask n = 2 ^ n - 1"
apply (simp add : mask_def)
done
lemma is_aligned_AND_less_0:
"u && mask n = 0 \<Longrightarrow> v < 2^n \<Longrightarrow> u && v = 0"
apply (drule less_mask_eq)
apply (simp add: mask_2pm1)
apply (rule word_eqI)
apply (clarsimp simp add: word_size)
apply (drule_tac x=na in word_eqD)
apply (drule_tac x=na in word_eqD)
apply simp
done
lemma len_0_eq: "len_of (TYPE('a :: len0)) = 0 ==> (x :: 'a :: len0 word) = y"
by (rule size_0_same)
lemma le_shiftr1: "u <= v ==> shiftr1 u <= shiftr1 v"
apply (unfold word_le_def shiftr1_def word_ubin.eq_norm)
apply (unfold bin_rest_trunc_i
trans [OF bintrunc_bintrunc_l word_ubin.norm_Rep,
unfolded word_ubin.norm_Rep,
OF order_refl [THEN le_SucI]])
apply (case_tac "uint u" rule: bin_exhaust)
apply (rename_tac bs bit)
apply (case_tac "uint v" rule: bin_exhaust)
apply (rename_tac bs' bit')
apply (case_tac "bit")
apply (case_tac "bit'", auto simp: less_eq_int_code le_Bits)[1]
apply (case_tac bit')
apply (simp add: le_Bits less_eq_int_code)
apply (auto simp: le_Bits less_eq_int_code)
done
lemma le_shiftr: "u \<le> v \<Longrightarrow> u >> (n :: nat) \<le> (v :: 'a :: len0 word) >> n"
apply (unfold shiftr_def)
apply (induct_tac "n")
apply auto
apply (erule le_shiftr1)
done
lemma shiftr_mask_le: "n <= m ==> mask n >> m = 0"
apply (rule word_eqI)
apply (simp add: word_size nth_shiftr)
done
lemmas shiftr_mask = order_refl [THEN shiftr_mask_le, simp]
lemma word_leI: "(!!n::nat. n < size (u::'a::len0 word)
==> u !! n ==> (v::'a::len0 word) !! n) ==> u <= v"
apply (rule xtr4)
apply (rule word_and_le2)
apply (rule word_eqI)
apply (simp add: word_ao_nth)
apply safe
apply assumption
apply (erule_tac [2] asm_rl)
apply (unfold word_size)
by auto
lemma le_mask_iff: "(w \<le> mask n) = (w >> n = 0)"
apply safe
apply (rule word_le_0_iff [THEN iffD1])
apply (rule xtr3)
apply (erule_tac [2] le_shiftr)
apply simp
apply (rule word_leI)
apply (drule_tac x = "na - n" in word_eqD)
apply (simp add : nth_shiftr word_size)
apply (case_tac "n <= na")
by auto
lemma and_mask_eq_iff_shiftr_0: "(w AND mask n = w) = (w >> n = 0)"
apply (unfold test_bit_eq_iff [THEN sym])
apply (rule iffI)
apply (rule ext)
apply (rule_tac [2] ext)
apply (auto simp add : word_ao_nth nth_shiftr)
apply (drule arg_cong)
apply (drule iffD2)
apply assumption
apply (simp add : word_ao_nth)
prefer 2
apply (simp add : word_size test_bit_bin)
apply (drule_tac f = "%u. u !! (x - n)" in arg_cong)
apply (simp add : nth_shiftr)
apply (case_tac "n <= x")
apply auto
done
lemmas and_mask_eq_iff_le_mask = trans
[OF and_mask_eq_iff_shiftr_0 le_mask_iff [THEN sym]]
lemma one_bit_shiftl: "set_bit 0 n True = (1 :: 'a :: len word) << n"
apply (rule word_eqI)
apply (auto simp add: test_bit_set_gen nth_shiftl word_size
simp del: word_set_bit_0 shiftl_1)
done
lemmas one_bit_pow = trans [OF one_bit_shiftl shiftl_1]
lemma bin_sc_minus: "0 < n ==> bin_sc (Suc (n - 1)) b i = bin_sc n b i"
by auto
lemmas bin_sc_minus_simps =
bin_sc_simps (2,3,4) [THEN [2] trans, OF bin_sc_minus [THEN sym]]
lemma NOT_eq: "NOT (x :: 'a :: len word) = - x - 1"
apply (cut_tac x = "x" in word_add_not)
apply (drule add.commute [THEN trans])
apply (drule eq_diff_eq [THEN iffD2])
by simp
lemma NOT_mask: "NOT (mask n :: 'a :: len word) = - (2 ^ n)"
apply (simp add : NOT_eq mask_2pm1)
done
(* should be valid for len0 as well *)
lemma power_2_pos_iff:
"(2 ^ n > (0 :: 'a :: len word)) = (n < len_of TYPE ('a))"
apply (unfold word_gt_0)
apply safe
apply (erule swap)
apply (rule word_eqI)
apply (simp add : nth_w2p word_size)
apply (drule_tac x = "n" in word_eqD)
apply (simp add : nth_w2p)
done
lemma le_m1_iff_lt: "(x > (0 :: 'a :: len word)) = ((y \<le> x - 1) = (y < x))"
apply uint_arith
done
lemmas gt0_iff_gem1 =
iffD1 [OF iffD1 [OF iff_left_commute le_m1_iff_lt] order_refl]
lemmas power_2_ge_iff = trans [OF gt0_iff_gem1 [THEN sym] power_2_pos_iff]
lemma le_mask_iff_lt_2n:
"n < len_of TYPE ('a) = (((w :: 'a :: len word) \<le> mask n) = (w < 2 ^ n))"
apply (unfold mask_2pm1)
apply (rule trans [OF power_2_pos_iff [THEN sym] le_m1_iff_lt])
done
lemmas mask_lt_2pn =
le_mask_iff_lt_2n [THEN iffD1, THEN iffD1, OF _ order_refl]
lemma mask_eq_iff_w2p_alt:
"n < size (w::'a::len word) ==> (w AND mask n = w) = (w < 2 ^ n)"
apply (unfold and_mask_eq_iff_le_mask word_size)
apply (simp add : le_mask_iff_lt_2n [THEN iffD1])
done
lemma and_mask_less_size_alt: "n < size x ==> x AND mask n < 2 ^ n"
apply (rule xtr7)
apply (rule_tac [2] word_and_le1)
apply (unfold word_size)
apply (erule mask_lt_2pn)
done
lemma bang_eq:
fixes x :: "'a::len0 word"
shows "(x = y) = (\<forall>n. x !! n = y !! n)"
apply (subst test_bit_eq_iff[symmetric])
apply (rule iffI)
apply simp
apply (rule ext)
apply simp
done
declare of_nat_power [simp]
declare of_nat_mult [simp]
lemma word_unat_power:
"(2 :: ('a :: len) word) ^ n = of_nat (2 ^ n)"
by (induct n) simp+
(*
lemmas no_power_simps =
power_int.simps power_nat.simps
power_nat_number_of_number_of power_Suc_no power_pred_simp_no
*)
lemma of_nat_mono_maybe:
fixes Y :: "nat"
assumes xlt: "X < 2 ^ len_of TYPE ('a :: len)"
shows "(Y < X) \<Longrightarrow> of_nat Y < (of_nat X :: 'a :: len word)"
apply (subst word_less_nat_alt)
apply (subst unat_of_nat)+
apply (subst mod_less)
apply (erule order_less_trans [OF _ xlt])
apply (subst mod_less [OF xlt])
apply assumption
done
lemma shiftl_over_and_dist:
fixes a::"'a::len word"
shows "(a AND b) << c = (a << c) AND (b << c)"
apply(rule word_eqI)
apply(simp add: word_ao_nth nth_shiftl, safe)
done
lemma shiftr_over_and_dist:
fixes a::"'a::len word"
shows "a AND b >> c = (a >> c) AND (b >> c)"
apply(rule word_eqI)
apply(simp add:nth_shiftr word_ao_nth)
done
lemma sshiftr_over_and_dist:
fixes a::"'a::len word"
shows "a AND b >>> c = (a >>> c) AND (b >>> c)"
apply(rule word_eqI)
apply(simp add:nth_sshiftr word_ao_nth word_size)
done
lemma shiftl_over_or_dist:
fixes a::"'a::len word"
shows "a OR b << c = (a << c) OR (b << c)"
apply(rule word_eqI)
apply(simp add:nth_shiftl word_ao_nth, safe)
done
lemma shiftr_over_or_dist:
fixes a::"'a::len word"
shows "a OR b >> c = (a >> c) OR (b >> c)"
apply(rule word_eqI)
apply(simp add:nth_shiftr word_ao_nth)
done
lemma sshiftr_over_or_dist:
fixes a::"'a::len word"
shows "a OR b >>> c = (a >>> c) OR (b >>> c)"
apply(rule word_eqI)
apply(simp add:nth_sshiftr word_ao_nth word_size)
done
lemmas shift_over_ao_dists =
shiftl_over_or_dist shiftr_over_or_dist
sshiftr_over_or_dist shiftl_over_and_dist
shiftr_over_and_dist sshiftr_over_and_dist
lemma shiftl_shiftl:
fixes a::"'a::len word"
shows "a << b << c = a << (b + c)"
apply(rule word_eqI)
apply(auto simp:word_size nth_shiftl
add.commute add.left_commute)
done
lemma shiftr_shiftr:
fixes a::"'a::len word"
shows "a >> b >> c = a >> (b + c)"
apply(rule word_eqI)
apply(simp add:word_size nth_shiftr
add.left_commute add.commute)
done
lemma shiftl_shiftr1:
fixes a::"'a::len word"
shows "c \<le> b \<Longrightarrow>
a << b >> c =
a AND (mask (size a - b)) << (b - c)"
apply(rule word_eqI)
apply(auto simp:nth_shiftr nth_shiftl
word_size word_ao_nth)
done
lemma shiftl_shiftr2:
fixes a::"'a::len word"
shows "b < c \<Longrightarrow>
a << b >> c =
(a >> (c - b)) AND (mask (size a - c))"
apply(rule word_eqI)
apply(auto simp:nth_shiftr nth_shiftl
word_size word_ao_nth)
done
lemma shiftr_shiftl1:
fixes a::"'a::len word"
shows "c \<le> b \<Longrightarrow>
a >> b << c = (a >> (b - c)) AND
(NOT mask c)"
apply(rule word_eqI)
apply(auto simp:nth_shiftr nth_shiftl
word_size word_ops_nth_size)
done
lemma shiftr_shiftl2:
fixes a::"'a::len word"
shows "b < c \<Longrightarrow>
a >> b << c = (a << (c - b)) AND
(NOT mask c)"
apply(rule word_eqI)
apply(auto simp:nth_shiftr nth_shiftl
word_size word_ops_nth_size)
done
lemmas multi_shift_simps =
shiftl_shiftl shiftr_shiftr
shiftl_shiftr1 shiftl_shiftr2
shiftr_shiftl1 shiftr_shiftl2
lemma word_and_max_word:
fixes a::"'a::len word"
shows "x = max_word \<Longrightarrow> a AND x = a"
apply(simp)
done
lemma word_and_1:
fixes x::"'a::len word"
shows "(x AND 1) = (if x!!0 then 1 else 0)"
apply(rule word_eqI)
apply(simp add:word_ao_nth)
apply(rule conjI)
apply(auto)[1]
apply clarsimp
apply (case_tac n)
apply simp
apply simp
done
lemma word_and_1_bl:
fixes x::"'a::len word"
shows "(x AND 1) = of_bl [x !! 0]"
by (simp add: word_and_1)
lemma word_1_and_bl:
fixes x::"'a::len word"
shows "(1 AND x) = of_bl [x !! 0]"
by (subst word_bw_comms)
(simp add: word_and_1)
(* can stay here: *)
(* some Haskellish syntax *)
notation (input)
test_bit ("testBit")
definition
w2byte :: "'a :: len word \<Rightarrow> 8 word" where
"w2byte \<equiv> ucast"
lemma scast_scast_id':
fixes x :: "('a::len) word"
assumes is_up: "is_up (scast :: 'a word \<Rightarrow> ('b::len) word)"
shows "scast (scast x :: 'b word) = (x :: 'a word)"
using assms by (rule scast_up_scast_id)
lemma scast_scast_id [simp]:
"scast (scast x :: ('a::len) signed word) = (x :: 'a word)"
"scast (scast y :: ('a::len) word) = (y :: 'a signed word)"
by (auto simp: is_up scast_scast_id')
lemma scast_ucast_id [simp]:
"scast (ucast (x :: 'a::len word) :: 'a signed word) = x"
by (metis down_cast_same is_down len_signed order_refl scast_scast_id(1))
lemma ucast_scast_id [simp]:
"ucast (scast (x :: 'a::len signed word) :: 'a word) = x"
by (metis scast_scast_id(2) scast_ucast_id)
lemma scast_of_nat [simp]:
"scast (of_nat x :: 'a::len signed word) = (of_nat x :: 'a word)"
by (metis (hide_lams, no_types) len_signed scast_def uint_sint
word_of_nat word_ubin.Abs_norm word_ubin.eq_norm)
lemma ucast_of_nat:
"is_down (ucast :: ('a :: len) word \<Rightarrow> ('b :: len) word)
\<Longrightarrow> ucast (of_nat n :: 'a word) = (of_nat n :: 'b word)"
apply (rule sym)
apply (subst word_unat.inverse_norm)
apply (simp add: ucast_def word_of_int[symmetric]
of_nat_nat[symmetric] unat_def[symmetric])
apply (simp add: unat_of_nat)
apply (rule nat_int.Rep_eqD)
apply (simp only: zmod_int)
apply (rule mod_mod_cancel)
apply (subst zdvd_int[symmetric])
apply (rule le_imp_power_dvd)
apply (simp add: is_down_def target_size_def source_size_def word_size)
done
lemma word32_sint_1[simp]:
"sint (1::word32) = 1"
by (simp add: sint_word_ariths)
lemma sint_1 [simp]:
"sint (1::'a::len word) = (if len_of TYPE('a) = 1 then -1 else 1)"
apply (case_tac "len_of TYPE('a) \<le> 1")
apply (metis diff_is_0_eq sbintrunc_0_numeral(1) sint_n1 word_1_wi
word_m1_wi word_msb_1 word_msb_n1 word_sbin.Abs_norm)
apply (metis bin_nth_1 diff_is_0_eq neq0_conv sbintrunc_minus_simps(4)
sint_word_ariths(8) uint_1 word_msb_1 word_msb_nth)
done
lemma scast_1':
"(scast (1::'a::len word) :: 'b::len word) =
(word_of_int (sbintrunc (len_of TYPE('a::len) - Suc 0) (1::int)))"
by (metis One_nat_def scast_def sint_word_ariths(8))
lemma scast_1 [simp]:
"(scast (1::'a::len word) :: 'b::len word) =
(if len_of TYPE('a) = 1 then -1 else 1)"
apply (clarsimp simp: scast_1')
apply (metis Suc_pred len_gt_0 nat.exhaust sbintrunc_Suc_numeral(1)
uint_1 word_uint.Rep_inverse')
done
lemma scast_eq_scast_id [simp]:
"((scast (a :: 'a::len signed word) :: 'a word) = scast b) = (a = b)"
by (metis ucast_scast_id)
lemma ucast_eq_ucast_id [simp]:
"((ucast (a :: 'a::len word) :: 'a signed word) = ucast b) = (a = b)"
by (metis scast_ucast_id)
lemma scast_ucast_norm [simp]:
"(ucast (a :: 'a::len word) = (b :: 'a signed word)) = (a = scast b)"
"((b :: 'a signed word) = ucast (a :: 'a::len word)) = (a = scast b)"
by (metis scast_ucast_id ucast_scast_id)+
lemma of_bl_drop:
"of_bl (drop n xs) = (of_bl xs && mask (length xs - n))"
apply (clarsimp simp: bang_eq test_bit_of_bl rev_nth
cong: rev_conj_cong)
apply (safe, simp_all add: word_size to_bl_nth)
done
lemma of_int_uint [simp]:
"of_int (uint x) = x"
by (metis word_of_int word_uint.Rep_inverse')
lemma shiftr_mask2:
"n \<le> len_of TYPE('a) \<Longrightarrow> (mask n >> m :: ('a :: len) word) = mask (n - m)"
apply (rule word_eqI)
apply (simp add: nth_shiftr word_size)
apply arith
done
corollary word_plus_and_or_coroll:
"x && y = 0 \<Longrightarrow> x + y = x || y"
using word_plus_and_or[where x=x and y=y]
by simp
corollary word_plus_and_or_coroll2:
"(x && w) + (x && ~~ w) = x"
apply (subst word_plus_and_or_coroll)
apply (rule word_eqI, simp add: word_size word_ops_nth_size)
apply (rule word_eqI, simp add: word_size word_ops_nth_size)
apply blast
done
(* FIXME: The two lemmas below are not exactly word-related but they
correspond to the lemmas less_le_mult' and less_le_mult from the theory
isabelle/src/HOL/Word/Num_Lemmas.
*)
lemma less_le_mult_nat':
"w * c < b * c ==> 0 \<le> c ==> Suc w * c \<le> b * (c::nat)"
apply (rule mult_right_mono)
apply (rule Suc_leI)
apply (erule (1) mult_right_less_imp_less)
apply assumption
done
lemmas less_le_mult_nat = less_le_mult_nat'[simplified distrib_right, simplified]
(* FIXME: these should be moved to Word and declared [simp]
but that will probably break everything. *)
lemmas extra_sle_sless_unfolds
= word_sle_def[where a=0 and b=1]
word_sle_def[where a=0 and b="numeral n"]
word_sle_def[where a=1 and b=0]
word_sle_def[where a=1 and b="numeral n"]
word_sle_def[where a="numeral n" and b=0]
word_sle_def[where a="numeral n" and b=1]
word_sless_alt[where a=0 and b=1]
word_sless_alt[where a=0 and b="numeral n"]
word_sless_alt[where a=1 and b=0]
word_sless_alt[where a=1 and b="numeral n"]
word_sless_alt[where a="numeral n" and b=0]
word_sless_alt[where a="numeral n" and b=1]
for n
(*
* Signed division: when the result of a division is negative,
* we will round towards zero instead of towards minus infinity.
*)
class signed_div =
fixes sdiv :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "sdiv" 70)
fixes smod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "smod" 70)
instantiation int :: signed_div
begin
definition "(a :: int) sdiv b \<equiv> sgn (a * b) * (abs a div abs b)"
definition "(a :: int) smod b \<equiv> a - (a sdiv b) * b"
instance ..
end
instantiation word :: (len) signed_div
begin
definition "(a :: ('a::len) word) sdiv b = word_of_int (sint a sdiv sint b)"
definition "(a :: ('a::len) word) smod b = word_of_int (sint a smod sint b)"
instance ..
end
(* Tests *)
lemma
"( 4 :: word32) sdiv 4 = 1"
"(-4 :: word32) sdiv 4 = -1"
"(-3 :: word32) sdiv 4 = 0"
"( 3 :: word32) sdiv -4 = 0"
"(-3 :: word32) sdiv -4 = 0"
"(-5 :: word32) sdiv -4 = 1"
"( 5 :: word32) sdiv -4 = -1"
by (simp_all add: sdiv_word_def sdiv_int_def)
lemma
"( 4 :: word32) smod 4 = 0"
"( 3 :: word32) smod 4 = 3"
"(-3 :: word32) smod 4 = -3"
"( 3 :: word32) smod -4 = 3"
"(-3 :: word32) smod -4 = -3"
"(-5 :: word32) smod -4 = -1"
"( 5 :: word32) smod -4 = 1"
by (simp_all add: smod_word_def smod_int_def sdiv_int_def)
end