lh-l4v/lib/Word_Lib/Word_Lemmas.thy

5398 lines
190 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
section "Lemmas with Generic Word Length"
theory Word_Lemmas
imports
Complex_Main
Word_EqI
Word_Enum
"HOL-Library.Sublist"
begin
text \<open>Set up quickcheck to support words\<close>
quickcheck_generator word
constructors:
"zero_class.zero :: ('a::len) word",
"numeral :: num \<Rightarrow> ('a::len) word",
"uminus :: ('a::len) word \<Rightarrow> ('a::len) word"
instantiation Enum.finite_1 :: len
begin
definition "len_of_finite_1 (x :: Enum.finite_1 itself) \<equiv> (1 :: nat)"
instance
by (standard, auto simp: len_of_finite_1_def)
end
instantiation Enum.finite_2 :: len
begin
definition "len_of_finite_2 (x :: Enum.finite_2 itself) \<equiv> (2 :: nat)"
instance
by (standard, auto simp: len_of_finite_2_def)
end
instantiation Enum.finite_3 :: len
begin
definition "len_of_finite_3 (x :: Enum.finite_3 itself) \<equiv> (4 :: nat)"
instance
by (standard, auto simp: len_of_finite_3_def)
end
(* Provide wf and less_induct for word.
wf may be more useful in loop proofs, less_induct in recursion proofs. *)
lemma word_less_wf: "wf {(a, b). a < (b :: ('a::len) word)}"
apply (rule wf_subset, rule wf_measure)
apply clarify
apply (subst in_measure)
apply (erule unat_mono)
done
lemma word_less_induct:
"\<lbrakk> \<And>x::('a::len) word. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x \<rbrakk> \<Longrightarrow> P a"
using word_less_wf by induct blast
instantiation word :: (len) wellorder
begin
instance by (intro_classes) (metis word_less_induct)
end
lemma word_plus_mono_left:
fixes x :: "'a :: len word"
shows "\<lbrakk>y \<le> z; x \<le> x + z\<rbrakk> \<Longrightarrow> y + x \<le> z + x"
by unat_arith
lemma word_shiftl_add_distrib:
fixes x :: "'a :: len word"
shows "(x + y) << n = (x << n) + (y << n)"
by (simp add: shiftl_t2n ring_distribs)
lemma less_Suc_unat_less_bound:
"n < Suc (unat (x :: 'a :: len word)) \<Longrightarrow> n < 2 ^ LENGTH('a)"
by (auto elim!: order_less_le_trans intro: Suc_leI)
lemma up_ucast_inj:
"\<lbrakk> ucast x = (ucast y::'b::len word); LENGTH('a) \<le> len_of TYPE ('b) \<rbrakk> \<Longrightarrow> x = (y::'a::len word)"
by (subst (asm) bang_eq) (fastforce simp: nth_ucast word_size intro: word_eqI)
lemmas ucast_up_inj = up_ucast_inj
lemma up_ucast_inj_eq:
"LENGTH('a) \<le> len_of TYPE ('b) \<Longrightarrow> (ucast x = (ucast y::'b::len word)) = (x = (y::'a::len word))"
by (fastforce dest: up_ucast_inj)
lemma no_plus_overflow_neg:
"(x :: 'a :: len word) < -y \<Longrightarrow> x \<le> x + y"
by (metis diff_minus_eq_add less_imp_le sub_wrap_lt)
lemma ucast_ucast_eq:
"\<lbrakk> ucast x = (ucast (ucast y::'a word)::'c::len word); LENGTH('a) \<le> LENGTH('b);
LENGTH('b) \<le> LENGTH('c) \<rbrakk> \<Longrightarrow>
x = ucast y" for x :: "'a::len word" and y :: "'b::len word"
by (fastforce intro: word_eqI simp: bang_eq nth_ucast word_size)
lemma ucast_0_I:
"x = 0 \<Longrightarrow> ucast x = 0"
by simp
text \<open>right-padding a word to a certain length\<close>
definition
"bl_pad_to bl sz \<equiv> bl @ (replicate (sz - length bl) False)"
lemma bl_pad_to_length:
assumes lbl: "length bl \<le> sz"
shows "length (bl_pad_to bl sz) = sz"
using lbl by (simp add: bl_pad_to_def)
lemma bl_pad_to_prefix:
"prefix bl (bl_pad_to bl sz)"
by (simp add: bl_pad_to_def)
lemma same_length_is_parallel:
assumes len: "\<forall>y \<in> set as. length y = x"
shows "\<forall>x \<in> set as. \<forall>y \<in> set as - {x}. x \<parallel> y"
proof (rule, rule)
fix x y
assume xi: "x \<in> set as" and yi: "y \<in> set as - {x}"
from len obtain q where len': "\<forall>y \<in> set as. length y = q" ..
show "x \<parallel> y"
proof (rule not_equal_is_parallel)
from xi yi show "x \<noteq> y" by auto
from xi yi len' show "length x = length y" by (auto dest: bspec)
qed
qed
text \<open>Lemmas about words\<close>
lemmas and_bang = word_and_nth
lemma of_drop_to_bl:
"of_bl (drop n (to_bl x)) = (x && mask (size x - n))"
by (simp add: of_bl_drop word_size_bl)
lemma word_add_offset_less:
fixes x :: "'a :: len word"
assumes yv: "y < 2 ^ n"
and xv: "x < 2 ^ m"
and mnv: "sz < LENGTH('a :: len)"
and xv': "x < 2 ^ (LENGTH('a :: len) - n)"
and mn: "sz = m + n"
shows "x * 2 ^ n + y < 2 ^ sz"
proof (subst mn)
from mnv mn have nv: "n < LENGTH('a)" and mv: "m < LENGTH('a)" by auto
have uy: "unat y < 2 ^ n"
by (rule order_less_le_trans [OF unat_mono [OF yv] order_eq_refl],
rule unat_power_lower[OF nv])
have ux: "unat x < 2 ^ m"
by (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl],
rule unat_power_lower[OF mv])
then show "x * 2 ^ n + y < 2 ^ (m + n)" using ux uy nv mnv xv'
apply (subst word_less_nat_alt)
apply (subst unat_word_ariths)+
apply (subst mod_less)
apply simp
apply (subst mult.commute)
apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]])
apply (rule order_less_le_trans [OF unat_mono [OF xv']])
apply (cases "n = 0"; simp)
apply (subst unat_power_lower[OF nv])
apply (subst mod_less)
apply (erule order_less_le_trans [OF nat_add_offset_less], assumption)
apply (rule mn)
apply simp
apply (simp add: mn mnv)
apply (erule nat_add_offset_less; simp)
done
qed
lemma word_less_power_trans:
fixes n :: "'a :: len word"
assumes nv: "n < 2 ^ (m - k)"
and kv: "k \<le> m"
and mv: "m < len_of TYPE ('a)"
shows "2 ^ k * n < 2 ^ m"
using nv kv mv
apply -
apply (subst word_less_nat_alt)
apply (subst unat_word_ariths)
apply (subst mod_less)
apply simp
apply (rule nat_less_power_trans)
apply (erule order_less_trans [OF unat_mono])
apply simp
apply simp
apply simp
apply (rule nat_less_power_trans)
apply (subst unat_power_lower[where 'a = 'a, symmetric])
apply simp
apply (erule unat_mono)
apply simp
done
lemma Suc_unat_diff_1:
fixes x :: "'a :: len word"
assumes lt: "1 \<le> x"
shows "Suc (unat (x - 1)) = unat x"
proof -
have "0 < unat x"
by (rule order_less_le_trans [where y = 1], simp, subst unat_1 [symmetric],
rule iffD1 [OF word_le_nat_alt lt])
then show ?thesis
by ((subst unat_sub [OF lt])+, simp only: unat_1)
qed
lemma word_div_sub:
fixes x :: "'a :: len word"
assumes yx: "y \<le> x"
and y0: "0 < y"
shows "(x - y) div y = x div y - 1"
apply (rule word_unat.Rep_eqD)
apply (subst unat_div)
apply (subst unat_sub [OF yx])
apply (subst unat_sub)
apply (subst word_le_nat_alt)
apply (subst unat_div)
apply (subst le_div_geq)
apply (rule order_le_less_trans [OF _ unat_mono [OF y0]])
apply simp
apply (subst word_le_nat_alt [symmetric], rule yx)
apply simp
apply (subst unat_div)
apply (subst le_div_geq [OF _ iffD1 [OF word_le_nat_alt yx]])
apply (rule order_le_less_trans [OF _ unat_mono [OF y0]])
apply simp
apply simp
done
lemma word_mult_less_mono1:
fixes i :: "'a :: len word"
assumes ij: "i < j"
and knz: "0 < k"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "i * k < j * k"
proof -
from ij ujk knz have jk: "unat i * unat k < 2 ^ len_of TYPE ('a)"
by (auto intro: order_less_subst2 simp: word_less_nat_alt elim: mult_less_mono1)
then show ?thesis using ujk knz ij
by (auto simp: word_less_nat_alt iffD1 [OF unat_mult_lem])
qed
lemma word_mult_less_dest:
fixes i :: "'a :: len word"
assumes ij: "i * k < j * k"
and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "i < j"
using uik ujk ij
by (auto simp: word_less_nat_alt iffD1 [OF unat_mult_lem] elim: mult_less_mono1)
lemma word_mult_less_cancel:
fixes k :: "'a :: len word"
assumes knz: "0 < k"
and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "(i * k < j * k) = (i < j)"
by (rule iffI [OF word_mult_less_dest [OF _ uik ujk] word_mult_less_mono1 [OF _ knz ujk]])
lemma Suc_div_unat_helper:
assumes szv: "sz < LENGTH('a :: len)"
and usszv: "us \<le> sz"
shows "2 ^ (sz - us) = Suc (unat (((2::'a :: len word) ^ sz - 1) div 2 ^ us))"
proof -
note usv = order_le_less_trans [OF usszv szv]
from usszv obtain q where qv: "sz = us + q" by (auto simp: le_iff_add)
have "Suc (unat (((2:: 'a word) ^ sz - 1) div 2 ^ us)) =
(2 ^ us + unat ((2:: 'a word) ^ sz - 1)) div 2 ^ us"
apply (subst unat_div unat_power_lower[OF usv])+
apply (subst div_add_self1, simp+)
done
also have "\<dots> = ((2 ^ us - 1) + 2 ^ sz) div 2 ^ us" using szv
by (simp add: unat_minus_one)
also have "\<dots> = 2 ^ q + ((2 ^ us - 1) div 2 ^ us)"
apply (subst qv)
apply (subst power_add)
apply (subst div_mult_self2; simp)
done
also have "\<dots> = 2 ^ (sz - us)" using qv by simp
finally show ?thesis ..
qed
lemma set_enum_word8_def:
"(set enum::word8 set) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255}"
by eval
lemma set_strip_insert: "\<lbrakk> x \<in> insert a S; x \<noteq> a \<rbrakk> \<Longrightarrow> x \<in> S"
by simp
lemma word8_exhaust:
fixes x :: word8
shows "\<lbrakk>x \<noteq> 0; x \<noteq> 1; x \<noteq> 2; x \<noteq> 3; x \<noteq> 4; x \<noteq> 5; x \<noteq> 6; x \<noteq> 7; x \<noteq> 8; x \<noteq> 9; x \<noteq> 10; x \<noteq> 11; x \<noteq>
12; x \<noteq> 13; x \<noteq> 14; x \<noteq> 15; x \<noteq> 16; x \<noteq> 17; x \<noteq> 18; x \<noteq> 19; x \<noteq> 20; x \<noteq> 21; x \<noteq> 22; x \<noteq>
23; x \<noteq> 24; x \<noteq> 25; x \<noteq> 26; x \<noteq> 27; x \<noteq> 28; x \<noteq> 29; x \<noteq> 30; x \<noteq> 31; x \<noteq> 32; x \<noteq> 33; x \<noteq>
34; x \<noteq> 35; x \<noteq> 36; x \<noteq> 37; x \<noteq> 38; x \<noteq> 39; x \<noteq> 40; x \<noteq> 41; x \<noteq> 42; x \<noteq> 43; x \<noteq> 44; x \<noteq>
45; x \<noteq> 46; x \<noteq> 47; x \<noteq> 48; x \<noteq> 49; x \<noteq> 50; x \<noteq> 51; x \<noteq> 52; x \<noteq> 53; x \<noteq> 54; x \<noteq> 55; x \<noteq>
56; x \<noteq> 57; x \<noteq> 58; x \<noteq> 59; x \<noteq> 60; x \<noteq> 61; x \<noteq> 62; x \<noteq> 63; x \<noteq> 64; x \<noteq> 65; x \<noteq> 66; x \<noteq>
67; x \<noteq> 68; x \<noteq> 69; x \<noteq> 70; x \<noteq> 71; x \<noteq> 72; x \<noteq> 73; x \<noteq> 74; x \<noteq> 75; x \<noteq> 76; x \<noteq> 77; x \<noteq>
78; x \<noteq> 79; x \<noteq> 80; x \<noteq> 81; x \<noteq> 82; x \<noteq> 83; x \<noteq> 84; x \<noteq> 85; x \<noteq> 86; x \<noteq> 87; x \<noteq> 88; x \<noteq>
89; x \<noteq> 90; x \<noteq> 91; x \<noteq> 92; x \<noteq> 93; x \<noteq> 94; x \<noteq> 95; x \<noteq> 96; x \<noteq> 97; x \<noteq> 98; x \<noteq> 99; x \<noteq>
100; x \<noteq> 101; x \<noteq> 102; x \<noteq> 103; x \<noteq> 104; x \<noteq> 105; x \<noteq> 106; x \<noteq> 107; x \<noteq> 108; x \<noteq> 109; x \<noteq>
110; x \<noteq> 111; x \<noteq> 112; x \<noteq> 113; x \<noteq> 114; x \<noteq> 115; x \<noteq> 116; x \<noteq> 117; x \<noteq> 118; x \<noteq> 119; x \<noteq>
120; x \<noteq> 121; x \<noteq> 122; x \<noteq> 123; x \<noteq> 124; x \<noteq> 125; x \<noteq> 126; x \<noteq> 127; x \<noteq> 128; x \<noteq> 129; x \<noteq>
130; x \<noteq> 131; x \<noteq> 132; x \<noteq> 133; x \<noteq> 134; x \<noteq> 135; x \<noteq> 136; x \<noteq> 137; x \<noteq> 138; x \<noteq> 139; x \<noteq>
140; x \<noteq> 141; x \<noteq> 142; x \<noteq> 143; x \<noteq> 144; x \<noteq> 145; x \<noteq> 146; x \<noteq> 147; x \<noteq> 148; x \<noteq> 149; x \<noteq>
150; x \<noteq> 151; x \<noteq> 152; x \<noteq> 153; x \<noteq> 154; x \<noteq> 155; x \<noteq> 156; x \<noteq> 157; x \<noteq> 158; x \<noteq> 159; x \<noteq>
160; x \<noteq> 161; x \<noteq> 162; x \<noteq> 163; x \<noteq> 164; x \<noteq> 165; x \<noteq> 166; x \<noteq> 167; x \<noteq> 168; x \<noteq> 169; x \<noteq>
170; x \<noteq> 171; x \<noteq> 172; x \<noteq> 173; x \<noteq> 174; x \<noteq> 175; x \<noteq> 176; x \<noteq> 177; x \<noteq> 178; x \<noteq> 179; x \<noteq>
180; x \<noteq> 181; x \<noteq> 182; x \<noteq> 183; x \<noteq> 184; x \<noteq> 185; x \<noteq> 186; x \<noteq> 187; x \<noteq> 188; x \<noteq> 189; x \<noteq>
190; x \<noteq> 191; x \<noteq> 192; x \<noteq> 193; x \<noteq> 194; x \<noteq> 195; x \<noteq> 196; x \<noteq> 197; x \<noteq> 198; x \<noteq> 199; x \<noteq>
200; x \<noteq> 201; x \<noteq> 202; x \<noteq> 203; x \<noteq> 204; x \<noteq> 205; x \<noteq> 206; x \<noteq> 207; x \<noteq> 208; x \<noteq> 209; x \<noteq>
210; x \<noteq> 211; x \<noteq> 212; x \<noteq> 213; x \<noteq> 214; x \<noteq> 215; x \<noteq> 216; x \<noteq> 217; x \<noteq> 218; x \<noteq> 219; x \<noteq>
220; x \<noteq> 221; x \<noteq> 222; x \<noteq> 223; x \<noteq> 224; x \<noteq> 225; x \<noteq> 226; x \<noteq> 227; x \<noteq> 228; x \<noteq> 229; x \<noteq>
230; x \<noteq> 231; x \<noteq> 232; x \<noteq> 233; x \<noteq> 234; x \<noteq> 235; x \<noteq> 236; x \<noteq> 237; x \<noteq> 238; x \<noteq> 239; x \<noteq>
240; x \<noteq> 241; x \<noteq> 242; x \<noteq> 243; x \<noteq> 244; x \<noteq> 245; x \<noteq> 246; x \<noteq> 247; x \<noteq> 248; x \<noteq> 249; x \<noteq>
250; x \<noteq> 251; x \<noteq> 252; x \<noteq> 253; x \<noteq> 254; x \<noteq> 255\<rbrakk> \<Longrightarrow> P"
apply (subgoal_tac "x \<in> set enum", subst (asm) set_enum_word8_def)
apply (drule set_strip_insert, assumption)+
apply (erule emptyE)
apply (subst enum_UNIV, rule UNIV_I)
done
lemma upto_enum_red':
assumes lt: "1 \<le> X"
shows "[(0::'a :: len word) .e. X - 1] = map of_nat [0 ..< unat X]"
proof -
have lt': "unat X < 2 ^ LENGTH('a)"
by (rule unat_lt2p)
show ?thesis
apply (subst upto_enum_red)
apply (simp del: upt.simps)
apply (subst Suc_unat_diff_1 [OF lt])
apply (rule map_cong [OF refl])
apply (rule toEnum_of_nat)
apply simp
apply (erule order_less_trans [OF _ lt'])
done
qed
lemma upto_enum_red2:
assumes szv: "sz < LENGTH('a :: len)"
shows "[(0:: 'a :: len word) .e. 2 ^ sz - 1] =
map of_nat [0 ..< 2 ^ sz]" using szv
apply (subst unat_power_lower[OF szv, symmetric])
apply (rule upto_enum_red')
apply (subst word_le_nat_alt, simp)
done
lemma upto_enum_step_red:
assumes szv: "sz < len_of (TYPE('a))"
and usszv: "us \<le> sz"
shows "[0 :: 'a :: len word , 2 ^ us .e. 2 ^ sz - 1] =
map (\<lambda>x. of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]" using szv
unfolding upto_enum_step_def
apply (subst if_not_P)
apply (rule leD)
apply (subst word_le_nat_alt)
apply (subst unat_minus_one)
apply simp
apply simp
apply simp
apply (subst upto_enum_red)
apply (simp del: upt.simps)
apply (subst Suc_div_unat_helper [where 'a = 'a, OF szv usszv, symmetric])
apply clarsimp
apply (subst toEnum_of_nat)
apply (erule order_less_trans)
using szv
apply simp
apply simp
done
lemma upto_enum_word:
"[x .e. y] = map of_nat [unat x ..< Suc (unat y)]"
apply (subst upto_enum_red)
apply clarsimp
apply (subst toEnum_of_nat)
prefer 2
apply (rule refl)
apply (erule disjE, simp)
apply clarsimp
apply (erule order_less_trans)
apply simp
done
lemma word_upto_Cons_eq:
"x < y \<Longrightarrow> [x::'a::len word .e. y] = x # [x + 1 .e. y]"
apply (subst upto_enum_red)
apply (subst upt_conv_Cons, unat_arith)
apply (simp only: list.map list.inject upto_enum_red to_from_enum simp_thms)
apply (rule map_cong[OF _ refl])
apply (rule arg_cong2[where f = "\<lambda>x y. [x ..< y]"], unat_arith)
apply (rule refl)
done
lemma distinct_enum_upto:
"distinct [(0 :: 'a::len word) .e. b]"
proof -
have "\<And>(b::'a word). [0 .e. b] = nths enum {..< Suc (fromEnum b)}"
apply (subst upto_enum_red)
apply (subst nths_upt_eq_take)
apply (subst enum_word_def)
apply (subst take_map)
apply (subst take_upt)
apply (simp only: add_0 fromEnum_unat)
apply (rule order_trans [OF _ order_eq_refl])
apply (rule Suc_leI [OF unat_lt2p])
apply simp
apply clarsimp
apply (rule toEnum_of_nat)
apply (erule order_less_trans [OF _ unat_lt2p])
done
then show ?thesis
by (rule ssubst) (rule distinct_nthsI, simp)
qed
lemma upto_enum_set_conv [simp]:
fixes a :: "'a :: len word"
shows "set [a .e. b] = {x. a \<le> x \<and> x \<le> b}"
apply (subst upto_enum_red)
apply (subst set_map)
apply safe
apply simp
apply clarsimp
apply (erule disjE)
apply simp
apply (erule iffD2 [OF word_le_nat_alt])
apply clarsimp
apply (erule word_unat.Rep_cases [OF unat_le [OF order_less_imp_le]])
apply simp
apply (erule iffD2 [OF word_le_nat_alt])
apply simp
apply clarsimp
apply (erule disjE)
apply simp
apply clarsimp
apply (rule word_unat.Rep_cases [OF unat_le [OF order_less_imp_le]])
apply assumption
apply simp
apply (erule order_less_imp_le [OF iffD2 [OF word_less_nat_alt]])
apply clarsimp
apply (rule_tac x="fromEnum x" in image_eqI)
apply clarsimp
apply clarsimp
apply (rule conjI)
apply (subst word_le_nat_alt [symmetric])
apply simp
apply safe
apply (simp add: word_le_nat_alt [symmetric])
apply (simp add: word_less_nat_alt [symmetric])
done
lemma upto_enum_less:
assumes xin: "x \<in> set [(a::'a::len word).e.2 ^ n - 1]"
and nv: "n < LENGTH('a::len)"
shows "x < 2 ^ n"
proof (cases n)
case 0
then show ?thesis using xin by simp
next
case (Suc m)
show ?thesis using xin nv by simp
qed
lemma upto_enum_len_less:
"\<lbrakk> n \<le> length [a, b .e. c]; n \<noteq> 0 \<rbrakk> \<Longrightarrow> a \<le> c"
unfolding upto_enum_step_def
by (simp split: if_split_asm)
lemma length_upto_enum_step:
fixes x :: "'a :: len word"
shows "x \<le> z \<Longrightarrow> length [x , y .e. z] = (unat ((z - x) div (y - x))) + 1"
unfolding upto_enum_step_def
by (simp add: upto_enum_red)
lemma map_length_unfold_one:
fixes x :: "'a::len word"
assumes xv: "Suc (unat x) < 2 ^ LENGTH('a)"
and ax: "a < x"
shows "map f [a .e. x] = f a # map f [a + 1 .e. x]"
by (subst word_upto_Cons_eq, auto, fact+)
lemma upto_enum_set_conv2:
fixes a :: "'a::len word"
shows "set [a .e. b] = {a .. b}"
by auto
lemma of_nat_unat [simp]:
"of_nat \<circ> unat = id"
by (rule ext, simp)
lemma Suc_unat_minus_one [simp]:
"x \<noteq> 0 \<Longrightarrow> Suc (unat (x - 1)) = unat x"
by (metis Suc_diff_1 unat_gt_0 unat_minus_one)
lemma word_add_le_dest:
fixes i :: "'a :: len word"
assumes le: "i + k \<le> j + k"
and uik: "unat i + unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "i \<le> j"
using uik ujk le
by (auto simp: word_le_nat_alt iffD1 [OF unat_add_lem] elim: add_le_mono1)
lemma mask_shift:
"(x && ~~ mask y) >> y = x >> y"
by word_eqI
lemma word_add_le_mono1:
fixes i :: "'a :: len word"
assumes ij: "i \<le> j"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "i + k \<le> j + k"
proof -
from ij ujk have jk: "unat i + unat k < 2 ^ len_of TYPE ('a)"
by (auto elim: order_le_less_subst2 simp: word_le_nat_alt elim: add_le_mono1)
then show ?thesis using ujk ij
by (auto simp: word_le_nat_alt iffD1 [OF unat_add_lem])
qed
lemma word_add_le_mono2:
fixes i :: "'a :: len word"
shows "\<lbrakk>i \<le> j; unat j + unat k < 2 ^ LENGTH('a)\<rbrakk> \<Longrightarrow> k + i \<le> k + j"
by (subst field_simps, subst field_simps, erule (1) word_add_le_mono1)
lemma word_add_le_iff:
fixes i :: "'a :: len word"
assumes uik: "unat i + unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "(i + k \<le> j + k) = (i \<le> j)"
proof
assume "i \<le> j"
show "i + k \<le> j + k" by (rule word_add_le_mono1) fact+
next
assume "i + k \<le> j + k"
show "i \<le> j" by (rule word_add_le_dest) fact+
qed
lemma word_add_less_mono1:
fixes i :: "'a :: len word"
assumes ij: "i < j"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "i + k < j + k"
proof -
from ij ujk have jk: "unat i + unat k < 2 ^ len_of TYPE ('a)"
by (auto elim: order_le_less_subst2 simp: word_less_nat_alt elim: add_less_mono1)
then show ?thesis using ujk ij
by (auto simp: word_less_nat_alt iffD1 [OF unat_add_lem])
qed
lemma word_add_less_dest:
fixes i :: "'a :: len word"
assumes le: "i + k < j + k"
and uik: "unat i + unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "i < j"
using uik ujk le
by (auto simp: word_less_nat_alt iffD1 [OF unat_add_lem] elim: add_less_mono1)
lemma word_add_less_iff:
fixes i :: "'a :: len word"
assumes uik: "unat i + unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j + unat k < 2 ^ len_of TYPE ('a)"
shows "(i + k < j + k) = (i < j)"
proof
assume "i < j"
show "i + k < j + k" by (rule word_add_less_mono1) fact+
next
assume "i + k < j + k"
show "i < j" by (rule word_add_less_dest) fact+
qed
lemma shiftr_div_2n':
"unat (w >> n) = unat w div 2 ^ n"
apply (unfold unat_def)
apply (subst shiftr_div_2n)
apply (subst nat_div_distrib)
apply simp
apply (simp add: nat_power_eq)
done
lemma shiftl_shiftr_id:
assumes nv: "n < LENGTH('a)"
and xv: "x < 2 ^ (LENGTH('a) - n)"
shows "x << n >> n = (x::'a::len word)"
apply (simp add: shiftl_t2n)
apply (rule word_unat.Rep_eqD)
apply (subst shiftr_div_2n')
apply (cases n)
apply simp
apply (subst iffD1 [OF unat_mult_lem])+
apply (subst unat_power_lower[OF nv])
apply (rule nat_less_power_trans [OF _ order_less_imp_le [OF nv]])
apply (rule order_less_le_trans [OF unat_mono [OF xv] order_eq_refl])
apply (rule unat_power_lower)
apply simp
apply (subst unat_power_lower[OF nv])
apply simp
done
lemma ucast_shiftl_eq_0:
fixes w :: "'a :: len word"
shows "\<lbrakk> n \<ge> LENGTH('b) \<rbrakk> \<Longrightarrow> ucast (w << n) = (0 :: 'b :: len word)"
by (case_tac "size w \<le> n", clarsimp simp: shiftl_zero_size)
(clarsimp simp: not_le ucast_bl bl_shiftl bang_eq test_bit_of_bl rev_nth nth_append)
lemma word_mult_less_iff:
fixes i :: "'a :: len word"
assumes knz: "0 < k"
and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "(i * k < j * k) = (i < j)"
using assms by (rule word_mult_less_cancel)
lemma word_le_imp_diff_le:
fixes n :: "'a::len word"
shows "\<lbrakk>k \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> n - k \<le> m"
by (auto simp: unat_sub word_le_nat_alt)
lemma word_less_imp_diff_less:
fixes n :: "'a::len word"
shows "\<lbrakk>k \<le> n; n < m\<rbrakk> \<Longrightarrow> n - k < m"
by (clarsimp simp: unat_sub word_less_nat_alt
intro!: less_imp_diff_less)
lemma word_mult_le_mono1:
fixes i :: "'a :: len word"
assumes ij: "i \<le> j"
and knz: "0 < k"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "i * k \<le> j * k"
proof -
from ij ujk knz have jk: "unat i * unat k < 2 ^ len_of TYPE ('a)"
by (auto elim: order_le_less_subst2 simp: word_le_nat_alt elim: mult_le_mono1)
then show ?thesis using ujk knz ij
by (auto simp: word_le_nat_alt iffD1 [OF unat_mult_lem])
qed
lemma word_mult_le_iff:
fixes i :: "'a :: len word"
assumes knz: "0 < k"
and uik: "unat i * unat k < 2 ^ len_of TYPE ('a)"
and ujk: "unat j * unat k < 2 ^ len_of TYPE ('a)"
shows "(i * k \<le> j * k) = (i \<le> j)"
proof
assume "i \<le> j"
show "i * k \<le> j * k" by (rule word_mult_le_mono1) fact+
next
assume p: "i * k \<le> j * k"
have "0 < unat k" using knz by (simp add: word_less_nat_alt)
then show "i \<le> j" using p
by (clarsimp simp: word_le_nat_alt iffD1 [OF unat_mult_lem uik]
iffD1 [OF unat_mult_lem ujk])
qed
lemma word_diff_less:
fixes n :: "'a :: len word"
shows "\<lbrakk>0 < n; 0 < m; n \<le> m\<rbrakk> \<Longrightarrow> m - n < m"
apply (subst word_less_nat_alt)
apply (subst unat_sub)
apply assumption
apply (rule diff_less)
apply (simp_all add: word_less_nat_alt)
done
lemma MinI:
assumes fa: "finite A"
and ne: "A \<noteq> {}"
and xv: "m \<in> A"
and min: "\<forall>y \<in> A. m \<le> y"
shows "Min A = m" using fa ne xv min
proof (induct A arbitrary: m rule: finite_ne_induct)
case singleton then show ?case by simp
next
case (insert y F)
from insert.prems have yx: "m \<le> y" and fx: "\<forall>y \<in> F. m \<le> y" by auto
have "m \<in> insert y F" by fact
then show ?case
proof
assume mv: "m = y"
have mlt: "m \<le> Min F"
by (rule iffD2 [OF Min_ge_iff [OF insert.hyps(1) insert.hyps(2)] fx])
show ?case
apply (subst Min_insert [OF insert.hyps(1) insert.hyps(2)])
apply (subst mv [symmetric])
apply (auto simp: min_def mlt)
done
next
assume "m \<in> F"
then have mf: "Min F = m"
by (rule insert.hyps(4) [OF _ fx])
show ?case
apply (subst Min_insert [OF insert.hyps(1) insert.hyps(2)])
apply (subst mf)
apply (rule iffD2 [OF _ yx])
apply (auto simp: min_def)
done
qed
qed
lemma length_upto_enum [simp]:
fixes a :: "'a :: len word"
shows "length [a .e. b] = Suc (unat b) - unat a"
apply (simp add: word_le_nat_alt upto_enum_red)
apply (clarsimp simp: Suc_diff_le)
done
lemma length_upto_enum_less_one:
"\<lbrakk>a \<le> b; b \<noteq> 0\<rbrakk>
\<Longrightarrow> length [a .e. b - 1] = unat (b - a)"
apply clarsimp
apply (subst unat_sub[symmetric], assumption)
apply clarsimp
done
lemma drop_upto_enum:
"drop (unat n) [0 .e. m] = [n .e. m]"
apply (clarsimp simp: upto_enum_def)
apply (induct m, simp)
by (metis drop_map drop_upt plus_nat.add_0)
lemma distinct_enum_upto' [simp]:
"distinct [a::'a::len word .e. b]"
apply (subst drop_upto_enum [symmetric])
apply (rule distinct_drop)
apply (rule distinct_enum_upto)
done
lemma length_interval:
"\<lbrakk>set xs = {x. (a::'a::len word) \<le> x \<and> x \<le> b}; distinct xs\<rbrakk>
\<Longrightarrow> length xs = Suc (unat b) - unat a"
apply (frule distinct_card)
apply (subgoal_tac "set xs = set [a .e. b]")
apply (cut_tac distinct_card [where xs="[a .e. b]"])
apply (subst (asm) length_upto_enum)
apply clarsimp
apply (rule distinct_enum_upto')
apply simp
done
lemma not_empty_eq:
"(S \<noteq> {}) = (\<exists>x. x \<in> S)"
by auto
lemma range_subset_lower:
fixes c :: "'a ::linorder"
shows "\<lbrakk> {a..b} \<subseteq> {c..d}; x \<in> {a..b} \<rbrakk> \<Longrightarrow> c \<le> a"
apply (frule (1) subsetD)
apply (rule classical)
apply clarsimp
done
lemma range_subset_upper:
fixes c :: "'a ::linorder"
shows "\<lbrakk> {a..b} \<subseteq> {c..d}; x \<in> {a..b} \<rbrakk> \<Longrightarrow> b \<le> d"
apply (frule (1) subsetD)
apply (rule classical)
apply clarsimp
done
lemma range_subset_eq:
fixes a::"'a::linorder"
assumes non_empty: "a \<le> b"
shows "({a..b} \<subseteq> {c..d}) = (c \<le> a \<and> b \<le> d)"
apply (insert non_empty)
apply (rule iffI)
apply (frule range_subset_lower [where x=a], simp)
apply (drule range_subset_upper [where x=a], simp)
apply simp
apply auto
done
lemma range_eq:
fixes a::"'a::linorder"
assumes non_empty: "a \<le> b"
shows "({a..b} = {c..d}) = (a = c \<and> b = d)"
by (metis atLeastatMost_subset_iff eq_iff non_empty)
lemma range_strict_subset_eq:
fixes a::"'a::linorder"
assumes non_empty: "a \<le> b"
shows "({a..b} \<subset> {c..d}) = (c \<le> a \<and> b \<le> d \<and> (a = c \<longrightarrow> b \<noteq> d))"
apply (insert non_empty)
apply (subst psubset_eq)
apply (subst range_subset_eq, assumption+)
apply (subst range_eq, assumption+)
apply simp
done
lemma range_subsetI:
fixes x :: "'a :: order"
assumes xX: "X \<le> x"
and yY: "y \<le> Y"
shows "{x .. y} \<subseteq> {X .. Y}"
using xX yY by auto
lemma set_False [simp]:
"(set bs \<subseteq> {False}) = (True \<notin> set bs)" by auto
declare of_nat_power [simp del]
(* TODO: move to word *)
lemma unat_of_bl_length:
"unat (of_bl xs :: 'a::len word) < 2 ^ (length xs)"
proof (cases "length xs < LENGTH('a)")
case True
then have "(of_bl xs::'a::len word) < 2 ^ length xs"
by (simp add: of_bl_length_less)
with True
show ?thesis
by (simp add: word_less_nat_alt word_unat_power unat_of_nat)
next
case False
have "unat (of_bl xs::'a::len word) < 2 ^ LENGTH('a)"
by (simp split: unat_split)
also
from False
have "LENGTH('a) \<le> length xs" by simp
then have "2 ^ LENGTH('a) \<le> (2::nat) ^ length xs"
by (rule power_increasing) simp
finally
show ?thesis .
qed
lemma is_aligned_0'[simp]:
"is_aligned 0 n"
by (simp add: is_aligned_def)
lemma p_assoc_help:
fixes p :: "'a::{ring,power,numeral,one}"
shows "p + 2^sz - 1 = p + (2^sz - 1)"
by simp
lemma word_add_increasing:
fixes x :: "'a :: len word"
shows "\<lbrakk> p + w \<le> x; p \<le> p + w \<rbrakk> \<Longrightarrow> p \<le> x"
by unat_arith
lemma word_random:
fixes x :: "'a :: len word"
shows "\<lbrakk> p \<le> p + x'; x \<le> x' \<rbrakk> \<Longrightarrow> p \<le> p + x"
by unat_arith
lemma word_sub_mono:
"\<lbrakk> a \<le> c; d \<le> b; a - b \<le> a; c - d \<le> c \<rbrakk>
\<Longrightarrow> (a - b) \<le> (c - d :: 'a :: len word)"
by unat_arith
lemma power_not_zero:
"n < LENGTH('a::len) \<Longrightarrow> (2 :: 'a word) ^ n \<noteq> 0"
by (metis p2_gt_0 word_neq_0_conv)
lemma word_gt_a_gt_0:
"a < n \<Longrightarrow> (0 :: 'a::len word) < n"
apply (case_tac "n = 0")
apply clarsimp
apply (clarsimp simp: word_neq_0_conv)
done
lemma word_shift_nonzero:
"\<lbrakk> (x::'a::len word) \<le> 2 ^ m; m + n < LENGTH('a::len); x \<noteq> 0\<rbrakk>
\<Longrightarrow> x << n \<noteq> 0"
apply (simp only: word_neq_0_conv word_less_nat_alt
shiftl_t2n mod_0 unat_word_ariths
unat_power_lower word_le_nat_alt)
apply (subst mod_less)
apply (rule order_le_less_trans)
apply (erule mult_le_mono2)
apply (subst power_add[symmetric])
apply (rule power_strict_increasing)
apply simp
apply simp
apply simp
done
lemma word_power_less_1 [simp]:
"sz < LENGTH('a::len) \<Longrightarrow> (2::'a word) ^ sz - 1 < 2 ^ sz"
apply (simp add: word_less_nat_alt)
apply (subst unat_minus_one)
apply (simp add: word_unat.Rep_inject [symmetric])
apply simp
done
lemma nasty_split_lt:
"\<lbrakk> (x :: 'a:: len word) < 2 ^ (m - n); n \<le> m; m < LENGTH('a::len) \<rbrakk>
\<Longrightarrow> x * 2 ^ n + (2 ^ n - 1) \<le> 2 ^ m - 1"
apply (simp only: add_diff_eq)
apply (subst mult_1[symmetric], subst distrib_right[symmetric])
apply (rule word_sub_mono)
apply (rule order_trans)
apply (rule word_mult_le_mono1)
apply (rule inc_le)
apply assumption
apply (subst word_neq_0_conv[symmetric])
apply (rule power_not_zero)
apply simp
apply (subst unat_power_lower, simp)+
apply (subst power_add[symmetric])
apply (rule power_strict_increasing)
apply simp
apply simp
apply (subst power_add[symmetric])
apply simp
apply simp
apply (rule word_sub_1_le)
apply (subst mult.commute)
apply (subst shiftl_t2n[symmetric])
apply (rule word_shift_nonzero)
apply (erule inc_le)
apply simp
apply (unat_arith)
apply (drule word_power_less_1)
apply simp
done
lemma nasty_split_less:
"\<lbrakk>m \<le> n; n \<le> nm; nm < LENGTH('a::len); x < 2 ^ (nm - n)\<rbrakk>
\<Longrightarrow> (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm"
apply (simp only: word_less_sub_le[symmetric])
apply (rule order_trans [OF _ nasty_split_lt])
apply (rule word_plus_mono_right)
apply (rule word_sub_mono)
apply (simp add: word_le_nat_alt)
apply simp
apply (simp add: word_sub_1_le[OF power_not_zero])
apply (simp add: word_sub_1_le[OF power_not_zero])
apply (rule is_aligned_no_wrap')
apply (rule is_aligned_mult_triv2)
apply simp
apply (erule order_le_less_trans, simp)
apply simp+
done
lemma int_not_emptyD:
"A \<inter> B \<noteq> {} \<Longrightarrow> \<exists>x. x \<in> A \<and> x \<in> B"
by (erule contrapos_np, clarsimp simp: disjoint_iff_not_equal)
lemma unat_less_power:
fixes k :: "'a::len word"
assumes szv: "sz < LENGTH('a)"
and kv: "k < 2 ^ sz"
shows "unat k < 2 ^ sz"
using szv unat_mono [OF kv] by simp
lemma unat_mult_power_lem:
assumes kv: "k < 2 ^ (LENGTH('a::len) - sz)"
shows "unat (2 ^ sz * of_nat k :: (('a::len) word)) = 2 ^ sz * k"
proof cases
assume szv: "sz < LENGTH('a::len)"
show ?thesis
proof (cases "sz = 0")
case True
then show ?thesis using kv szv
by (simp add: unat_of_nat)
next
case False
then have sne: "0 < sz" ..
have uk: "unat (of_nat k :: 'a word) = k"
apply (subst unat_of_nat)
apply (simp add: nat_mod_eq less_trans[OF kv] sne)
done
show ?thesis using szv
apply (subst iffD1 [OF unat_mult_lem])
apply (simp add: uk nat_less_power_trans[OF kv order_less_imp_le [OF szv]])+
done
qed
next
assume "\<not> sz < LENGTH('a)"
with kv show ?thesis by (simp add: not_less power_overflow)
qed
lemma aligned_add_offset_no_wrap:
fixes off :: "('a::len) word"
and x :: "'a word"
assumes al: "is_aligned x sz"
and offv: "off < 2 ^ sz"
shows "unat x + unat off < 2 ^ LENGTH('a)"
proof cases
assume szv: "sz < LENGTH('a)"
from al obtain k where xv: "x = 2 ^ sz * (of_nat k)"
and kl: "k < 2 ^ (LENGTH('a) - sz)"
by (auto elim: is_alignedE)
show ?thesis using szv
apply (subst xv)
apply (subst unat_mult_power_lem[OF kl])
apply (subst mult.commute, rule nat_add_offset_less)
apply (rule less_le_trans[OF unat_mono[OF offv, simplified]])
apply (erule eq_imp_le[OF unat_power_lower])
apply (rule kl)
apply simp
done
next
assume "\<not> sz < LENGTH('a)"
with offv show ?thesis by (simp add: not_less power_overflow )
qed
lemma aligned_add_offset_mod:
fixes x :: "('a::len) word"
assumes al: "is_aligned x sz"
and kv: "k < 2 ^ sz"
shows "(x + k) mod 2 ^ sz = k"
proof cases
assume szv: "sz < LENGTH('a)"
have ux: "unat x + unat k < 2 ^ LENGTH('a)"
by (rule aligned_add_offset_no_wrap) fact+
show ?thesis using al szv
apply -
apply (erule is_alignedE)
apply (subst word_unat.Rep_inject [symmetric])
apply (subst unat_mod)
apply (subst iffD1 [OF unat_add_lem], rule ux)
apply simp
apply (subst unat_mult_power_lem, assumption+)
apply (simp)
apply (rule mod_less[OF less_le_trans[OF unat_mono], OF kv])
apply (erule eq_imp_le[OF unat_power_lower])
done
next
assume "\<not> sz < LENGTH('a)"
with al show ?thesis
by (simp add: not_less power_overflow is_aligned_mask mask_def
word_mod_by_0)
qed
lemma word_plus_mcs_4:
"\<lbrakk>v + x \<le> w + x; x \<le> v + x\<rbrakk> \<Longrightarrow> v \<le> (w::'a::len word)"
by uint_arith
lemma word_plus_mcs_3:
"\<lbrakk>v \<le> w; x \<le> w + x\<rbrakk> \<Longrightarrow> v + x \<le> w + (x::'a::len word)"
by unat_arith
lemma aligned_neq_into_no_overlap:
fixes x :: "'a::len word"
assumes neq: "x \<noteq> y"
and alx: "is_aligned x sz"
and aly: "is_aligned y sz"
shows "{x .. x + (2 ^ sz - 1)} \<inter> {y .. y + (2 ^ sz - 1)} = {}"
proof cases
assume szv: "sz < LENGTH('a)"
show ?thesis
proof (rule equals0I, clarsimp)
fix z
assume xb: "x \<le> z" and xt: "z \<le> x + (2 ^ sz - 1)"
and yb: "y \<le> z" and yt: "z \<le> y + (2 ^ sz - 1)"
have rl: "\<And>(p::'a word) k w. \<lbrakk>uint p + uint k < 2 ^ LENGTH('a); w = p + k; w \<le> p + (2 ^ sz - 1) \<rbrakk>
\<Longrightarrow> k < 2 ^ sz"
apply -
apply simp
apply (subst (asm) add.commute, subst (asm) add.commute, drule word_plus_mcs_4)
apply (subst add.commute, subst no_plus_overflow_uint_size)
apply (simp add: word_size_bl)
apply (erule iffD1 [OF word_less_sub_le[OF szv]])
done
from xb obtain kx where
kx: "z = x + kx" and
kxl: "uint x + uint kx < 2 ^ LENGTH('a)"
by (clarsimp dest!: word_le_exists')
from yb obtain ky where
ky: "z = y + ky" and
kyl: "uint y + uint ky < 2 ^ LENGTH('a)"
by (clarsimp dest!: word_le_exists')
have "x = y"
proof -
have "kx = z mod 2 ^ sz"
proof (subst kx, rule sym, rule aligned_add_offset_mod)
show "kx < 2 ^ sz" by (rule rl) fact+
qed fact+
also have "\<dots> = ky"
proof (subst ky, rule aligned_add_offset_mod)
show "ky < 2 ^ sz"
using kyl ky yt by (rule rl)
qed fact+
finally have kxky: "kx = ky" .
moreover have "x + kx = y + ky" by (simp add: kx [symmetric] ky [symmetric])
ultimately show ?thesis by simp
qed
then show False using neq by simp
qed
next
assume "\<not> sz < LENGTH('a)"
with neq alx aly
have False by (simp add: is_aligned_mask mask_def power_overflow)
then show ?thesis ..
qed
lemma less_two_pow_divD:
"\<lbrakk> (x :: nat) < 2 ^ n div 2 ^ m \<rbrakk>
\<Longrightarrow> n \<ge> m \<and> (x < 2 ^ (n - m))"
apply (rule context_conjI)
apply (rule ccontr)
apply (simp add: power_strict_increasing)
apply (simp add: power_sub)
done
lemma less_two_pow_divI:
"\<lbrakk> (x :: nat) < 2 ^ (n - m); m \<le> n \<rbrakk> \<Longrightarrow> x < 2 ^ n div 2 ^ m"
by (simp add: power_sub)
lemma word_less_two_pow_divI:
"\<lbrakk> (x :: 'a::len word) < 2 ^ (n - m); m \<le> n; n < LENGTH('a) \<rbrakk> \<Longrightarrow> x < 2 ^ n div 2 ^ m"
apply (simp add: word_less_nat_alt)
apply (subst unat_word_ariths)
apply (subst mod_less)
apply (rule order_le_less_trans [OF div_le_dividend])
apply (rule unat_lt2p)
apply (simp add: power_sub)
done
lemma word_less_two_pow_divD:
"\<lbrakk> (x :: 'a::len word) < 2 ^ n div 2 ^ m \<rbrakk>
\<Longrightarrow> n \<ge> m \<and> (x < 2 ^ (n - m))"
apply (cases "n < LENGTH('a)")
apply (cases "m < LENGTH('a)")
apply (simp add: word_less_nat_alt)
apply (subst(asm) unat_word_ariths)
apply (subst(asm) mod_less)
apply (rule order_le_less_trans [OF div_le_dividend])
apply (rule unat_lt2p)
apply (clarsimp dest!: less_two_pow_divD)
apply (simp add: power_overflow)
apply (simp add: word_div_def)
apply (simp add: power_overflow word_div_def)
done
lemma of_nat_less_two_pow_div_set:
"\<lbrakk> n < LENGTH('a) \<rbrakk> \<Longrightarrow>
{x. x < (2 ^ n div 2 ^ m :: 'a::len word)}
= of_nat ` {k. k < 2 ^ n div 2 ^ m}"
apply (simp add: image_def)
apply (safe dest!: word_less_two_pow_divD less_two_pow_divD
intro!: word_less_two_pow_divI)
apply (rule_tac x="unat x" in exI)
apply (simp add: power_sub[symmetric])
apply (subst unat_power_lower[symmetric, where 'a='a])
apply simp
apply (erule unat_mono)
apply (subst word_unat_power)
apply (rule of_nat_mono_maybe)
apply (rule power_strict_increasing)
apply simp
apply simp
apply assumption
done
lemma word_less_power_trans2:
fixes n :: "'a::len word"
shows "\<lbrakk>n < 2 ^ (m - k); k \<le> m; m < LENGTH('a)\<rbrakk> \<Longrightarrow> n * 2 ^ k < 2 ^ m"
by (subst field_simps, rule word_less_power_trans)
(* shadows the slightly weaker Word.nth_ucast *)
lemma nth_ucast:
"(ucast (w::'a::len0 word)::'b::len0 word) !! n =
(w !! n \<and> n < min (len_of TYPE('a)) (len_of TYPE('b)))"
by (simp add: ucast_def test_bit_bin word_ubin.eq_norm nth_bintr word_size)
(fast elim!: bin_nth_uint_imp)
lemma ucast_less:
"LENGTH('b) < LENGTH('a) \<Longrightarrow>
(ucast (x :: 'b :: len word) :: ('a :: len word)) < 2 ^ LENGTH('b)"
by (meson Word.nth_ucast bang_conj_lt le_def upper_bits_unset_is_l2p)
lemma ucast_range_less:
"LENGTH('a :: len) < LENGTH('b :: len) \<Longrightarrow>
range (ucast :: 'a word \<Rightarrow> 'b word) = {x. x < 2 ^ len_of TYPE ('a)}"
apply safe
apply (erule ucast_less)
apply (simp add: image_def)
apply (rule_tac x="ucast x" in exI)
by word_eqI_solve
lemma word_power_less_diff:
"\<lbrakk>2 ^ n * q < (2::'a::len word) ^ m; q < 2 ^ (LENGTH('a) - n)\<rbrakk> \<Longrightarrow> q < 2 ^ (m - n)"
apply (case_tac "m \<ge> LENGTH('a)")
apply (simp add: power_overflow)
apply (case_tac "n \<ge> LENGTH('a)")
apply (simp add: power_overflow)
apply (cases "n = 0")
apply simp
apply (subst word_less_nat_alt)
apply (subst unat_power_lower)
apply simp
apply (rule nat_power_less_diff)
apply (simp add: word_less_nat_alt)
apply (subst (asm) iffD1 [OF unat_mult_lem])
apply (simp add:nat_less_power_trans)
apply simp
done
lemmas word_diff_ls'' = word_diff_ls [where xa=x and x=x for x]
lemmas word_diff_ls' = word_diff_ls'' [simplified]
lemmas word_l_diffs' = word_l_diffs [where xa=x and x=x for x]
lemmas word_l_diffs = word_l_diffs' [simplified]
lemma is_aligned_diff:
fixes m :: "'a::len word"
assumes alm: "is_aligned m s1"
and aln: "is_aligned n s2"
and s2wb: "s2 < LENGTH('a)"
and nm: "m \<in> {n .. n + (2 ^ s2 - 1)}"
and s1s2: "s1 \<le> s2"
and s10: "0 < s1" (* Probably can be folded into the proof \<dots> *)
shows "\<exists>q. m - n = of_nat q * 2 ^ s1 \<and> q < 2 ^ (s2 - s1)"
proof -
have rl: "\<And>m s. \<lbrakk> m < 2 ^ (LENGTH('a) - s); s < LENGTH('a) \<rbrakk> \<Longrightarrow> unat ((2::'a word) ^ s * of_nat m) = 2 ^ s * m"
proof -
fix m :: nat and s
assume m: "m < 2 ^ (LENGTH('a) - s)" and s: "s < LENGTH('a)"
then have "unat ((of_nat m) :: 'a word) = m"
apply (subst unat_of_nat)
apply (subst mod_less)
apply (erule order_less_le_trans)
apply (rule power_increasing)
apply simp_all
done
then show "?thesis m s" using s m
apply (subst iffD1 [OF unat_mult_lem])
apply (simp add: nat_less_power_trans)+
done
qed
have s1wb: "s1 < LENGTH('a)" using s2wb s1s2 by simp
from alm obtain mq where mmq: "m = 2 ^ s1 * of_nat mq" and mq: "mq < 2 ^ (LENGTH('a) - s1)"
by (auto elim: is_alignedE simp: field_simps)
from aln obtain nq where nnq: "n = 2 ^ s2 * of_nat nq" and nq: "nq < 2 ^ (LENGTH('a) - s2)"
by (auto elim: is_alignedE simp: field_simps)
from s1s2 obtain sq where sq: "s2 = s1 + sq" by (auto simp: le_iff_add)
note us1 = rl [OF mq s1wb]
note us2 = rl [OF nq s2wb]
from nm have "n \<le> m" by clarsimp
then have "(2::'a word) ^ s2 * of_nat nq \<le> 2 ^ s1 * of_nat mq" using nnq mmq by simp
then have "2 ^ s2 * nq \<le> 2 ^ s1 * mq" using s1wb s2wb
by (simp add: word_le_nat_alt us1 us2)
then have nqmq: "2 ^ sq * nq \<le> mq" using sq by (simp add: power_add)
have "m - n = 2 ^ s1 * of_nat mq - 2 ^ s2 * of_nat nq" using mmq nnq by simp
also have "\<dots> = 2 ^ s1 * of_nat mq - 2 ^ s1 * 2 ^ sq * of_nat nq" using sq by (simp add: power_add)
also have "\<dots> = 2 ^ s1 * (of_nat mq - 2 ^ sq * of_nat nq)" by (simp add: field_simps)
also have "\<dots> = 2 ^ s1 * of_nat (mq - 2 ^ sq * nq)" using s1wb s2wb us1 us2 nqmq
by (simp add: word_unat_power)
finally have mn: "m - n = of_nat (mq - 2 ^ sq * nq) * 2 ^ s1" by simp
moreover
from nm have "m - n \<le> 2 ^ s2 - 1"
by - (rule word_diff_ls', (simp add: field_simps)+)
then have "(2::'a word) ^ s1 * of_nat (mq - 2 ^ sq * nq) < 2 ^ s2" using mn s2wb by (simp add: field_simps)
then have "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (s2 - s1)"
proof (rule word_power_less_diff)
have mm: "mq - 2 ^ sq * nq < 2 ^ (LENGTH('a) - s1)" using mq by simp
moreover from s10 have "LENGTH('a) - s1 < LENGTH('a)"
by (rule diff_less, simp)
ultimately show "of_nat (mq - 2 ^ sq * nq) < (2::'a word) ^ (LENGTH('a) - s1)"
apply (simp add: word_less_nat_alt)
apply (subst unat_of_nat)
apply (subst mod_less)
apply (erule order_less_le_trans)
apply simp+
done
qed
then have "mq - 2 ^ sq * nq < 2 ^ (s2 - s1)" using mq s2wb
apply (simp add: word_less_nat_alt)
apply (subst (asm) unat_of_nat)
apply (subst (asm) mod_less)
apply (rule order_le_less_trans)
apply (rule diff_le_self)
apply (erule order_less_le_trans)
apply simp
apply assumption
done
ultimately show ?thesis by auto
qed
lemma word_less_sub_1:
"x < (y :: 'a :: len word) \<Longrightarrow> x \<le> y - 1"
apply (erule udvd_minus_le')
apply (simp add: udvd_def)+
done
lemma word_sub_mono2:
"\<lbrakk> a + b \<le> c + d; c \<le> a; b \<le> a + b; d \<le> c + d \<rbrakk>
\<Longrightarrow> b \<le> (d :: 'a :: len word)"
apply (drule(1) word_sub_mono)
apply simp
apply simp
apply simp
done
lemma word_not_le:
"(\<not> x \<le> (y :: 'a :: len word)) = (y < x)"
by fastforce
lemma word_subset_less:
"\<lbrakk> {x .. x + r - 1} \<subseteq> {y .. y + s - 1};
x \<le> x + r - 1; y \<le> y + (s :: 'a :: len word) - 1;
s \<noteq> 0 \<rbrakk>
\<Longrightarrow> r \<le> s"
apply (frule subsetD[where c=x])
apply simp
apply (drule subsetD[where c="x + r - 1"])
apply simp
apply (clarsimp simp: add_diff_eq[symmetric])
apply (drule(1) word_sub_mono2)
apply (simp_all add: olen_add_eqv[symmetric])
apply (erule word_le_minus_cancel)
apply (rule ccontr)
apply (simp add: word_not_le)
done
lemma uint_power_lower:
"n < LENGTH('a) \<Longrightarrow> uint (2 ^ n :: 'a :: len word) = (2 ^ n :: int)"
by (rule uint_2p_alt)
lemma power_le_mono:
"\<lbrakk>2 ^ n \<le> (2::'a::len word) ^ m; n < LENGTH('a); m < LENGTH('a)\<rbrakk>
\<Longrightarrow> n \<le> m"
apply (clarsimp simp add: le_less)
apply safe
apply (simp add: word_less_nat_alt)
apply (simp only: uint_arith_simps(3))
apply (drule uint_power_lower)+
apply simp
done
lemma sublist_equal_part:
"prefix xs ys \<Longrightarrow> take (length xs) ys = xs"
by (clarsimp simp: prefix_def)
lemma two_power_eq:
"\<lbrakk>n < LENGTH('a); m < LENGTH('a)\<rbrakk>
\<Longrightarrow> ((2::'a::len word) ^ n = 2 ^ m) = (n = m)"
apply safe
apply (rule order_antisym)
apply (simp add: power_le_mono[where 'a='a])+
done
lemma prefix_length_less:
"strict_prefix xs ys \<Longrightarrow> length xs < length ys"
apply (clarsimp simp: strict_prefix_def)
apply (frule prefix_length_le)
apply (rule ccontr, simp)
apply (clarsimp simp: prefix_def)
done
lemmas take_less = take_strict_prefix
lemma not_prefix_longer:
"\<lbrakk> length xs > length ys \<rbrakk> \<Longrightarrow> \<not> prefix xs ys"
by (clarsimp dest!: prefix_length_le)
lemma of_bl_length:
"length xs < LENGTH('a) \<Longrightarrow> of_bl xs < (2 :: 'a::len word) ^ length xs"
by (simp add: of_bl_length_less)
lemma unat_of_nat_eq:
"x < 2 ^ LENGTH('a) \<Longrightarrow> unat (of_nat x ::'a::len word) = x"
by (rule unat_of_nat_len)
lemma unat_eq_of_nat:
"n < 2 ^ LENGTH('a) \<Longrightarrow> (unat (x :: 'a::len word) = n) = (x = of_nat n)"
by (subst unat_of_nat_eq[where x=n, symmetric], simp+)
lemma unat_less_helper:
"x < of_nat n \<Longrightarrow> unat x < n"
apply (simp add: word_less_nat_alt)
apply (erule order_less_le_trans)
apply (simp add: unat_of_nat)
done
lemma of_nat_0:
"\<lbrakk>of_nat n = (0::('a::len) word); n < 2 ^ len_of (TYPE('a))\<rbrakk> \<Longrightarrow> n = 0"
by (drule unat_of_nat_eq, simp)
lemma word_leq_le_minus_one:
"\<lbrakk> x \<le> y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x - 1 < (y :: 'a :: len word)"
apply (simp add: word_less_nat_alt word_le_nat_alt)
apply (subst unat_minus_one)
apply assumption
apply (cases "unat x")
apply (simp add: unat_eq_zero)
apply arith
done
lemma of_nat_inj:
"\<lbrakk>x < 2 ^ LENGTH('a); y < 2 ^ LENGTH('a)\<rbrakk> \<Longrightarrow>
(of_nat x = (of_nat y :: 'a :: len word)) = (x = y)"
by (simp add: word_unat.norm_eq_iff [symmetric])
lemma map_prefixI:
"prefix xs ys \<Longrightarrow> prefix (map f xs) (map f ys)"
by (clarsimp simp: prefix_def)
lemma if_Some_None_eq_None:
"((if P then Some v else None) = None) = (\<not> P)"
by simp
lemma CollectPairFalse [iff]:
"{(a,b). False} = {}"
by (simp add: split_def)
lemma if_conj_dist:
"((if b then w else x) \<and> (if b then y else z) \<and> X) =
((if b then w \<and> y else x \<and> z) \<and> X)"
by simp
lemma if_P_True1:
"Q \<Longrightarrow> (if P then True else Q)"
by simp
lemma if_P_True2:
"Q \<Longrightarrow> (if P then Q else True)"
by simp
lemma list_all2_induct [consumes 1, case_names Nil Cons]:
assumes lall: "list_all2 Q xs ys"
and nilr: "P [] []"
and consr: "\<And>x xs y ys. \<lbrakk>list_all2 Q xs ys; Q x y; P xs ys\<rbrakk> \<Longrightarrow> P (x # xs) (y # ys)"
shows "P xs ys"
using lall
proof (induct rule: list_induct2 [OF list_all2_lengthD [OF lall]])
case 1 then show ?case by auto fact+
next
case (2 x xs y ys)
show ?case
proof (rule consr)
from "2.prems" show "list_all2 Q xs ys" and "Q x y" by simp_all
then show "P xs ys" by (intro "2.hyps")
qed
qed
lemma list_all2_induct_suffixeq [consumes 1, case_names Nil Cons]:
assumes lall: "list_all2 Q as bs"
and nilr: "P [] []"
and consr: "\<And>x xs y ys.
\<lbrakk>list_all2 Q xs ys; Q x y; P xs ys; suffix (x # xs) as; suffix (y # ys) bs\<rbrakk>
\<Longrightarrow> P (x # xs) (y # ys)"
shows "P as bs"
proof -
define as' where "as' == as"
define bs' where "bs' == bs"
have "suffix as as' \<and> suffix bs bs'" unfolding as'_def bs'_def by simp
then show ?thesis using lall
proof (induct rule: list_induct2 [OF list_all2_lengthD [OF lall]])
case 1 show ?case by fact
next
case (2 x xs y ys)
show ?case
proof (rule consr)
from "2.prems" show "list_all2 Q xs ys" and "Q x y" by simp_all
then show "P xs ys" using "2.hyps" "2.prems" by (auto dest: suffix_ConsD)
from "2.prems" show "suffix (x # xs) as" and "suffix (y # ys) bs"
by (auto simp: as'_def bs'_def)
qed
qed
qed
lemma upto_enum_step_shift:
"\<lbrakk> is_aligned p n \<rbrakk> \<Longrightarrow>
([p , p + 2 ^ m .e. p + 2 ^ n - 1])
= map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]"
apply (erule is_aligned_get_word_bits)
prefer 2
apply (simp add: map_idI)
apply (clarsimp simp: upto_enum_step_def)
apply (frule is_aligned_no_overflow)
apply (simp add: linorder_not_le [symmetric])
done
lemma upto_enum_step_shift_red:
"\<lbrakk> is_aligned p sz; sz < len_of (TYPE('a)); us \<le> sz \<rbrakk>
\<Longrightarrow> [p :: 'a :: len word, p + 2 ^ us .e. p + 2 ^ sz - 1]
= map (\<lambda>x. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]"
apply (subst upto_enum_step_shift, assumption)
apply (simp add: upto_enum_step_red)
done
lemma div_to_mult_word_lt:
"\<lbrakk> (x :: 'a :: len word) \<le> y div z \<rbrakk> \<Longrightarrow> x * z \<le> y"
apply (cases "z = 0")
apply simp
apply (simp add: word_neq_0_conv)
apply (rule order_trans)
apply (erule(1) word_mult_le_mono1)
apply (simp add: unat_div)
apply (rule order_le_less_trans [OF div_mult_le])
apply simp
apply (rule word_div_mult_le)
done
lemma upto_enum_step_subset:
"set [x, y .e. z] \<subseteq> {x .. z}"
apply (clarsimp simp: upto_enum_step_def linorder_not_less)
apply (drule div_to_mult_word_lt)
apply (rule conjI)
apply (erule word_random[rotated])
apply simp
apply (rule order_trans)
apply (erule word_plus_mono_right)
apply simp
apply simp
done
lemma shiftr_less_t2n':
"\<lbrakk> x && mask (n + m) = x; m < LENGTH('a) \<rbrakk> \<Longrightarrow> x >> n < 2 ^ m" for x :: "'a :: len word"
apply (simp add: word_size mask_eq_iff_w2p[symmetric])
apply word_eqI
apply (erule_tac x="na + n" in allE)
apply fastforce
done
lemma shiftr_less_t2n:
"x < 2 ^ (n + m) \<Longrightarrow> x >> n < 2 ^ m" for x :: "'a :: len word"
apply (rule shiftr_less_t2n')
apply (erule less_mask_eq)
apply (rule ccontr)
apply (simp add: not_less)
apply (subst (asm) p2_eq_0[symmetric])
apply (simp add: power_add)
done
lemma shiftr_eq_0:
"n \<ge> LENGTH('a) \<Longrightarrow> ((w::'a::len word) >> n) = 0"
apply (cut_tac shiftr_less_t2n'[of w n 0], simp)
apply (simp add: mask_eq_iff)
apply (simp add: lt2p_lem)
apply simp
done
lemma shiftr_not_mask_0:
"n+m \<ge> LENGTH('a :: len) \<Longrightarrow> ((w::'a::len word) >> n) && ~~ mask m = 0"
apply (simp add: and_not_mask shiftr_less_t2n shiftr_shiftr)
apply (subgoal_tac "w >> n + m = 0", simp)
apply (simp add: le_mask_iff[symmetric] mask_def le_def)
apply (subst (asm) p2_gt_0[symmetric])
apply (simp add: power_add not_less)
done
lemma shiftl_less_t2n:
fixes x :: "'a :: len word"
shows "\<lbrakk> x < (2 ^ (m - n)); m < LENGTH('a) \<rbrakk> \<Longrightarrow> (x << n) < 2 ^ m"
apply (simp add: word_size mask_eq_iff_w2p[symmetric])
apply word_eqI
apply (erule_tac x="na - n" in allE)
apply auto
done
lemma shiftl_less_t2n':
"(x::'a::len word) < 2 ^ m \<Longrightarrow> m+n < LENGTH('a) \<Longrightarrow> x << n < 2 ^ (m + n)"
by (rule shiftl_less_t2n) simp_all
lemma ucast_ucast_mask:
"(ucast :: 'a :: len word \<Rightarrow> 'b :: len word) (ucast x) = x && mask (len_of TYPE ('a))"
by word_eqI
lemma ucast_ucast_len:
"\<lbrakk> x < 2 ^ LENGTH('b) \<rbrakk> \<Longrightarrow> ucast (ucast x::'b::len word) = (x::'a::len word)"
apply (subst ucast_ucast_mask)
apply (erule less_mask_eq)
done
lemma ucast_ucast_id:
"len_of TYPE('a) < len_of TYPE('b) \<Longrightarrow> ucast (ucast (x::'a::len word)::'b::len word) = x"
by (auto intro: ucast_up_ucast_id simp: is_up_def source_size_def target_size_def word_size)
lemma unat_ucast:
"unat (ucast x :: ('a :: len0) word) = unat x mod 2 ^ (LENGTH('a))"
apply (simp add: unat_def ucast_def)
apply (subst word_uint.eq_norm)
apply (subst nat_mod_distrib)
apply simp
apply simp
apply (subst nat_power_eq)
apply simp
apply simp
done
lemma ucast_less_ucast:
"LENGTH('a) < LENGTH('b) \<Longrightarrow>
(ucast x < ((ucast (y :: 'a::len word)) :: 'b::len word)) = (x < y)"
apply (simp add: word_less_nat_alt unat_ucast)
apply (subst mod_less)
apply(rule less_le_trans[OF unat_lt2p], simp)
apply (subst mod_less)
apply(rule less_le_trans[OF unat_lt2p], simp)
apply simp
done
lemma sints_subset:
"m \<le> n \<Longrightarrow> sints m \<subseteq> sints n"
apply (simp add: sints_num)
apply clarsimp
apply (rule conjI)
apply (erule order_trans[rotated])
apply simp
apply (erule order_less_le_trans)
apply simp
done
lemma up_scast_inj:
"\<lbrakk> scast x = (scast y :: 'b :: len word); size x \<le> LENGTH('b) \<rbrakk>
\<Longrightarrow> x = y"
apply (simp add: scast_def)
apply (subst(asm) word_sint.Abs_inject)
apply (erule subsetD [OF sints_subset])
apply (simp add: word_size)
apply (erule subsetD [OF sints_subset])
apply (simp add: word_size)
apply simp
done
lemma up_scast_inj_eq:
"LENGTH('a) \<le> len_of TYPE ('b) \<Longrightarrow>
(scast x = (scast y::'b::len word)) = (x = (y::'a::len word))"
by (fastforce dest: up_scast_inj simp: word_size)
lemma nth_bounded:
"\<lbrakk>(x :: 'a :: len word) !! n; x < 2 ^ m; m \<le> len_of TYPE ('a)\<rbrakk> \<Longrightarrow> n < m"
apply (frule test_bit_size)
apply (clarsimp simp: test_bit_bl word_size)
apply (simp add: nth_rev)
apply (subst(asm) is_aligned_add_conv[OF is_aligned_0',
simplified add_0_left, rotated])
apply assumption+
apply (simp only: to_bl_0)
apply (simp add: nth_append split: if_split_asm)
done
lemma is_aligned_add_or:
"\<lbrakk>is_aligned p n; d < 2 ^ n\<rbrakk> \<Longrightarrow> p + d = p || d"
by (rule word_plus_and_or_coroll, word_eqI) blast
lemma two_power_increasing:
"\<lbrakk> n \<le> m; m < LENGTH('a) \<rbrakk> \<Longrightarrow> (2 :: 'a :: len word) ^ n \<le> 2 ^ m"
by (simp add: word_le_nat_alt)
lemma is_aligned_add_less_t2n:
"\<lbrakk>is_aligned (p::'a::len word) n; d < 2^n; n \<le> m; p < 2^m\<rbrakk> \<Longrightarrow> p + d < 2^m"
apply (case_tac "m < LENGTH('a)")
apply (subst mask_eq_iff_w2p[symmetric])
apply (simp add: word_size)
apply (simp add: is_aligned_add_or word_ao_dist less_mask_eq)
apply (subst less_mask_eq)
apply (erule order_less_le_trans)
apply (erule(1) two_power_increasing)
apply simp
apply (simp add: power_overflow)
done
lemma aligned_offset_non_zero:
"\<lbrakk> is_aligned x n; y < 2 ^ n; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x + y \<noteq> 0"
apply (cases "y = 0")
apply simp
apply (subst word_neq_0_conv)
apply (subst gt0_iff_gem1)
apply (erule is_aligned_get_word_bits)
apply (subst field_simps[symmetric], subst plus_le_left_cancel_nowrap)
apply (rule is_aligned_no_wrap')
apply simp
apply (rule word_leq_le_minus_one)
apply simp
apply assumption
apply (erule (1) is_aligned_no_wrap')
apply (simp add: gt0_iff_gem1 [symmetric] word_neq_0_conv)
apply simp
done
lemmas mask_inner_mask = mask_eqs(1)
lemma mask_add_aligned:
"is_aligned p n \<Longrightarrow> (p + q) && mask n = q && mask n"
apply (simp add: is_aligned_mask)
apply (subst mask_inner_mask [symmetric])
apply simp
done
lemma take_prefix:
"(take (length xs) ys = xs) = prefix xs ys"
proof (induct xs arbitrary: ys)
case Nil then show ?case by simp
next
case Cons then show ?case by (cases ys) auto
qed
lemma cart_singleton_empty:
"(S \<times> {e} = {}) = (S = {})"
by blast
lemma word_div_1:
"(n :: 'a :: len word) div 1 = n"
by (simp add: word_div_def)
lemma word_minus_one_le:
"-1 \<le> (x :: 'a :: len word) = (x = -1)"
apply (insert word_n1_ge[where y=x])
apply safe
apply (erule(1) order_antisym)
done
lemma mask_out_sub_mask:
"(x && ~~ mask n) = x - (x && mask n)"
by (simp add: field_simps word_plus_and_or_coroll2)
lemma is_aligned_addD1:
assumes al1: "is_aligned (x + y) n"
and al2: "is_aligned (x::'a::len word) n"
shows "is_aligned y n"
using al2
proof (rule is_aligned_get_word_bits)
assume "x = 0" then show ?thesis using al1 by simp
next
assume nv: "n < LENGTH('a)"
from al1 obtain q1
where xy: "x + y = 2 ^ n * of_nat q1" and "q1 < 2 ^ (LENGTH('a) - n)"
by (rule is_alignedE)
moreover from al2 obtain q2
where x: "x = 2 ^ n * of_nat q2" and "q2 < 2 ^ (LENGTH('a) - n)"
by (rule is_alignedE)
ultimately have "y = 2 ^ n * (of_nat q1 - of_nat q2)"
by (simp add: field_simps)
then show ?thesis using nv by (simp add: is_aligned_mult_triv1)
qed
lemmas is_aligned_addD2 =
is_aligned_addD1[OF subst[OF add.commute,
of "%x. is_aligned x n" for n]]
lemma is_aligned_add:
"\<lbrakk>is_aligned p n; is_aligned q n\<rbrakk> \<Longrightarrow> is_aligned (p + q) n"
by (simp add: is_aligned_mask mask_add_aligned)
lemma word_le_add:
fixes x :: "'a :: len word"
shows "x \<le> y \<Longrightarrow> \<exists>n. y = x + of_nat n"
by (rule exI [where x = "unat (y - x)"]) simp
lemma word_plus_mcs_4':
fixes x :: "'a :: len word"
shows "\<lbrakk>x + v \<le> x + w; x \<le> x + v\<rbrakk> \<Longrightarrow> v \<le> w"
apply (rule word_plus_mcs_4)
apply (simp add: add.commute)
apply (simp add: add.commute)
done
lemma shiftl_mask_is_0[simp]:
"(x << n) && mask n = 0"
apply (rule iffD1 [OF is_aligned_mask])
apply (rule is_aligned_shiftl_self)
done
definition
sum_map :: "('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> 'a + 'c \<Rightarrow> 'b + 'd" where
"sum_map f g x \<equiv> case x of Inl v \<Rightarrow> Inl (f v) | Inr v' \<Rightarrow> Inr (g v')"
lemma sum_map_simps[simp]:
"sum_map f g (Inl v) = Inl (f v)"
"sum_map f g (Inr w) = Inr (g w)"
by (simp add: sum_map_def)+
lemma if_and_helper:
"(If x v v') && v'' = If x (v && v'') (v' && v'')"
by (rule if_distrib)
lemma unat_Suc2:
fixes n :: "'a :: len word"
shows
"n \<noteq> -1 \<Longrightarrow> unat (n + 1) = Suc (unat n)"
apply (subst add.commute, rule unatSuc)
apply (subst eq_diff_eq[symmetric], simp add: minus_equation_iff)
done
lemmas word_unat_Rep_inject1 = word_unat.Rep_inject[where y=1]
lemmas unat_eq_1 = unat_eq_0 word_unat_Rep_inject1[simplified]
lemma rshift_sub_mask_eq:
"(a >> (size a - b)) && mask b = a >> (size a - b)"
using shiftl_shiftr2[where a=a and b=0 and c="size a - b"]
apply (cases "b < size a")
apply simp
apply (simp add: linorder_not_less mask_def word_size
p2_eq_0[THEN iffD2])
done
lemma shiftl_shiftr3:
"b \<le> c \<Longrightarrow> a << b >> c = (a >> c - b) && mask (size a - c)"
apply (cases "b = c")
apply (simp add: shiftl_shiftr1)
apply (simp add: shiftl_shiftr2)
done
lemma and_mask_shiftr_comm:
"m\<le>size w \<Longrightarrow> (w && mask m) >> n = (w >> n) && mask (m-n)"
by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3)
lemma and_mask_shiftl_comm:
"m+n \<le> size w \<Longrightarrow> (w && mask m) << n = (w << n) && mask (m+n)"
by (simp add: and_mask word_size shiftl_shiftl) (simp add: shiftl_shiftr1)
lemma le_mask_shiftl_le_mask: "s = m + n \<Longrightarrow> x \<le> mask n \<Longrightarrow> x << m \<le> mask s"
by (simp add: le_mask_iff shiftl_shiftr3)
lemma and_not_mask_twice:
"(w && ~~ mask n) && ~~ mask m = w && ~~ mask (max m n)"
apply (simp add: and_not_mask)
apply (case_tac "n<m";
simp add: shiftl_shiftr2 shiftl_shiftr1 not_less max_def shiftr_shiftr shiftl_shiftl)
apply (cut_tac and_mask_shiftr_comm [where w=w and m="size w" and n=m, simplified,symmetric])
apply (simp add: word_size mask_def)
apply (cut_tac and_mask_shiftr_comm [where w=w and m="size w" and n=n, simplified,symmetric])
apply (simp add: word_size mask_def)
done
lemma word_less_cases:
"x < y \<Longrightarrow> x = y - 1 \<or> x < y - (1 ::'a::len word)"
apply (drule word_less_sub_1)
apply (drule order_le_imp_less_or_eq)
apply auto
done
lemma eq_eqI:
"a = b \<Longrightarrow> (a = x) = (b = x)"
by simp
lemma mask_and_mask:
"mask a && mask b = mask (min a b)"
by word_eqI
lemma mask_eq_0_eq_x:
"(x && w = 0) = (x && ~~ w = x)"
using word_plus_and_or_coroll2[where x=x and w=w]
by auto
lemma mask_eq_x_eq_0:
"(x && w = x) = (x && ~~ w = 0)"
using word_plus_and_or_coroll2[where x=x and w=w]
by auto
definition
"limited_and (x :: 'a :: len word) y = (x && y = x)"
lemma limited_and_eq_0:
"\<lbrakk> limited_and x z; y && ~~ z = y \<rbrakk> \<Longrightarrow> x && y = 0"
unfolding limited_and_def
apply (subst arg_cong2[where f="(&&)"])
apply (erule sym)+
apply (simp(no_asm) add: word_bw_assocs word_bw_comms word_bw_lcs)
done
lemma limited_and_eq_id:
"\<lbrakk> limited_and x z; y && z = z \<rbrakk> \<Longrightarrow> x && y = x"
unfolding limited_and_def
by (erule subst, fastforce simp: word_bw_lcs word_bw_assocs word_bw_comms)
lemma lshift_limited_and:
"limited_and x z \<Longrightarrow> limited_and (x << n) (z << n)"
unfolding limited_and_def
by (simp add: shiftl_over_and_dist[symmetric])
lemma rshift_limited_and:
"limited_and x z \<Longrightarrow> limited_and (x >> n) (z >> n)"
unfolding limited_and_def
by (simp add: shiftr_over_and_dist[symmetric])
lemmas limited_and_simps1 = limited_and_eq_0 limited_and_eq_id
lemmas is_aligned_limited_and
= is_aligned_neg_mask_eq[unfolded mask_def, folded limited_and_def]
lemma compl_of_1: "~~ 1 = (-2 :: 'a :: len word)"
by simp
lemmas limited_and_simps = limited_and_simps1
limited_and_simps1[OF is_aligned_limited_and]
limited_and_simps1[OF lshift_limited_and]
limited_and_simps1[OF rshift_limited_and]
limited_and_simps1[OF rshift_limited_and, OF is_aligned_limited_and]
compl_of_1 shiftl_shiftr1[unfolded word_size mask_def]
shiftl_shiftr2[unfolded word_size mask_def]
lemma split_word_eq_on_mask:
"(x = y) = (x && m = y && m \<and> x && ~~ m = y && ~~ m)"
by safe word_eqI_solve
lemma map2_Cons_2_3:
"(map2 f xs (y # ys) = (z # zs)) = (\<exists>x xs'. xs = x # xs' \<and> f x y = z \<and> map2 f xs' ys = zs)"
by (case_tac xs, simp_all)
lemma map2_xor_replicate_False:
"map2 (\<lambda>x y. x \<longleftrightarrow> \<not> y) xs (replicate n False) = take n xs"
apply (induct xs arbitrary: n, simp)
apply (case_tac n; simp)
done
lemma word_and_1_shiftl:
"x && (1 << n) = (if x !! n then (1 << n) else 0)" for x :: "'a :: len word"
by word_eqI_solve
lemmas word_and_1_shiftls'
= word_and_1_shiftl[where n=0]
word_and_1_shiftl[where n=1]
word_and_1_shiftl[where n=2]
lemmas word_and_1_shiftls = word_and_1_shiftls' [simplified]
lemma word_and_mask_shiftl:
"x && (mask n << m) = ((x >> m) && mask n) << m"
by word_eqI_solve
lemma plus_Collect_helper:
"(+) x ` {xa. P (xa :: 'a :: len word)} = {xa. P (xa - x)}"
by (fastforce simp add: image_def)
lemma plus_Collect_helper2:
"(+) (- x) ` {xa. P (xa :: 'a :: len word)} = {xa. P (x + xa)}"
using plus_Collect_helper [of "- x" P] by (simp add: ac_simps)
lemma word_FF_is_mask:
"0xFF = mask 8"
by (simp add: mask_def)
lemma word_1FF_is_mask:
"0x1FF = mask 9"
by (simp add: mask_def)
lemma ucast_of_nat_small:
"x < 2 ^ LENGTH('a) \<Longrightarrow> ucast (of_nat x :: 'a :: len word) = (of_nat x :: 'b :: len word)"
apply (rule sym, subst word_unat.inverse_norm)
apply (simp add: ucast_def word_of_int[symmetric]
of_nat_nat[symmetric] unat_def[symmetric])
apply (simp add: unat_of_nat)
done
lemma word_le_make_less:
fixes x :: "'a :: len word"
shows "y \<noteq> -1 \<Longrightarrow> (x \<le> y) = (x < (y + 1))"
apply safe
apply (erule plus_one_helper2)
apply (simp add: eq_diff_eq[symmetric])
done
lemmas finite_word = finite [where 'a="'a::len word"]
lemma word_to_1_set:
"{0 ..< (1 :: 'a :: len word)} = {0}"
by fastforce
lemma range_subset_eq2:
"{a :: 'a :: len word .. b} \<noteq> {} \<Longrightarrow> ({a .. b} \<subseteq> {c .. d}) = (c \<le> a \<and> b \<le> d)"
by simp
lemma word_leq_minus_one_le:
fixes x :: "'a::len word"
shows "\<lbrakk>y \<noteq> 0; x \<le> y - 1 \<rbrakk> \<Longrightarrow> x < y"
using le_m1_iff_lt word_neq_0_conv by blast
lemma word_count_from_top:
"n \<noteq> 0 \<Longrightarrow> {0 ..< n :: 'a :: len word} = {0 ..< n - 1} \<union> {n - 1}"
apply (rule set_eqI, rule iffI)
apply simp
apply (drule minus_one_helper3)
apply (rule disjCI)
apply simp
apply simp
apply (erule word_leq_minus_one_le)
apply fastforce
done
lemma word_minus_one_le_leq:
"\<lbrakk> x - 1 < y \<rbrakk> \<Longrightarrow> x \<le> (y :: 'a :: len word)"
apply (cases "x = 0")
apply simp
apply (simp add: word_less_nat_alt word_le_nat_alt)
apply (subst(asm) unat_minus_one)
apply (simp add: word_less_nat_alt)
apply (cases "unat x")
apply (simp add: unat_eq_zero)
apply arith
done
lemma mod_mod_power:
fixes k :: nat
shows "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ (min m n)"
proof (cases "m \<le> n")
case True
then have "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ m"
apply -
apply (subst mod_less [where n = "2 ^ n"])
apply (rule order_less_le_trans [OF mod_less_divisor])
apply simp+
done
also have "\<dots> = k mod 2 ^ (min m n)" using True by simp
finally show ?thesis .
next
case False
then have "n < m" by simp
then obtain d where md: "m = n + d"
by (auto dest: less_imp_add_positive)
then have "k mod 2 ^ m = 2 ^ n * (k div 2 ^ n mod 2 ^ d) + k mod 2 ^ n"
by (simp add: mod_mult2_eq power_add)
then have "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ n"
by (simp add: mod_add_left_eq)
then show ?thesis using False
by simp
qed
lemma word_div_less:
fixes m :: "'a :: len word"
shows "m < n \<Longrightarrow> m div n = 0"
apply (rule word_unat.Rep_eqD)
apply (simp add: word_less_nat_alt unat_div)
done
lemma word_must_wrap:
"\<lbrakk> x \<le> n - 1; n \<le> x \<rbrakk> \<Longrightarrow> n = (0 :: 'a :: len word)"
apply (rule ccontr)
apply (drule(1) order_trans)
apply (drule word_sub_1_le)
apply (drule(1) order_antisym)
apply simp
done
lemma range_subset_card:
"\<lbrakk> {a :: 'a :: len word .. b} \<subseteq> {c .. d}; b \<ge> a \<rbrakk>
\<Longrightarrow> d \<ge> c \<and> d - c \<ge> b - a"
apply (subgoal_tac "a \<in> {a .. b}")
apply (frule(1) range_subset_lower)
apply (frule(1) range_subset_upper)
apply (rule context_conjI, simp)
apply (rule word_sub_mono, assumption+)
apply (erule word_sub_le)
apply (erule word_sub_le)
apply simp
done
lemma less_1_simp:
"n - 1 < m = (n \<le> (m :: 'a :: len word) \<and> n \<noteq> 0)"
by unat_arith
lemma alignUp_div_helper:
fixes a :: "'a::len word"
assumes kv: "k < 2 ^ (LENGTH('a) - n)"
and xk: "x = 2 ^ n * of_nat k"
and le: "a \<le> x"
and sz: "n < LENGTH('a)"
and anz: "a mod 2 ^ n \<noteq> 0"
shows "a div 2 ^ n < of_nat k"
proof -
have kn: "unat (of_nat k :: 'a word) * unat ((2::'a word) ^ n)
< 2 ^ LENGTH('a)"
using xk kv sz
apply (subst unat_of_nat_eq)
apply (erule order_less_le_trans)
apply simp
apply (subst unat_power_lower, simp)
apply (subst mult.commute)
apply (rule nat_less_power_trans)
apply simp
apply simp
done
have "unat a div 2 ^ n * 2 ^ n \<noteq> unat a"
proof -
have "unat a = unat a div 2 ^ n * 2 ^ n + unat a mod 2 ^ n"
by (simp add: div_mult_mod_eq)
also have "\<dots> \<noteq> unat a div 2 ^ n * 2 ^ n" using sz anz
by (simp add: unat_arith_simps)
finally show ?thesis ..
qed
then have "a div 2 ^ n * 2 ^ n < a" using sz anz
apply (subst word_less_nat_alt)
apply (subst unat_word_ariths)
apply (subst unat_div)
apply simp
apply (rule order_le_less_trans [OF mod_less_eq_dividend])
apply (erule order_le_neq_trans [OF div_mult_le])
done
also from xk le have "\<dots> \<le> of_nat k * 2 ^ n" by (simp add: field_simps)
finally show ?thesis using sz kv
apply -
apply (erule word_mult_less_dest [OF _ _ kn])
apply (simp add: unat_div)
apply (rule order_le_less_trans [OF div_mult_le])
apply (rule unat_lt2p)
done
qed
lemma nat_mod_power_lem:
fixes a :: nat
shows "1 < a \<Longrightarrow> a ^ n mod a ^ m = (if m \<le> n then 0 else a ^ n)"
apply (clarsimp)
apply (clarsimp simp add: le_iff_add power_add)
done
lemma power_mod_div:
fixes x :: "nat"
shows "x mod 2 ^ n div 2 ^ m = x div 2 ^ m mod 2 ^ (n - m)" (is "?LHS = ?RHS")
proof (cases "n \<le> m")
case True
then have "?LHS = 0"
apply -
apply (rule div_less)
apply (rule order_less_le_trans [OF mod_less_divisor])
apply simp
apply simp
done
also have "\<dots> = ?RHS" using True
by simp
finally show ?thesis .
next
case False
then have lt: "m < n" by simp
then obtain q where nv: "n = m + q" and "0 < q"
by (auto dest: less_imp_Suc_add)
then have "x mod 2 ^ n = 2 ^ m * (x div 2 ^ m mod 2 ^ q) + x mod 2 ^ m"
by (simp add: power_add mod_mult2_eq)
then have "?LHS = x div 2 ^ m mod 2 ^ q"
by (simp add: div_add1_eq)
also have "\<dots> = ?RHS" using nv
by simp
finally show ?thesis .
qed
lemma word_power_mod_div:
fixes x :: "'a::len word"
shows "\<lbrakk> n < LENGTH('a); m < LENGTH('a)\<rbrakk>
\<Longrightarrow> x mod 2 ^ n div 2 ^ m = x div 2 ^ m mod 2 ^ (n - m)"
apply (simp add: word_arith_nat_div unat_mod power_mod_div)
apply (subst unat_arith_simps(3))
apply (subst unat_mod)
apply (subst unat_of_nat)+
apply (simp add: mod_mod_power min.commute)
done
lemma word_range_minus_1':
fixes a :: "'a :: len word"
shows "a \<noteq> 0 \<Longrightarrow> {a - 1<..b} = {a..b}"
by (simp add: greaterThanAtMost_def atLeastAtMost_def greaterThan_def atLeast_def less_1_simp)
lemma word_range_minus_1:
fixes a :: "'a :: len word"
shows "b \<noteq> 0 \<Longrightarrow> {a..b - 1} = {a..<b}"
apply (simp add: atLeastLessThan_def atLeastAtMost_def atMost_def lessThan_def)
apply (rule arg_cong [where f = "\<lambda>x. {a..} \<inter> x"])
apply rule
apply clarsimp
apply (erule contrapos_pp)
apply (simp add: linorder_not_less linorder_not_le word_must_wrap)
apply (clarsimp)
apply (drule minus_one_helper3)
apply (auto simp: word_less_sub_1)
done
lemma ucast_nat_def:
"of_nat (unat x) = (ucast :: 'a :: len word \<Rightarrow> 'b :: len word) x"
by (simp add: ucast_def word_of_int_nat unat_def)
lemmas if_fun_split = if_apply_def2
lemma i_hate_words_helper:
"i \<le> (j - k :: nat) \<Longrightarrow> i \<le> j"
by simp
lemma i_hate_words:
"unat (a :: 'a word) \<le> unat (b :: 'a :: len word) - Suc 0
\<Longrightarrow> a \<noteq> -1"
apply (frule i_hate_words_helper)
apply (subst(asm) word_le_nat_alt[symmetric])
apply (clarsimp simp only: word_minus_one_le)
apply (simp only: linorder_not_less[symmetric])
apply (erule notE)
apply (rule diff_Suc_less)
apply (subst neq0_conv[symmetric])
apply (subst unat_eq_0)
apply (rule notI, drule arg_cong[where f="(+) 1"])
apply simp
done
lemma overflow_plus_one_self:
"(1 + p \<le> p) = (p = (-1 :: 'a :: len word))"
apply (safe, simp_all)
apply (rule ccontr)
apply (drule plus_one_helper2)
apply (rule notI)
apply (drule arg_cong[where f="\<lambda>x. x - 1"])
apply simp
apply (simp add: field_simps)
done
lemma plus_1_less:
"(x + 1 \<le> (x :: 'a :: len word)) = (x = -1)"
apply (rule iffI)
apply (rule ccontr)
apply (cut_tac plus_one_helper2[where x=x, OF order_refl])
apply simp
apply clarsimp
apply (drule arg_cong[where f="\<lambda>x. x - 1"])
apply simp
apply simp
done
lemma pos_mult_pos_ge:
"[|x > (0::int); n>=0 |] ==> n * x >= n*1"
apply (simp only: mult_left_mono)
done
lemma If_eq_obvious:
"x \<noteq> z \<Longrightarrow> ((if P then x else y) = z) = (\<not> P \<and> y = z)"
by simp
lemma Some_to_the:
"v = Some x \<Longrightarrow> x = the v"
by simp
lemma dom_if_Some:
"dom (\<lambda>x. if P x then Some (f x) else g x) = {x. P x} \<union> dom g"
by fastforce
lemma dom_insert_absorb:
"x \<in> dom f \<Longrightarrow> insert x (dom f) = dom f" by auto
lemma emptyE2:
"\<lbrakk> S = {}; x \<in> S \<rbrakk> \<Longrightarrow> P"
by simp
lemma mod_div_equality_div_eq:
"a div b * b = (a - (a mod b) :: int)"
by (simp add: field_simps)
lemma zmod_helper:
"n mod m = k \<Longrightarrow> ((n :: int) + a) mod m = (k + a) mod m"
by (metis add.commute mod_add_right_eq)
lemma int_div_sub_1:
"\<lbrakk> m \<ge> 1 \<rbrakk> \<Longrightarrow> (n - (1 :: int)) div m = (if m dvd n then (n div m) - 1 else n div m)"
apply (subgoal_tac "m = 0 \<or> (n - (1 :: int)) div m = (if m dvd n then (n div m) - 1 else n div m)")
apply fastforce
apply (subst mult_cancel_right[symmetric])
apply (simp only: left_diff_distrib split: if_split)
apply (simp only: mod_div_equality_div_eq)
apply (clarsimp simp: field_simps)
apply (clarsimp simp: dvd_eq_mod_eq_0)
apply (cases "m = 1")
apply simp
apply (subst mod_diff_eq[symmetric], simp add: zmod_minus1)
apply clarsimp
apply (subst diff_add_cancel[where b=1, symmetric])
apply (subst mod_add_eq[symmetric])
apply (simp add: field_simps)
apply (rule mod_pos_pos_trivial)
apply (subst add_0_right[where a=0, symmetric])
apply (rule add_mono)
apply simp
apply simp
apply (cases "(n - 1) mod m = m - 1")
apply (drule zmod_helper[where a=1])
apply simp
apply (subgoal_tac "1 + (n - 1) mod m \<le> m")
apply simp
apply (subst field_simps, rule zless_imp_add1_zle)
apply simp
done
lemma ptr_add_image_multI:
"\<lbrakk> \<And>x y. (x * val = y * val') = (x * val'' = y); x * val'' \<in> S \<rbrakk> \<Longrightarrow>
ptr_add ptr (x * val) \<in> (\<lambda>p. ptr_add ptr (p * val')) ` S"
apply (simp add: image_def)
apply (erule rev_bexI)
apply (rule arg_cong[where f="ptr_add ptr"])
apply simp
done
lemma shift_times_fold:
"(x :: 'a :: len word) * (2 ^ n) << m = x << (m + n)"
by (simp add: shiftl_t2n ac_simps power_add)
lemma word_plus_strict_mono_right:
fixes x :: "'a :: len word"
shows "\<lbrakk>y < z; x \<le> x + z\<rbrakk> \<Longrightarrow> x + y < x + z"
by unat_arith
lemma replicate_minus:
"k < n \<Longrightarrow> replicate n False = replicate (n - k) False @ replicate k False"
by (subst replicate_add [symmetric]) simp
lemmas map_prod_split_imageI'
= map_prod_imageI[where f="case_prod f" and g="case_prod g"
and a="(a, b)" and b="(c, d)" for a b c d f g]
lemmas map_prod_split_imageI = map_prod_split_imageI'[simplified]
lemma word_div_mult:
"0 < c \<Longrightarrow> a < b * c \<Longrightarrow> a div c < b" for a b c :: "'a::len word"
by (rule classical)
(use div_to_mult_word_lt [of b a c] in
\<open>auto simp add: word_less_nat_alt word_le_nat_alt unat_div\<close>)
lemma word_less_power_trans_ofnat:
"\<lbrakk>n < 2 ^ (m - k); k \<le> m; m < LENGTH('a)\<rbrakk>
\<Longrightarrow> of_nat n * 2 ^ k < (2::'a::len word) ^ m"
apply (subst mult.commute)
apply (rule word_less_power_trans)
apply (simp add: word_less_nat_alt)
apply (subst unat_of_nat_eq)
apply (erule order_less_trans)
apply simp+
done
lemma word_1_le_power:
"n < LENGTH('a) \<Longrightarrow> (1 :: 'a :: len word) \<le> 2 ^ n"
by (rule inc_le[where i=0, simplified], erule iffD2[OF p2_gt_0])
lemma enum_word_div:
fixes v :: "'a :: len word" shows
"\<exists>xs ys. enum = xs @ [v] @ ys
\<and> (\<forall>x \<in> set xs. x < v)
\<and> (\<forall>y \<in> set ys. v < y)"
apply (simp only: enum_word_def)
apply (subst upt_add_eq_append'[where j="unat v"])
apply simp
apply (rule order_less_imp_le, simp)
apply (simp add: upt_conv_Cons)
apply (intro exI conjI)
apply fastforce
apply clarsimp
apply (drule of_nat_mono_maybe[rotated, where 'a='a])
apply simp
apply simp
apply (clarsimp simp: Suc_le_eq)
apply (drule of_nat_mono_maybe[rotated, where 'a='a])
apply simp
apply simp
done
lemma of_bool_nth:
"of_bool (x !! v) = (x >> v) && 1"
by (word_eqI cong: rev_conj_cong)
lemma unat_1_0:
"1 \<le> (x::'a::len word) = (0 < unat x)"
by (auto simp add: word_le_nat_alt)
lemma x_less_2_0_1':
fixes x :: "'a::len word"
shows "\<lbrakk>LENGTH('a) \<noteq> 1; x < 2\<rbrakk> \<Longrightarrow> x = 0 \<or> x = 1"
apply (induct x)
apply clarsimp+
by (metis Suc_eq_plus1 add_lessD1 less_irrefl one_add_one unatSuc word_less_nat_alt)
lemmas word_add_le_iff2 = word_add_le_iff [folded no_olen_add_nat]
lemma of_nat_power:
shows "\<lbrakk> p < 2 ^ x; x < len_of TYPE ('a) \<rbrakk> \<Longrightarrow> of_nat p < (2 :: 'a :: len word) ^ x"
apply (rule order_less_le_trans)
apply (rule of_nat_mono_maybe)
apply (erule power_strict_increasing)
apply simp
apply assumption
apply (simp add: word_unat_power)
done
lemma of_nat_n_less_equal_power_2:
"n < LENGTH('a::len) \<Longrightarrow> ((of_nat n)::'a word) < 2 ^ n"
apply (induct n)
apply clarsimp
apply clarsimp
apply (metis of_nat_power n_less_equal_power_2 of_nat_Suc power_Suc)
done
lemma eq_mask_less:
fixes w :: "'a::len word"
assumes eqm: "w = w && mask n"
and sz: "n < len_of TYPE ('a)"
shows "w < (2::'a word) ^ n"
by (subst eqm, rule and_mask_less' [OF sz])
lemma of_nat_mono_maybe':
fixes Y :: "nat"
assumes xlt: "x < 2 ^ len_of TYPE ('a)"
assumes ylt: "y < 2 ^ len_of TYPE ('a)"
shows "(y < x) = (of_nat y < (of_nat x :: 'a :: len word))"
apply (subst word_less_nat_alt)
apply (subst unat_of_nat)+
apply (subst mod_less)
apply (rule ylt)
apply (subst mod_less)
apply (rule xlt)
apply simp
done
lemma shiftr_mask_eq:
"(x >> n) && mask (size x - n) = x >> n" for x :: "'a :: len word"
by word_eqI_solve
lemma shiftr_mask_eq':
"m = (size x - n) \<Longrightarrow> (x >> n) && mask m = x >> n" for x :: "'a :: len word"
by (simp add: shiftr_mask_eq)
lemma dom_if:
"dom (\<lambda>a. if a \<in> addrs then Some (f a) else g a) = addrs \<union> dom g"
by (auto simp: dom_def split: if_split)
lemma less_is_non_zero_p1:
fixes a :: "'a :: len word"
shows "a < k \<Longrightarrow> a + 1 \<noteq> 0"
apply (erule contrapos_pn)
apply (drule max_word_wrap)
apply (simp add: not_less)
done
lemma of_nat_mono_maybe_le:
"\<lbrakk>x < 2 ^ LENGTH('a); y < 2 ^ LENGTH('a)\<rbrakk> \<Longrightarrow>
(y \<le> x) = ((of_nat y :: 'a :: len word) \<le> of_nat x)"
apply (clarsimp simp: le_less)
apply (rule disj_cong)
apply (rule of_nat_mono_maybe', assumption+)
apply (simp add: word_unat.norm_eq_iff [symmetric])
done
lemma mask_AND_NOT_mask:
"(w && ~~ mask n) && mask n = 0"
by word_eqI
lemma AND_NOT_mask_plus_AND_mask_eq:
"(w && ~~ mask n) + (w && mask n) = w"
by (subst word_plus_and_or_coroll; word_eqI_solve)
lemma mask_eqI:
fixes x :: "'a :: len word"
assumes m1: "x && mask n = y && mask n"
and m2: "x && ~~ mask n = y && ~~ mask n"
shows "x = y"
proof (subst bang_eq, rule allI)
fix m
show "x !! m = y !! m"
proof (cases "m < n")
case True
then have "x !! m = ((x && mask n) !! m)"
by (simp add: word_size bang_conj_lt)
also have "\<dots> = ((y && mask n) !! m)" using m1 by simp
also have "\<dots> = y !! m" using True
by (simp add: word_size bang_conj_lt)
finally show ?thesis .
next
case False
then have "x !! m = ((x && ~~ mask n) !! m)"
by (simp add: neg_mask_bang bang_conj_lt)
also have "\<dots> = ((y && ~~ mask n) !! m)" using m2 by simp
also have "\<dots> = y !! m" using False
by (simp add: neg_mask_bang bang_conj_lt)
finally show ?thesis .
qed
qed
lemma nat_less_power_trans2:
fixes n :: nat
shows "\<lbrakk>n < 2 ^ (m - k); k \<le> m\<rbrakk> \<Longrightarrow> n * 2 ^ k < 2 ^ m"
by (subst mult.commute, erule (1) nat_less_power_trans)
lemma nat_move_sub_le: "(a::nat) + b \<le> c \<Longrightarrow> a \<le> c - b" by arith
lemma neq_0_no_wrap:
fixes x :: "'a :: len word"
shows "\<lbrakk> x \<le> x + y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> x + y \<noteq> 0"
by clarsimp
lemma plus_minus_one_rewrite:
"v + (- 1 :: ('a :: {ring, one, uminus})) \<equiv> v - 1"
by (simp add: field_simps)
lemma power_minus_is_div:
"b \<le> a \<Longrightarrow> (2 :: nat) ^ (a - b) = 2 ^ a div 2 ^ b"
apply (induct a arbitrary: b)
apply simp
apply (erule le_SucE)
apply (clarsimp simp:Suc_diff_le le_iff_add power_add)
apply simp
done
lemma two_pow_div_gt_le:
"v < 2 ^ n div (2 ^ m :: nat) \<Longrightarrow> m \<le> n"
by (clarsimp dest!: less_two_pow_divD)
lemma unatSuc2:
fixes n :: "'a :: len word"
shows "n + 1 \<noteq> 0 \<Longrightarrow> unat (n + 1) = Suc (unat n)"
by (simp add: add.commute unatSuc)
lemma word_of_nat_less:
"\<lbrakk> n < unat x \<rbrakk> \<Longrightarrow> of_nat n < x"
apply (simp add: word_less_nat_alt)
apply (erule order_le_less_trans[rotated])
apply (simp add: unat_of_nat)
done
lemma word_of_nat_le:
"n \<le> unat x \<Longrightarrow> of_nat n \<le> x"
apply (simp add: word_le_nat_alt unat_of_nat)
apply (erule order_trans[rotated])
apply simp
done
lemma word_unat_less_le:
"a \<le> of_nat b \<Longrightarrow> unat a \<le> b"
by (metis eq_iff le_cases le_unat_uoi word_of_nat_le)
lemma and_eq_0_is_nth:
fixes x :: "'a :: len word"
shows "y = 1 << n \<Longrightarrow> ((x && y) = 0) = (\<not> (x !! n))"
apply safe
apply (drule_tac u="(x && (1 << n))" and x=n in word_eqD)
apply (simp add: nth_w2p)
apply (simp add: test_bit_bin)
apply word_eqI
done
lemmas arg_cong_Not = arg_cong [where f=Not]
lemmas and_neq_0_is_nth = arg_cong_Not [OF and_eq_0_is_nth, simplified]
lemma nth_is_and_neq_0:
"(x::'a::len word) !! n = (x && 2 ^ n \<noteq> 0)"
by (subst and_neq_0_is_nth; rule refl)
lemma mask_Suc_0 : "mask (Suc 0) = 1"
by (simp add: mask_def)
lemma ucast_ucast_add:
fixes x :: "'a :: len word"
fixes y :: "'b :: len word"
shows
"LENGTH('b) \<ge> LENGTH('a) \<Longrightarrow>
ucast (ucast x + y) = x + ucast y"
apply (rule word_unat.Rep_eqD)
apply (simp add: unat_ucast unat_word_ariths mod_mod_power
min.absorb2 unat_of_nat)
apply (subst mod_add_left_eq[symmetric])
apply (simp add: mod_mod_power min.absorb2)
apply (subst mod_add_right_eq)
apply simp
done
lemma word_shift_zero:
"\<lbrakk> x << n = 0; x \<le> 2^m; m + n < LENGTH('a)\<rbrakk> \<Longrightarrow> (x::'a::len word) = 0"
apply (rule ccontr)
apply (drule (2) word_shift_nonzero)
apply simp
done
lemma bool_mask':
fixes x :: "'a :: len word"
shows "2 < LENGTH('a) \<Longrightarrow> (0 < x && 1) = (x && 1 = 1)"
apply (rule iffI)
prefer 2
apply simp
apply (subgoal_tac "x && mask 1 < 2^1")
prefer 2
apply (rule and_mask_less_size)
apply (simp add: word_size)
apply (simp add: mask_def)
apply (drule word_less_cases [where y=2])
apply (erule disjE, simp)
apply simp
done
lemma sint_eq_uint:
"\<not> msb x \<Longrightarrow> sint x = uint x"
apply (rule word_uint.Abs_eqD, subst word_sint.Rep_inverse)
apply simp_all
apply (cut_tac x=x in word_sint.Rep)
apply (clarsimp simp add: uints_num sints_num)
apply (rule conjI)
apply (rule ccontr)
apply (simp add: linorder_not_le word_msb_sint[symmetric])
apply (erule order_less_le_trans)
apply simp
done
lemma scast_eq_ucast:
"\<not> msb x \<Longrightarrow> scast x = ucast x"
by (simp add: scast_def ucast_def sint_eq_uint)
lemma lt1_neq0:
fixes x :: "'a :: len word"
shows "(1 \<le> x) = (x \<noteq> 0)" by unat_arith
lemma word_plus_one_nonzero:
fixes x :: "'a :: len word"
shows "\<lbrakk>x \<le> x + y; y \<noteq> 0\<rbrakk> \<Longrightarrow> x + 1 \<noteq> 0"
apply (subst lt1_neq0 [symmetric])
apply (subst olen_add_eqv [symmetric])
apply (erule word_random)
apply (simp add: lt1_neq0)
done
lemma word_sub_plus_one_nonzero:
fixes n :: "'a :: len word"
shows "\<lbrakk>n' \<le> n; n' \<noteq> 0\<rbrakk> \<Longrightarrow> (n - n') + 1 \<noteq> 0"
apply (subst lt1_neq0 [symmetric])
apply (subst olen_add_eqv [symmetric])
apply (rule word_random [where x' = n'])
apply simp
apply (erule word_sub_le)
apply (simp add: lt1_neq0)
done
lemma word_le_minus_mono_right:
fixes x :: "'a :: len word"
shows "\<lbrakk> z \<le> y; y \<le> x; z \<le> x \<rbrakk> \<Longrightarrow> x - y \<le> x - z"
apply (rule word_sub_mono)
apply simp
apply assumption
apply (erule word_sub_le)
apply (erule word_sub_le)
done
lemma drop_append_miracle:
"n = length xs \<Longrightarrow> drop n (xs @ ys) = ys"
by simp
lemma foldr_does_nothing_to_xf:
"\<lbrakk> \<And>x s. x \<in> set xs \<Longrightarrow> xf (f x s) = xf s \<rbrakk> \<Longrightarrow> xf (foldr f xs s) = xf s"
by (induct xs, simp_all)
lemma nat_less_mult_monoish: "\<lbrakk> a < b; c < (d :: nat) \<rbrakk> \<Longrightarrow> (a + 1) * (c + 1) <= b * d"
apply (drule Suc_leI)+
apply (drule(1) mult_le_mono)
apply simp
done
lemma word_0_sle_from_less[unfolded word_size]:
"\<lbrakk> x < 2 ^ (size x - 1) \<rbrakk> \<Longrightarrow> 0 <=s x"
apply (clarsimp simp: word_sle_msb_le)
apply (simp add: word_msb_nth)
apply (subst (asm) word_test_bit_def [symmetric])
apply (drule less_mask_eq)
apply (drule_tac x="size x - 1" in word_eqD)
apply (simp add: word_size)
done
lemma not_msb_from_less:
"(v :: 'a word) < 2 ^ (LENGTH('a :: len) - 1) \<Longrightarrow> \<not> msb v"
apply (clarsimp simp add: msb_nth)
apply (drule less_mask_eq)
apply (drule word_eqD, drule(1) iffD2)
apply simp
done
lemma distinct_lemma: "f x \<noteq> f y \<Longrightarrow> x \<noteq> y" by auto
lemma ucast_sub_ucast:
fixes x :: "'a::len word"
assumes "y \<le> x"
assumes T: "LENGTH('a) \<le> LENGTH('b)"
shows "ucast (x - y) = (ucast x - ucast y :: 'b::len word)"
proof -
from T
have P: "unat x < 2 ^ LENGTH('b)" "unat y < 2 ^ LENGTH('b)"
by (fastforce intro!: less_le_trans[OF unat_lt2p])+
then show ?thesis
by (simp add: unat_arith_simps unat_ucast assms[simplified unat_arith_simps])
qed
lemma word_1_0:
"\<lbrakk>a + (1::('a::len) word) \<le> b; a < of_nat x\<rbrakk> \<Longrightarrow> a < b"
by unat_arith
lemma unat_of_nat_less:"\<lbrakk> a < b; unat b = c \<rbrakk> \<Longrightarrow> a < of_nat c"
by fastforce
lemma word_le_plus_1: "\<lbrakk> (y::('a::len) word) < y + n; a < n \<rbrakk> \<Longrightarrow> y + a \<le> y + a + 1"
by unat_arith
lemma word_le_plus:"\<lbrakk>(a::('a::len) word) < a + b; c < b\<rbrakk> \<Longrightarrow> a \<le> a + c"
by (metis order_less_imp_le word_random)
(*
* Basic signed arithemetic properties.
*)
lemma sint_minus1 [simp]: "(sint x = -1) = (x = -1)"
by (metis sint_n1 word_sint.Rep_inverse')
lemma sint_0 [simp]: "(sint x = 0) = (x = 0)"
by (metis sint_0 word_sint.Rep_inverse')
(* It is not always that case that "sint 1 = 1", because of 1-bit word sizes.
* This lemma produces the different cases. *)
lemma sint_1_cases:
"\<lbrakk> \<lbrakk> len_of TYPE ('a::len) = 1; (a::'a word) = 0; sint a = 0 \<rbrakk> \<Longrightarrow> P;
\<lbrakk> len_of TYPE ('a) = 1; a = 1; sint (1 :: 'a word) = -1 \<rbrakk> \<Longrightarrow> P;
\<lbrakk> len_of TYPE ('a) > 1; sint (1 :: 'a word) = 1 \<rbrakk> \<Longrightarrow> P \<rbrakk>
\<Longrightarrow> P"
apply atomize_elim
apply (case_tac "len_of TYPE ('a) = 1")
apply clarsimp
apply (subgoal_tac "(UNIV :: 'a word set) = {0, 1}")
apply (metis UNIV_I insert_iff singletonE)
apply (subst word_unat.univ)
apply (clarsimp simp: unats_def image_def)
apply (rule set_eqI, rule iffI)
apply clarsimp
apply (metis One_nat_def less_2_cases of_nat_1 semiring_1_class.of_nat_0)
apply clarsimp
apply (metis Abs_fnat_hom_0 Suc_1 lessI of_nat_1 zero_less_Suc)
apply clarsimp
apply (metis One_nat_def arith_is_1 le_def len_gt_0)
done
lemma sint_int_min:
"sint (- (2 ^ (LENGTH('a) - Suc 0)) :: ('a::len) word) = - (2 ^ (LENGTH('a) - Suc 0))"
apply (subst word_sint.Abs_inverse' [where r="- (2 ^ (LENGTH('a) - Suc 0))"])
apply (clarsimp simp: sints_num)
apply (clarsimp simp: wi_hom_syms word_of_int_2p)
apply clarsimp
done
lemma sint_int_max_plus_1:
"sint (2 ^ (LENGTH('a) - Suc 0) :: ('a::len) word) = - (2 ^ (LENGTH('a) - Suc 0))"
apply (subst word_of_int_2p [symmetric])
apply (subst int_word_sint)
apply clarsimp
apply (metis Suc_pred int_word_uint len_gt_0 power_Suc uint_eq_0 word_of_int_2p word_pow_0)
done
lemma sbintrunc_eq_in_range:
"(sbintrunc n x = x) = (x \<in> range (sbintrunc n))"
"(x = sbintrunc n x) = (x \<in> range (sbintrunc n))"
apply (simp_all add: image_def)
apply (metis sbintrunc_sbintrunc)+
done
lemma sbintrunc_If:
"- 3 * (2 ^ n) \<le> x \<and> x < 3 * (2 ^ n)
\<Longrightarrow> sbintrunc n x = (if x < - (2 ^ n) then x + 2 * (2 ^ n)
else if x \<ge> 2 ^ n then x - 2 * (2 ^ n) else x)"
apply (simp add: no_sbintr_alt2, safe)
apply (simp add: mod_pos_geq)
apply (subst mod_add_self1[symmetric], simp)
done
lemma signed_arith_eq_checks_to_ord:
"(sint a + sint b = sint (a + b ))
= ((a <=s a + b) = (0 <=s b))"
"(sint a - sint b = sint (a - b ))
= ((0 <=s a - b) = (b <=s a))"
"(- sint a = sint (- a)) = (0 <=s (- a) = (a <=s 0))"
using sint_range'[where x=a] sint_range'[where x=b]
by (simp_all add: sint_word_ariths word_sle_def word_sless_alt sbintrunc_If)
(* Basic proofs that signed word div/mod operations are
* truncations of their integer counterparts. *)
lemma signed_div_arith:
"sint ((a::('a::len) word) sdiv b) = sbintrunc (LENGTH('a) - 1) (sint a sdiv sint b)"
apply (subst word_sbin.norm_Rep [symmetric])
apply (subst bin_sbin_eq_iff' [symmetric])
apply simp
apply (subst uint_sint [symmetric])
apply (clarsimp simp: sdiv_int_def sdiv_word_def)
apply (metis word_ubin.eq_norm)
done
lemma signed_mod_arith:
"sint ((a::('a::len) word) smod b) = sbintrunc (LENGTH('a) - 1) (sint a smod sint b)"
apply (subst word_sbin.norm_Rep [symmetric])
apply (subst bin_sbin_eq_iff' [symmetric])
apply simp
apply (subst uint_sint [symmetric])
apply (clarsimp simp: smod_int_def smod_word_def)
apply (metis word_ubin.eq_norm)
done
(* Signed word arithmetic overflow constraints. *)
lemma signed_arith_ineq_checks_to_eq:
"((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a + sint b = sint (a + b ))"
"((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a - sint b = sint (a - b))"
"((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1))
= ((- sint a) = sint (- a))"
"((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a * sint b = sint (a * b))"
"((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a sdiv sint b = sint (a sdiv b))"
"((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1)))
= (sint a smod sint b = sint (a smod b))"
by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith
sbintrunc_eq_in_range range_sbintrunc)
lemma signed_arith_sint:
"((- (2 ^ (size a - 1)) \<le> (sint a + sint b)) \<and> (sint a + sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a + b) = (sint a + sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a - sint b)) \<and> (sint a - sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a - b) = (sint a - sint b)"
"((- (2 ^ (size a - 1)) \<le> (- sint a)) \<and> (- sint a) \<le> (2 ^ (size a - 1) - 1))
\<Longrightarrow> sint (- a) = (- sint a)"
"((- (2 ^ (size a - 1)) \<le> (sint a * sint b)) \<and> (sint a * sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a * b) = (sint a * sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a sdiv sint b)) \<and> (sint a sdiv sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a sdiv b) = (sint a sdiv sint b)"
"((- (2 ^ (size a - 1)) \<le> (sint a smod sint b)) \<and> (sint a smod sint b \<le> (2 ^ (size a - 1) - 1)))
\<Longrightarrow> sint (a smod b) = (sint a smod sint b)"
by (subst (asm) signed_arith_ineq_checks_to_eq; simp)+
lemma signed_mult_eq_checks_double_size:
assumes mult_le: "(2 ^ (len_of TYPE ('a) - 1) + 1) ^ 2 \<le> (2 :: int) ^ (len_of TYPE ('b) - 1)"
and le: "2 ^ (LENGTH('a) - 1) \<le> (2 :: int) ^ (len_of TYPE ('b) - 1)"
shows "(sint (a :: 'a :: len word) * sint b = sint (a * b))
= (scast a * scast b = (scast (a * b) :: 'b :: len word))"
proof -
have P: "sbintrunc (size a - 1) (sint a * sint b) \<in> range (sbintrunc (size a - 1))"
by simp
have abs: "!! x :: 'a word. abs (sint x) < 2 ^ (size a - 1) + 1"
apply (cut_tac x=x in sint_range')
apply (simp add: abs_le_iff word_size)
done
have abs_ab: "abs (sint a * sint b) < 2 ^ (LENGTH('b) - 1)"
using abs_mult_less[OF abs[where x=a] abs[where x=b]] mult_le
by (simp add: abs_mult power2_eq_square word_size)
show ?thesis
using P[unfolded range_sbintrunc] abs_ab le
apply (simp add: sint_word_ariths scast_def)
apply (simp add: wi_hom_mult)
apply (subst word_sint.Abs_inject, simp_all)
apply (simp add: sints_def range_sbintrunc abs_less_iff)
apply clarsimp
apply (simp add: sints_def range_sbintrunc word_size)
apply (auto elim: order_less_le_trans order_trans[rotated])
done
qed
(* Properties about signed division. *)
lemma int_sdiv_simps [simp]:
"(a :: int) sdiv 1 = a"
"(a :: int) sdiv 0 = 0"
"(a :: int) sdiv -1 = -a"
apply (auto simp: sdiv_int_def sgn_if)
done
lemma sgn_div_eq_sgn_mult:
"a div b \<noteq> 0 \<Longrightarrow> sgn ((a :: int) div b) = sgn (a * b)"
apply (clarsimp simp: sgn_if zero_le_mult_iff neg_imp_zdiv_nonneg_iff not_less)
apply (metis less_le mult_le_0_iff neg_imp_zdiv_neg_iff not_less pos_imp_zdiv_neg_iff zdiv_eq_0_iff)
done
lemma sgn_sdiv_eq_sgn_mult:
"a sdiv b \<noteq> 0 \<Longrightarrow> sgn ((a :: int) sdiv b) = sgn (a * b)"
by (auto simp: sdiv_int_def sgn_div_eq_sgn_mult sgn_mult)
lemma int_sdiv_same_is_1 [simp]:
"a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = a) = (b = 1)"
apply (rule iffI)
apply (clarsimp simp: sdiv_int_def)
apply (subgoal_tac "b > 0")
apply (case_tac "a > 0")
apply (clarsimp simp: sgn_if sign_simps)
apply (clarsimp simp: sign_simps not_less)
apply (metis int_div_same_is_1 le_neq_trans minus_minus neg_0_le_iff_le neg_equal_0_iff_equal)
apply (case_tac "a > 0")
apply (case_tac "b = 0")
apply (clarsimp simp: sign_simps)
apply (rule classical)
apply (clarsimp simp: sign_simps sgn_mult not_less)
apply (metis le_less neg_0_less_iff_less not_less_iff_gr_or_eq pos_imp_zdiv_neg_iff)
apply (rule classical)
apply (clarsimp simp: sign_simps sgn_mult not_less sgn_if split: if_splits)
apply (metis antisym less_le neg_imp_zdiv_nonneg_iff)
apply (clarsimp simp: sdiv_int_def sgn_if)
done
lemma int_sdiv_negated_is_minus1 [simp]:
"a \<noteq> 0 \<Longrightarrow> ((a :: int) sdiv b = - a) = (b = -1)"
apply (clarsimp simp: sdiv_int_def)
apply (rule iffI)
apply (subgoal_tac "b < 0")
apply (case_tac "a > 0")
apply (clarsimp simp: sgn_if sign_simps not_less)
apply (case_tac "sgn (a * b) = -1")
apply (clarsimp simp: not_less sign_simps)
apply (clarsimp simp: sign_simps not_less)
apply (rule classical)
apply (case_tac "b = 0")
apply (clarsimp simp: sign_simps not_less sgn_mult)
apply (case_tac "a > 0")
apply (clarsimp simp: sign_simps not_less sgn_mult)
apply (metis less_le neg_less_0_iff_less not_less_iff_gr_or_eq pos_imp_zdiv_neg_iff)
apply (clarsimp simp: sign_simps not_less sgn_mult)
apply (metis antisym_conv div_minus_right neg_imp_zdiv_nonneg_iff neg_le_0_iff_le not_less)
apply (clarsimp simp: sgn_if)
done
lemma sdiv_int_range:
"(a :: int) sdiv b \<in> { - (abs a) .. (abs a) }"
apply (unfold sdiv_int_def)
apply (subgoal_tac "(abs a) div (abs b) \<le> (abs a)")
apply (clarsimp simp: sgn_if)
apply (meson abs_ge_zero neg_le_0_iff_le nonneg_mod_div order_trans)
apply (metis abs_eq_0 abs_ge_zero div_by_0 zdiv_le_dividend zero_less_abs_iff)
done
lemma word_sdiv_div1 [simp]:
"(a :: ('a::len) word) sdiv 1 = a"
apply (rule sint_1_cases [where a=a])
apply (clarsimp simp: sdiv_word_def sdiv_int_def)
apply (clarsimp simp: sdiv_word_def sdiv_int_def simp del: sint_minus1)
apply (clarsimp simp: sdiv_word_def)
done
lemma sdiv_int_div_0 [simp]:
"(x :: int) sdiv 0 = 0"
by (clarsimp simp: sdiv_int_def)
lemma sdiv_int_0_div [simp]:
"0 sdiv (x :: int) = 0"
by (clarsimp simp: sdiv_int_def)
lemma word_sdiv_div0 [simp]:
"(a :: ('a::len) word) sdiv 0 = 0"
apply (auto simp: sdiv_word_def sdiv_int_def sgn_if)
done
lemma word_sdiv_div_minus1 [simp]:
"(a :: ('a::len) word) sdiv -1 = -a"
apply (auto simp: sdiv_word_def sdiv_int_def sgn_if)
apply (metis wi_hom_neg word_sint.Rep_inverse')
done
lemmas word_sdiv_0 = word_sdiv_div0
lemma sdiv_word_min:
"- (2 ^ (size a - 1)) \<le> sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word)"
apply (clarsimp simp: word_size)
apply (cut_tac sint_range' [where x=a])
apply (cut_tac sint_range' [where x=b])
apply clarsimp
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])
apply (clarsimp simp: max_def abs_if split: if_split_asm)
done
lemma sdiv_word_max:
"(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) =
((a \<noteq> - (2 ^ (size a - 1)) \<or> (b \<noteq> -1)))"
(is "?lhs = (\<not> ?a_int_min \<or> \<not> ?b_minus1)")
proof (rule classical)
assume not_thesis: "\<not> ?thesis"
have not_zero: "b \<noteq> 0"
using not_thesis
by (clarsimp)
have result_range: "sint a sdiv sint b \<in> (sints (size a)) \<union> {2 ^ (size a - 1)}"
apply (cut_tac sdiv_int_range [where a="sint a" and b="sint b"])
apply (erule rev_subsetD)
using sint_range' [where x=a] sint_range' [where x=b]
apply (auto simp: max_def abs_if word_size sints_num)
done
have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min \<and> ?b_minus1)"
apply (rule iffI [rotated])
apply (clarsimp simp: sdiv_int_def sgn_if word_size sint_int_min)
apply (rule classical)
apply (case_tac "?a_int_min")
apply (clarsimp simp: word_size sint_int_min)
apply (metis diff_0_right
int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2)
power_eq_0_iff sint_minus1 zero_neq_numeral)
apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)")
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
apply (clarsimp simp: word_size)
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
apply (insert word_sint.Rep [where x="a"])[1]
apply (clarsimp simp: minus_le_iff word_size abs_if sints_num split: if_split_asm)
apply (metis minus_minus sint_int_min word_sint.Rep_inject)
done
have result_range_simple: "(sint a sdiv sint b \<in> (sints (size a))) \<Longrightarrow> ?thesis"
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])
apply (clarsimp simp: word_size sints_num sint_int_min)
done
show ?thesis
apply (rule UnE [OF result_range result_range_simple])
apply simp
apply (clarsimp simp: word_size)
using result_range_overflow
apply (clarsimp simp: word_size)
done
qed
lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified]
lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified]
lemmas word_sdiv_numerals_lhs = sdiv_word_def[where a="numeral x" for x]
sdiv_word_def[where a=0] sdiv_word_def[where a=1]
lemmas word_sdiv_numerals = word_sdiv_numerals_lhs[where b="numeral y" for y]
word_sdiv_numerals_lhs[where b=0] word_sdiv_numerals_lhs[where b=1]
(*
* Signed modulo properties.
*)
lemma smod_int_alt_def:
"(a::int) smod b = sgn (a) * (abs a mod abs b)"
apply (clarsimp simp: smod_int_def sdiv_int_def)
apply (clarsimp simp: minus_div_mult_eq_mod [symmetric] abs_sgn sgn_mult sgn_if sign_simps)
done
lemma smod_int_range:
"b \<noteq> 0 \<Longrightarrow> (a::int) smod b \<in> { - abs b + 1 .. abs b - 1 }"
apply (case_tac "b > 0")
apply (insert pos_mod_conj [where a=a and b=b])[1]
apply (insert pos_mod_conj [where a="-a" and b=b])[1]
apply (clarsimp simp: smod_int_alt_def sign_simps sgn_if
abs_if not_less add1_zle_eq [simplified add.commute])
apply (metis add_le_cancel_left monoid_add_class.add.right_neutral
int_one_le_iff_zero_less less_le_trans mod_minus_right neg_less_0_iff_less
neg_mod_conj not_less pos_mod_conj)
apply (insert neg_mod_conj [where a=a and b="b"])[1]
apply (insert neg_mod_conj [where a="-a" and b="b"])[1]
apply (clarsimp simp: smod_int_alt_def sign_simps sgn_if
abs_if not_less add1_zle_eq [simplified add.commute])
apply (metis neg_0_less_iff_less neg_mod_conj not_le not_less_iff_gr_or_eq order_trans pos_mod_conj)
done
lemma smod_int_compares:
"\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b < b"
"\<lbrakk> 0 \<le> a; 0 < b \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b"
"\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> -b < (a :: int) smod b"
"\<lbrakk> a \<le> 0; 0 < b \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0"
"\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b < - b"
"\<lbrakk> 0 \<le> a; b < 0 \<rbrakk> \<Longrightarrow> 0 \<le> (a :: int) smod b"
"\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> (a :: int) smod b \<le> 0"
"\<lbrakk> a \<le> 0; b < 0 \<rbrakk> \<Longrightarrow> b \<le> (a :: int) smod b"
apply (insert smod_int_range [where a=a and b=b])
apply (auto simp: add1_zle_eq smod_int_alt_def sgn_if)
done
lemma smod_int_mod_0 [simp]:
"x smod (0 :: int) = x"
by (clarsimp simp: smod_int_def)
lemma smod_int_0_mod [simp]:
"0 smod (x :: int) = 0"
by (clarsimp simp: smod_int_alt_def)
lemma smod_word_mod_0 [simp]:
"x smod (0 :: ('a::len) word) = x"
by (clarsimp simp: smod_word_def)
lemma smod_word_0_mod [simp]:
"0 smod (x :: ('a::len) word) = 0"
by (clarsimp simp: smod_word_def)
lemma smod_word_max:
"sint (a::'a word) smod sint (b::'a word) < 2 ^ (LENGTH('a::len) - Suc 0)"
apply (case_tac "b = 0")
apply (insert word_sint.Rep [where x=a, simplified sints_num])[1]
apply (clarsimp)
apply (insert word_sint.Rep [where x="b", simplified sints_num])[1]
apply (insert smod_int_range [where a="sint a" and b="sint b"])
apply (clarsimp simp: abs_if split: if_split_asm)
done
lemma smod_word_min:
"- (2 ^ (LENGTH('a::len) - Suc 0)) \<le> sint (a::'a word) smod sint (b::'a word)"
apply (case_tac "b = 0")
apply (insert word_sint.Rep [where x=a, simplified sints_num])[1]
apply clarsimp
apply (insert word_sint.Rep [where x=b, simplified sints_num])[1]
apply (insert smod_int_range [where a="sint a" and b="sint b"])
apply (clarsimp simp: abs_if add1_zle_eq split: if_split_asm)
done
lemma smod_word_alt_def:
"(a :: ('a::len) word) smod b = a - (a sdiv b) * b"
apply (case_tac "a \<noteq> - (2 ^ (LENGTH('a) - 1)) \<or> b \<noteq> -1")
apply (clarsimp simp: smod_word_def sdiv_word_def smod_int_def
minus_word.abs_eq [symmetric] times_word.abs_eq [symmetric])
apply (clarsimp simp: smod_word_def smod_int_def)
done
lemmas word_smod_numerals_lhs = smod_word_def[where a="numeral x" for x]
smod_word_def[where a=0] smod_word_def[where a=1]
lemmas word_smod_numerals = word_smod_numerals_lhs[where b="numeral y" for y]
word_smod_numerals_lhs[where b=0] word_smod_numerals_lhs[where b=1]
lemma sint_of_int_eq:
"\<lbrakk> - (2 ^ (LENGTH('a) - 1)) \<le> x; x < 2 ^ (LENGTH('a) - 1) \<rbrakk> \<Longrightarrow> sint (of_int x :: ('a::len) word) = x"
apply (clarsimp simp: word_of_int int_word_sint)
apply (subst int_mod_eq')
apply simp
apply (subst (2) power_minus_simp)
apply clarsimp
apply clarsimp
apply clarsimp
done
lemma of_int_sint [simp]:
"of_int (sint a) = a"
apply (insert word_sint.Rep [where x=a])
apply (clarsimp simp: word_of_int)
done
lemma nth_w2p_scast [simp]:
"((scast ((2::'a::len signed word) ^ n) :: 'a word) !! m)
\<longleftrightarrow> ((((2::'a::len word) ^ n) :: 'a word) !! m)"
apply (subst nth_w2p)
apply (case_tac "n \<ge> LENGTH('a)")
apply (subst power_overflow, simp)
apply clarsimp
apply (metis nth_w2p scast_def bang_conj_lt
len_signed nth_word_of_int word_sint.Rep_inverse)
done
lemma scast_2_power [simp]: "scast ((2 :: 'a::len signed word) ^ x) = ((2 :: 'a word) ^ x)"
by (clarsimp simp: word_eq_iff)
lemma scast_bit_test [simp]:
"scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n"
by (clarsimp simp: word_eq_iff)
lemma ucast_nat_def':
"of_nat (unat x) = (ucast :: 'a :: len word \<Rightarrow> ('b :: len) signed word) x"
by (simp add: ucast_def word_of_int_nat unat_def)
lemma mod_mod_power_int:
fixes k :: int
shows "k mod 2 ^ m mod 2 ^ n = k mod 2 ^ (min m n)"
by (metis bintrunc_bintrunc_min bintrunc_mod2p min.commute)
(* Normalise combinations of scast and ucast. *)
lemma ucast_distrib:
fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word"
fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word"
fixes L :: "int \<Rightarrow> int \<Rightarrow> int"
assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)"
assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)"
assumes distrib: "\<And>x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
= (L x y) mod (2 ^ LENGTH('b))"
assumes is_down: "is_down (ucast :: 'a word \<Rightarrow> 'b word)"
shows "ucast (M a b) = M' (ucast a) (ucast b)"
apply (clarsimp simp: word_of_int ucast_def)
apply (subst lift_M)
apply (subst of_int_uint [symmetric], subst lift_M')
apply (subst (1 2) int_word_uint)
apply (subst word_of_int)
apply (subst word.abs_eq_iff)
apply (subst (1 2) bintrunc_mod2p)
apply (insert is_down)
apply (unfold is_down_def)
apply (clarsimp simp: target_size source_size)
apply (clarsimp simp: mod_mod_power_int min_def)
apply (rule distrib [symmetric])
done
lemma ucast_down_add:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)"
by (rule ucast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)
lemma ucast_down_minus:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)"
apply (rule ucast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_diff_left_eq mod_diff_right_eq)
apply simp
done
lemma ucast_down_mult:
"is_down (ucast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)"
apply (rule ucast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_mult_eq)
apply simp
done
lemma scast_distrib:
fixes M :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word"
fixes M' :: "'b::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word"
fixes L :: "int \<Rightarrow> int \<Rightarrow> int"
assumes lift_M: "\<And>x y. uint (M x y) = L (uint x) (uint y) mod 2 ^ LENGTH('a)"
assumes lift_M': "\<And>x y. uint (M' x y) = L (uint x) (uint y) mod 2 ^ LENGTH('b)"
assumes distrib: "\<And>x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
= (L x y) mod (2 ^ LENGTH('b))"
assumes is_down: "is_down (scast :: 'a word \<Rightarrow> 'b word)"
shows "scast (M a b) = M' (scast a) (scast b)"
apply (subst (1 2 3) down_cast_same [symmetric])
apply (insert is_down)
apply (clarsimp simp: is_down_def target_size source_size is_down)
apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib])
apply (insert is_down)
apply (clarsimp simp: is_down_def target_size source_size is_down)
done
lemma scast_down_add:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)"
by (rule scast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)
lemma scast_down_minus:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)"
apply (rule scast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_diff_left_eq mod_diff_right_eq)
apply simp
done
lemma scast_down_mult:
"is_down (scast:: 'a word \<Rightarrow> 'b word) \<Longrightarrow> scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)"
apply (rule scast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
apply (metis mod_mult_eq)
apply simp
done
lemma scast_ucast_1:
"\<lbrakk> is_down (ucast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_def ucast_down_wi)
lemma scast_ucast_3:
"\<lbrakk> is_down (ucast :: 'a word \<Rightarrow> 'c word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_def ucast_down_wi)
lemma scast_ucast_4:
"\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_def ucast_down_wi)
lemma scast_scast_b:
"\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow>
(scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_def sint_up_scast)
lemma ucast_scast_1:
"\<lbrakk> is_down (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_def ucast_down_wi)
lemma ucast_scast_3:
"\<lbrakk> is_down (scast :: 'a word \<Rightarrow> 'c word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis scast_def ucast_down_wi)
lemma ucast_scast_4:
"\<lbrakk> is_up (scast :: 'a word \<Rightarrow> 'b word); is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
by (metis down_cast_same scast_def sint_up_scast)
lemma ucast_ucast_a:
"\<lbrakk> is_down (ucast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis down_cast_same ucast_def ucast_down_wi)
lemma ucast_ucast_b:
"\<lbrakk> is_up (ucast :: 'a word \<Rightarrow> 'b word) \<rbrakk> \<Longrightarrow>
(ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
by (metis ucast_up_ucast)
lemma scast_scast_a:
"\<lbrakk> is_down (scast :: 'b word \<Rightarrow> 'c word) \<rbrakk> \<Longrightarrow>
(scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
apply (clarsimp simp: scast_def)
apply (metis down_cast_same is_up_down scast_def ucast_down_wi)
done
lemma scast_down_wi [OF refl]:
"uc = scast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x"
by (metis down_cast_same is_up_down ucast_down_wi)
lemmas cast_simps =
is_down is_up
scast_down_add scast_down_minus scast_down_mult
ucast_down_add ucast_down_minus ucast_down_mult
scast_ucast_1 scast_ucast_3 scast_ucast_4
ucast_scast_1 ucast_scast_3 ucast_scast_4
ucast_ucast_a ucast_ucast_b
scast_scast_a scast_scast_b
ucast_down_bl
ucast_down_wi scast_down_wi
ucast_of_nat scast_of_nat
uint_up_ucast sint_up_scast
up_scast_surj up_ucast_surj
lemma smod_mod_positive:
"\<lbrakk> 0 \<le> (a :: int); 0 \<le> b \<rbrakk> \<Longrightarrow> a smod b = a mod b"
by (clarsimp simp: smod_int_alt_def zsgn_def)
lemma nat_mult_power_less_eq:
"b > 0 \<Longrightarrow> (a * b ^ n < (b :: nat) ^ m) = (a < b ^ (m - n))"
using mult_less_cancel2[where m = a and k = "b ^ n" and n="b ^ (m - n)"]
mult_less_cancel2[where m="a * b ^ (n - m)" and k="b ^ m" and n=1]
apply (simp only: power_add[symmetric] nat_minus_add_max)
apply (simp only: power_add[symmetric] nat_minus_add_max ac_simps)
apply (simp add: max_def split: if_split_asm)
done
lemma signed_shift_guard_to_word:
"\<lbrakk> n < len_of TYPE ('a); n > 0 \<rbrakk>
\<Longrightarrow> (unat (x :: 'a :: len word) * 2 ^ y < 2 ^ n)
= (x = 0 \<or> x < (1 << n >> y))"
apply (simp only: nat_mult_power_less_eq)
apply (cases "y \<le> n")
apply (simp only: shiftl_shiftr1)
apply (subst less_mask_eq)
apply (simp add: word_less_nat_alt word_size)
apply (rule order_less_le_trans[rotated], rule power_increasing[where n=1])
apply simp
apply simp
apply simp
apply (simp add: nat_mult_power_less_eq word_less_nat_alt word_size)
apply auto[1]
apply (simp only: shiftl_shiftr2, simp add: unat_eq_0)
done
lemma sint_ucast_eq_uint:
"\<lbrakk> \<not> is_down (ucast :: ('a::len word \<Rightarrow> 'b::len word)) \<rbrakk>
\<Longrightarrow> sint ((ucast :: ('a::len word \<Rightarrow> 'b::len word)) x) = uint x"
apply (subst sint_eq_uint)
apply (clarsimp simp: msb_nth nth_ucast is_down)
apply (metis Suc_leI Suc_pred len_gt_0)
apply (clarsimp simp: uint_up_ucast is_up is_down)
done
lemma word_less_nowrapI':
"(x :: 'a :: len0 word) \<le> z - k \<Longrightarrow> k \<le> z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k"
by uint_arith
lemma mask_plus_1:
"mask n + 1 = 2 ^ n"
by (clarsimp simp: mask_def)
lemma unat_inj: "inj unat"
by (metis eq_iff injI word_le_nat_alt)
lemma unat_ucast_upcast:
"is_up (ucast :: 'b word \<Rightarrow> 'a word)
\<Longrightarrow> unat (ucast x :: ('a::len) word) = unat (x :: ('b::len) word)"
unfolding ucast_def unat_def
apply (subst int_word_uint)
apply (subst mod_pos_pos_trivial)
apply simp
apply (rule lt2p_lem)
apply (clarsimp simp: is_up)
apply simp
done
lemma ucast_mono:
"\<lbrakk> (x :: 'b :: len word) < y; y < 2 ^ LENGTH('a) \<rbrakk>
\<Longrightarrow> ucast x < ((ucast y) :: 'a :: len word)"
apply (simp add: ucast_nat_def [symmetric])
apply (rule of_nat_mono_maybe)
apply (rule unat_less_helper)
apply (simp add: Power.of_nat_power)
apply (simp add: word_less_nat_alt)
done
lemma ucast_mono_le:
"\<lbrakk>x \<le> y; y < 2 ^ LENGTH('b)\<rbrakk> \<Longrightarrow> (ucast (x :: 'a :: len word) :: 'b :: len word) \<le> ucast y"
apply (simp add: ucast_nat_def [symmetric])
apply (subst of_nat_mono_maybe_le[symmetric])
apply (rule unat_less_helper)
apply (simp add: Power.of_nat_power)
apply (rule unat_less_helper)
apply (erule le_less_trans)
apply (simp add: Power.of_nat_power)
apply (simp add: word_le_nat_alt)
done
lemma ucast_mono_le':
"\<lbrakk> unat y < 2 ^ LENGTH('b); LENGTH('b::len) < LENGTH('a::len); x \<le> y \<rbrakk>
\<Longrightarrow> UCAST('a \<rightarrow> 'b) x \<le> UCAST('a \<rightarrow> 'b) y"
by (auto simp: word_less_nat_alt intro: ucast_mono_le)
lemma zero_sle_ucast_up:
"\<not> is_down (ucast :: 'a word \<Rightarrow> 'b signed word) \<Longrightarrow>
(0 <=s ((ucast (b::('a::len) word)) :: ('b::len) signed word))"
apply (subgoal_tac "\<not> msb (ucast b :: 'b signed word)")
apply (clarsimp simp: word_sle_msb_le)
apply (clarsimp simp: is_down not_le msb_nth nth_ucast)
apply (subst (asm) bang_conj_lt [symmetric])
apply clarsimp
apply arith
done
lemma word_le_ucast_sless:
"\<lbrakk> x \<le> y; y \<noteq> -1; LENGTH('a) < LENGTH('b) \<rbrakk> \<Longrightarrow>
UCAST (('a :: len) \<rightarrow> ('b :: len) signed) x <s ucast (y + 1)"
by (clarsimp simp: word_le_make_less word_sless_alt sint_ucast_eq_uint is_down word_less_def)
lemma msb_ucast_eq:
"LENGTH('a) = LENGTH('b) \<Longrightarrow>
msb (ucast x :: ('a::len) word) = msb (x :: ('b::len) word)"
apply (clarsimp simp: word_msb_alt)
apply (subst ucast_down_drop [where n=0])
apply (clarsimp simp: source_size_def target_size_def word_size)
apply clarsimp
done
lemma msb_big:
"msb (a :: ('a::len) word) = (a \<ge> 2 ^ (LENGTH('a) - Suc 0))"
apply (rule iffI)
apply (clarsimp simp: msb_nth)
apply (drule bang_is_le)
apply simp
apply (rule ccontr)
apply (subgoal_tac "a = a && mask (LENGTH('a) - Suc 0)")
apply (cut_tac and_mask_less' [where w=a and n="LENGTH('a) - Suc 0"])
apply (clarsimp simp: word_not_le [symmetric])
apply clarsimp
apply (rule sym, subst and_mask_eq_iff_shiftr_0)
apply (clarsimp simp: msb_shift)
done
lemma zero_sle_ucast:
"(0 <=s ((ucast (b::('a::len) word)) :: ('a::len) signed word))
= (uint b < 2 ^ (len_of (TYPE('a)) - 1))"
apply (case_tac "msb b")
apply (clarsimp simp: word_sle_msb_le not_less msb_ucast_eq del: notI)
apply (clarsimp simp: msb_big word_le_def uint_2p_alt)
apply (clarsimp simp: word_sle_msb_le not_less msb_ucast_eq del: notI)
apply (clarsimp simp: msb_big word_le_def uint_2p_alt)
done
(* to_bool / from_bool. *)
definition
from_bool :: "bool \<Rightarrow> 'a::len word" where
"from_bool b \<equiv> case b of True \<Rightarrow> of_nat 1
| False \<Rightarrow> of_nat 0"
lemma from_bool_0:
"(from_bool x = 0) = (\<not> x)"
by (simp add: from_bool_def split: bool.split)
definition
to_bool :: "'a::len word \<Rightarrow> bool" where
"to_bool \<equiv> (\<noteq>) 0"
lemma to_bool_and_1:
"to_bool (x && 1) = (x !! 0)"
apply (simp add: to_bool_def)
apply (rule iffI)
apply (rule classical, erule notE, word_eqI)
apply (case_tac n; simp)
apply (rule notI, drule word_eqD[where x=0])
apply simp
done
lemma to_bool_from_bool [simp]:
"to_bool (from_bool r) = r"
unfolding from_bool_def to_bool_def
by (simp split: bool.splits)
lemma from_bool_neq_0 [simp]:
"(from_bool b \<noteq> 0) = b"
by (simp add: from_bool_def split: bool.splits)
lemma from_bool_mask_simp [simp]:
"(from_bool r :: 'a::len word) && 1 = from_bool r"
unfolding from_bool_def
by (clarsimp split: bool.splits)
lemma from_bool_1 [simp]:
"(from_bool P = 1) = P"
by (simp add: from_bool_def split: bool.splits)
lemma ge_0_from_bool [simp]:
"(0 < from_bool P) = P"
by (simp add: from_bool_def split: bool.splits)
lemma limited_and_from_bool:
"limited_and (from_bool b) 1"
by (simp add: from_bool_def limited_and_def split: bool.split)
lemma to_bool_1 [simp]: "to_bool 1" by (simp add: to_bool_def)
lemma to_bool_0 [simp]: "\<not>to_bool 0" by (simp add: to_bool_def)
lemma from_bool_eq_if:
"(from_bool Q = (if P then 1 else 0)) = (P = Q)"
by (simp add: case_bool_If from_bool_def split: if_split)
lemma to_bool_eq_0:
"(\<not> to_bool x) = (x = 0)"
by (simp add: to_bool_def)
lemma to_bool_neq_0:
"(to_bool x) = (x \<noteq> 0)"
by (simp add: to_bool_def)
lemma from_bool_all_helper:
"(\<forall>bool. from_bool bool = val \<longrightarrow> P bool)
= ((\<exists>bool. from_bool bool = val) \<longrightarrow> P (val \<noteq> 0))"
by (auto simp: from_bool_0)
lemma from_bool_to_bool_iff:
"w = from_bool b \<longleftrightarrow> to_bool w = b \<and> (w = 0 \<or> w = 1)"
by (cases b) (auto simp: from_bool_def to_bool_def)
lemma word_rsplit_upt:
"\<lbrakk> size x = LENGTH('a :: len) * n; n \<noteq> 0 \<rbrakk>
\<Longrightarrow> word_rsplit x = map (\<lambda>i. ucast (x >> i * len_of TYPE ('a)) :: 'a word) (rev [0 ..< n])"
apply (subgoal_tac "length (word_rsplit x :: 'a word list) = n")
apply (rule nth_equalityI, simp)
apply (intro allI word_eqI impI)
apply (simp add: test_bit_rsplit_alt word_size)
apply (simp add: nth_ucast nth_shiftr nth_rev field_simps)
apply (simp add: length_word_rsplit_exp_size)
apply (metis mult.commute given_quot_alt word_size word_size_gt_0)
done
lemma aligned_shift:
"\<lbrakk>x < 2 ^ n; is_aligned (y :: 'a :: len word) n;n \<le> LENGTH('a)\<rbrakk>
\<Longrightarrow> x + y >> n = y >> n"
by (subst word_plus_and_or_coroll; word_eqI, blast)
lemma aligned_shift':
"\<lbrakk>x < 2 ^ n; is_aligned (y :: 'a :: len word) n;n \<le> LENGTH('a)\<rbrakk>
\<Longrightarrow> y + x >> n = y >> n"
by (subst word_plus_and_or_coroll; word_eqI, blast)
lemma neg_mask_add_mask:
"((x:: 'a :: len word) && ~~ mask n) + (2 ^ n - 1) = x || mask n"
unfolding mask_2pm1[symmetric]
by (subst word_plus_and_or_coroll; word_eqI_solve)
lemma subtract_mask:
"p - (p && mask n) = (p && ~~ mask n)"
"p - (p && ~~ mask n) = (p && mask n)"
by (simp add: field_simps word_plus_and_or_coroll2)+
lemma and_neg_mask_plus_mask_mono: "(p && ~~ mask n) + mask n \<ge> p"
apply (rule word_le_minus_cancel[where x = "p && ~~ mask n"])
apply (clarsimp simp: subtract_mask)
using word_and_le1[where a = "mask n" and y = p]
apply (clarsimp simp: mask_def word_le_less_eq)
apply (rule is_aligned_no_overflow'[folded mask_2pm1])
apply (clarsimp simp: is_aligned_neg_mask)
done
lemma word_neg_and_le:
"ptr \<le> (ptr && ~~ mask n) + (2 ^ n - 1)"
by (simp add: and_neg_mask_plus_mask_mono mask_2pm1[symmetric])
lemma aligned_less_plus_1:
"\<lbrakk> is_aligned x n; n > 0 \<rbrakk> \<Longrightarrow> x < x + 1"
apply (rule plus_one_helper2)
apply (rule order_refl)
apply (clarsimp simp: field_simps)
apply (drule arg_cong[where f="\<lambda>x. x - 1"])
apply (clarsimp simp: is_aligned_mask)
apply (drule word_eqD[where x=0])
apply simp
done
lemma aligned_add_offset_less:
"\<lbrakk>is_aligned x n; is_aligned y n; x < y; z < 2 ^ n\<rbrakk> \<Longrightarrow> x + z < y"
apply (cases "y = 0")
apply simp
apply (erule is_aligned_get_word_bits[where p=y], simp_all)
apply (cases "z = 0", simp_all)
apply (drule(2) aligned_at_least_t2n_diff[rotated -1])
apply (drule plus_one_helper2)
apply (rule less_is_non_zero_p1)
apply (rule aligned_less_plus_1)
apply (erule aligned_sub_aligned[OF _ _ order_refl],
simp_all add: is_aligned_triv)[1]
apply (cases n, simp_all)[1]
apply (simp only: trans[OF diff_add_eq diff_diff_eq2[symmetric]])
apply (drule word_less_add_right)
apply (rule ccontr, simp add: linorder_not_le)
apply (drule aligned_small_is_0, erule order_less_trans)
apply (clarsimp simp: power_overflow)
apply simp
apply (erule order_le_less_trans[rotated],
rule word_plus_mono_right)
apply (erule minus_one_helper3)
apply (simp add: is_aligned_no_wrap' is_aligned_no_overflow field_simps)
done
lemma is_aligned_add_helper:
"\<lbrakk> is_aligned p n; d < 2 ^ n \<rbrakk>
\<Longrightarrow> (p + d && mask n = d) \<and> (p + d && (~~ mask n) = p)"
apply (rule context_conjI)
apply (subst word_plus_and_or_coroll; word_eqI; blast)
using word_plus_and_or_coroll2[where x="p + d" and w="mask n"] by simp
lemma is_aligned_sub_helper:
"\<lbrakk> is_aligned (p - d) n; d < 2 ^ n \<rbrakk>
\<Longrightarrow> (p && mask n = d) \<and> (p && (~~ mask n) = p - d)"
by (drule(1) is_aligned_add_helper, simp)
lemma mask_twice:
"(x && mask n) && mask m = x && mask (min m n)"
by word_eqI_solve
lemma is_aligned_after_mask:
"\<lbrakk>is_aligned k m;m\<le> n\<rbrakk> \<Longrightarrow> is_aligned (k && mask n) m"
by (rule is_aligned_andI1)
lemma and_mask_plus:
"\<lbrakk>is_aligned ptr m; m \<le> n; a < 2 ^ m\<rbrakk>
\<Longrightarrow> ptr + a && mask n = (ptr && mask n) + a"
apply (rule mask_eqI[where n = m])
apply (simp add:mask_twice min_def)
apply (simp add:is_aligned_add_helper)
apply (subst is_aligned_add_helper[THEN conjunct1])
apply (erule is_aligned_after_mask)
apply simp
apply simp
apply simp
apply (subgoal_tac "(ptr + a && mask n) && ~~ mask m
= (ptr + a && ~~ mask m ) && mask n")
apply (simp add:is_aligned_add_helper)
apply (subst is_aligned_add_helper[THEN conjunct2])
apply (simp add:is_aligned_after_mask)
apply simp
apply simp
apply (simp add:word_bw_comms word_bw_lcs)
done
lemma le_step_down_word:"\<lbrakk>(i::('a::len) word) \<le> n; i = n \<longrightarrow> P; i \<le> n - 1 \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by unat_arith
lemma le_step_down_word_2:
fixes x :: "'a::len word"
shows "\<lbrakk>x \<le> y; x \<noteq> y\<rbrakk> \<Longrightarrow> x \<le> y - 1"
by (subst (asm) word_le_less_eq,
clarsimp,
simp add: minus_one_helper3)
lemma NOT_mask_AND_mask[simp]: "(w && mask n) && ~~ mask n = 0"
apply (clarsimp simp:mask_def)
by (metis word_bool_alg.conj_cancel_right word_bool_alg.conj_zero_right word_bw_comms(1) word_bw_lcs(1))
lemma and_and_not[simp]:"(a && b) && ~~ b = 0"
apply (subst word_bw_assocs(1))
apply clarsimp
done
lemma mask_shift_and_negate[simp]:"(w && mask n << m) && ~~ (mask n << m) = 0"
apply (clarsimp simp:mask_def)
by (metis (erased, hide_lams) mask_eq_x_eq_0 shiftl_over_and_dist word_bool_alg.conj_absorb word_bw_assocs(1))
lemma le_step_down_nat:"\<lbrakk>(i::nat) \<le> n; i = n \<longrightarrow> P; i \<le> n - 1 \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by arith
lemma le_step_down_int:"\<lbrakk>(i::int) \<le> n; i = n \<longrightarrow> P; i \<le> n - 1 \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by arith
lemma mask_1[simp]: "(\<exists>x. mask x = 1)"
apply (rule_tac x=1 in exI)
apply (simp add:mask_def)
done
lemma not_switch:"~~ a = x \<Longrightarrow> a = ~~ x"
by auto
(* The seL4 bitfield generator produces functions containing mask and shift operations, such that
* invoking two of them consecutively can produce something like the following.
*)
lemma bitfield_op_twice:
"(x && ~~ (mask n << m) || ((y && mask n) << m)) && ~~ (mask n << m) = x && ~~ (mask n << m)"
by (induct n arbitrary: m) (auto simp: word_ao_dist)
lemma bitfield_op_twice'':
"\<lbrakk>~~ a = b << c; \<exists>x. b = mask x\<rbrakk> \<Longrightarrow> (x && a || (y && b << c)) && a = x && a"
apply clarsimp
apply (cut_tac n=xa and m=c and x=x and y=y in bitfield_op_twice)
apply (clarsimp simp:mask_def)
apply (drule not_switch)
apply clarsimp
done
lemma bit_twiddle_min:
"(y::'a::len word) xor (((x::'a::len word) xor y) && (if x < y then -1 else 0)) = min x y"
by (metis (mono_tags) min_def word_bitwise_m1_simps(2) word_bool_alg.xor_left_commute
word_bool_alg.xor_self word_bool_alg.xor_zero_right word_bw_comms(1)
word_le_less_eq word_log_esimps(7))
lemma bit_twiddle_max:
"(x::'a::len word) xor (((x::'a::len word) xor y) && (if x < y then -1 else 0)) = max x y"
by (metis (mono_tags) max_def word_bitwise_m1_simps(2) word_bool_alg.xor_left_self
word_bool_alg.xor_zero_right word_bw_comms(1) word_le_less_eq word_log_esimps(7))
lemma swap_with_xor:
"\<lbrakk>(x::'a::len word) = a xor b; y = b xor x; z = x xor y\<rbrakk> \<Longrightarrow> z = b \<and> y = a"
by (metis word_bool_alg.xor_assoc word_bool_alg.xor_commute word_bool_alg.xor_self
word_bool_alg.xor_zero_right)
lemma scast_nop_1:
"((scast ((of_int x)::('a::len) word))::'a sword) = of_int x"
apply (clarsimp simp:scast_def word_of_int)
by (metis len_signed sint_sbintrunc' word_sint.Rep_inverse)
lemma scast_nop_2:
"((scast ((of_int x)::('a::len) sword))::'a word) = of_int x"
apply (clarsimp simp:scast_def word_of_int)
by (metis len_signed sint_sbintrunc' word_sint.Rep_inverse)
lemmas scast_nop[simp] = scast_nop_1 scast_nop_2 scast_id
lemma le_mask_imp_and_mask:
"(x::'a::len word) \<le> mask n \<Longrightarrow> x && mask n = x"
by (metis and_mask_eq_iff_le_mask)
lemma or_not_mask_nop:
"((x::'a::len word) || ~~ mask n) && mask n = x && mask n"
by (metis word_and_not word_ao_dist2 word_bw_comms(1) word_log_esimps(3))
lemma mask_subsume:
"\<lbrakk>n \<le> m\<rbrakk> \<Longrightarrow> ((x::'a::len word) || y && mask n) && ~~ mask m = x && ~~ mask m"
apply (subst word_ao_dist)
apply (subgoal_tac "(y && mask n) && ~~ mask m = 0")
apply simp
by (metis (no_types, hide_lams) is_aligned_mask is_aligned_weaken word_and_not
word_bool_alg.conj_zero_right word_bw_comms(1) word_bw_lcs(1))
lemma and_mask_0_iff_le_mask:
fixes w :: "'a::len word"
shows "(w && ~~ mask n = 0) = (w \<le> mask n)"
by (simp add: mask_eq_0_eq_x le_mask_imp_and_mask and_mask_eq_iff_le_mask)
lemma mask_twice2:
"n \<le> m \<Longrightarrow> ((x::'a::len word) && mask m) && mask n = x && mask n"
by (metis mask_twice min_def)
lemma uint_2_id:
"LENGTH('a) \<ge> 2 \<Longrightarrow> uint (2::('a::len) word) = 2"
apply clarsimp
apply (subgoal_tac "2 \<in> uints (LENGTH('a))")
apply (subst (asm) Word.word_ubin.set_iff_norm)
apply simp
apply (subst word_uint.set_iff_norm)
apply clarsimp
apply (rule int_mod_eq')
apply simp
apply (rule pow_2_gt)
apply simp
done
lemma bintrunc_id:
"\<lbrakk>m \<le> of_nat n; 0 < m\<rbrakk> \<Longrightarrow> bintrunc n m = m"
by (simp add: bintrunc_mod2p le_less_trans)
lemma shiftr1_unfold: "shiftr1 x = x >> 1"
by (metis One_nat_def comp_apply funpow.simps(1) funpow.simps(2) id_apply shiftr_def)
lemma shiftr1_is_div_2: "(x::('a::len) word) >> 1 = x div 2"
apply (case_tac "LENGTH('a) = 1")
apply simp
apply (subgoal_tac "x = 0 \<or> x = 1")
apply (erule disjE)
apply (clarsimp simp:word_div_def)+
apply (metis One_nat_def less_irrefl_nat sint_1_cases)
apply clarsimp
apply (subst word_div_def)
apply clarsimp
apply (subst bintrunc_id)
apply (subgoal_tac "2 \<le> LENGTH('a)")
apply simp
apply (metis (no_types) le_0_eq le_SucE lens_not_0(2) not_less_eq_eq numeral_2_eq_2)
apply simp
apply (subst bin_rest_def[symmetric])
apply (subst shiftr1_def[symmetric])
apply (clarsimp simp:shiftr1_unfold)
done
lemma shiftl1_is_mult: "(x << 1) = (x :: 'a::len word) * 2"
by (metis One_nat_def mult_2 mult_2_right one_add_one
power_0 power_Suc shiftl_t2n)
lemma div_of_0_id[simp]:"(0::('a::len) word) div n = 0"
by (simp add: word_div_def)
lemma degenerate_word:"LENGTH('a) = 1 \<Longrightarrow> (x::('a::len) word) = 0 \<or> x = 1"
by (metis One_nat_def less_irrefl_nat sint_1_cases)
lemma div_by_0_word:"(x::('a::len) word) div 0 = 0"
by (metis div_0 div_by_0 unat_0 word_arith_nat_defs(6) word_div_1)
lemma div_less_dividend_word:"\<lbrakk>x \<noteq> 0; n \<noteq> 1\<rbrakk> \<Longrightarrow> (x::('a::len) word) div n < x"
apply (case_tac "n = 0")
apply clarsimp
apply (subst div_by_0_word)
apply (simp add:word_neq_0_conv)
apply (subst word_arith_nat_div)
apply (rule word_of_nat_less)
apply (rule div_less_dividend)
apply (metis (poly_guards_query) One_nat_def less_one nat_neq_iff unat_eq_1(2) unat_eq_zero)
apply (simp add:unat_gt_0)
done
lemma shiftr1_lt:"x \<noteq> 0 \<Longrightarrow> (x::('a::len) word) >> 1 < x"
apply (subst shiftr1_is_div_2)
apply (rule div_less_dividend_word)
apply simp+
done
lemma word_less_div:
fixes x :: "('a::len) word"
and y :: "('a::len) word"
shows "x div y = 0 \<Longrightarrow> y = 0 \<or> x < y"
apply (case_tac "y = 0", clarsimp+)
by (metis One_nat_def Suc_le_mono le0 le_div_geq not_less unat_0 unat_div unat_gt_0 word_less_nat_alt zero_less_one)
lemma not_degenerate_imp_2_neq_0:"LENGTH('a) > 1 \<Longrightarrow> (2::('a::len) word) \<noteq> 0"
by (metis numerals(1) power_not_zero power_zero_numeral)
lemma shiftr1_0_or_1:"(x::('a::len) word) >> 1 = 0 \<Longrightarrow> x = 0 \<or> x = 1"
apply (subst (asm) shiftr1_is_div_2)
apply (drule word_less_div)
apply (case_tac "LENGTH('a) = 1")
apply (simp add:degenerate_word)
apply (erule disjE)
apply (subgoal_tac "(2::'a word) \<noteq> 0")
apply simp
apply (rule not_degenerate_imp_2_neq_0)
apply (subgoal_tac "LENGTH('a) \<noteq> 0")
apply arith
apply simp
apply (rule x_less_2_0_1', simp+)
done
lemma word_overflow:"(x::('a::len) word) + 1 > x \<or> x + 1 = 0"
apply clarsimp
by (metis diff_0 eq_diff_eq less_x_plus_1 max_word_max plus_1_less)
lemma word_overflow_unat:"unat ((x::('a::len) word) + 1) = unat x + 1 \<or> x + 1 = 0"
by (metis Suc_eq_plus1 add.commute unatSuc)
lemma even_word_imp_odd_next:"even (unat (x::('a::len) word)) \<Longrightarrow> x + 1 = 0 \<or> odd (unat (x + 1))"
apply (cut_tac x=x in word_overflow_unat)
apply clarsimp
done
lemma odd_word_imp_even_next:"odd (unat (x::('a::len) word)) \<Longrightarrow> x + 1 = 0 \<or> even (unat (x + 1))"
apply (cut_tac x=x in word_overflow_unat)
apply clarsimp
done
lemma overflow_imp_lsb:"(x::('a::len) word) + 1 = 0 \<Longrightarrow> x !! 0"
by (metis add.commute add_left_cancel max_word_max not_less word_and_1 word_bool_alg.conj_one_right word_bw_comms(1) word_overflow zero_neq_one)
lemma word_lsb_nat:"lsb w = (unat w mod 2 = 1)"
unfolding word_lsb_def bin_last_def
by (metis (no_types, hide_lams) nat_mod_distrib nat_numeral not_mod_2_eq_1_eq_0 numeral_One uint_eq_0 uint_nonnegative unat_0 unat_def zero_le_numeral)
lemma odd_iff_lsb:"odd (unat (x::('a::len) word)) = x !! 0"
apply (simp add:even_iff_mod_2_eq_zero)
apply (subst word_lsb_nat[unfolded One_nat_def, symmetric])
apply (rule word_lsb_alt)
done
lemma of_nat_neq_iff_word:
"x mod 2 ^ LENGTH('a) \<noteq> y mod 2 ^ LENGTH('a) \<Longrightarrow>
(((of_nat x)::('a::len) word) \<noteq> of_nat y) = (x \<noteq> y)"
apply (rule iffI)
apply (case_tac "x = y")
apply (subst (asm) of_nat_eq_iff[symmetric])
apply simp+
apply (case_tac "((of_nat x)::('a::len) word) = of_nat y")
apply (subst (asm) word_unat.norm_eq_iff[symmetric])
apply simp+
done
lemma shiftr1_irrelevant_lsb:"(x::('a::len) word) !! 0 \<or> x >> 1 = (x + 1) >> 1"
apply (case_tac "LENGTH('a) = 1")
apply clarsimp
apply (drule_tac x=x in degenerate_word[unfolded One_nat_def])
apply (erule disjE)
apply clarsimp+
apply (subst (asm) shiftr1_is_div_2[unfolded One_nat_def])+
apply (subst (asm) word_arith_nat_div)+
apply clarsimp
apply (subst (asm) bintrunc_id)
apply (subgoal_tac "LENGTH('a) > 0")
apply linarith
apply clarsimp+
apply (subst (asm) bintrunc_id)
apply (subgoal_tac "LENGTH('a) > 0")
apply linarith
apply clarsimp+
apply (case_tac "x + 1 = 0")
apply (clarsimp simp:overflow_imp_lsb)
apply (cut_tac x=x in word_overflow_unat)
apply clarsimp
apply (case_tac "even (unat x)")
apply (subgoal_tac "unat x div 2 = Suc (unat x) div 2")
apply metis
apply (subst numeral_2_eq_2)+
apply simp
apply (simp add:odd_iff_lsb)
done
lemma shiftr1_0_imp_only_lsb:"((x::('a::len) word) + 1) >> 1 = 0 \<Longrightarrow> x = 0 \<or> x + 1 = 0"
by (metis One_nat_def shiftr1_0_or_1 word_less_1 word_overflow)
lemma shiftr1_irrelevant_lsb':"\<not>((x::('a::len) word) !! 0) \<Longrightarrow> x >> 1 = (x + 1) >> 1"
by (metis shiftr1_irrelevant_lsb)
lemma lsb_this_or_next:"\<not>(((x::('a::len) word) + 1) !! 0) \<Longrightarrow> x !! 0"
by (metis (poly_guards_query) even_word_imp_odd_next odd_iff_lsb overflow_imp_lsb)
(* Perhaps this one should be a simp lemma, but it seems a little dangerous. *)
lemma cast_chunk_assemble_id:
"\<lbrakk>n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\<rbrakk> \<Longrightarrow>
(((ucast ((ucast (x::'b word))::'a word))::'b word) || (((ucast ((ucast (x >> n))::'a word))::'b word) << n)) = x"
apply (subgoal_tac "((ucast ((ucast (x >> n))::'a word))::'b word) = x >> n")
apply clarsimp
apply (subst and_not_mask[symmetric])
apply (subst ucast_ucast_mask)
apply (subst word_ao_dist2[symmetric])
apply clarsimp
apply (rule ucast_ucast_len)
apply (rule shiftr_less_t2n')
apply (subst and_mask_eq_iff_le_mask)
apply (clarsimp simp:mask_def)
apply (metis max_word_eq max_word_max mult_2_right)
apply (metis add_diff_cancel_left' diff_less len_gt_0 mult_2_right)
done
lemma cast_chunk_scast_assemble_id:
"\<lbrakk>n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m\<rbrakk> \<Longrightarrow>
(((ucast ((scast (x::'b word))::'a word))::'b word) ||
(((ucast ((scast (x >> n))::'a word))::'b word) << n)) = x"
apply (subgoal_tac "((scast x)::'a word) = ((ucast x)::'a word)")
apply (subgoal_tac "((scast (x >> n))::'a word) = ((ucast (x >> n))::'a word)")
apply (simp add:cast_chunk_assemble_id)
apply (subst down_cast_same[symmetric], subst is_down, arith, simp)+
done
lemma mask_or_not_mask:
"x && mask n || x && ~~ mask n = x"
apply (subst word_oa_dist, simp)
apply (subst word_oa_dist2, simp)
done
lemma is_aligned_add_not_aligned:
"\<lbrakk>is_aligned (p::'a::len word) n; \<not> is_aligned (q::'a::len word) n\<rbrakk> \<Longrightarrow> \<not> is_aligned (p + q) n"
by (metis is_aligned_addD1)
lemma word_gr0_conv_Suc: "(m::'a::len word) > 0 \<Longrightarrow> \<exists>n. m = n + 1"
by (metis add.commute add_minus_cancel)
lemma neg_mask_add_aligned:
"\<lbrakk> is_aligned p n; q < 2 ^ n \<rbrakk> \<Longrightarrow> (p + q) && ~~ mask n = p && ~~ mask n"
by (metis is_aligned_add_helper is_aligned_neg_mask_eq)
lemma word_sless_sint_le:"x <s y \<Longrightarrow> sint x \<le> sint y - 1"
by (metis word_sless_alt zle_diff1_eq)
lemma upper_trivial:
fixes x :: "'a::len word"
shows "x \<noteq> 2 ^ LENGTH('a) - 1 \<Longrightarrow> x < 2 ^ LENGTH('a) - 1"
by (cut_tac n=x and 'a='a in max_word_max,
clarsimp simp:max_word_def,
simp add: less_le)
lemma constraint_expand:
fixes x :: "'a::len word"
shows "x \<in> {y. lower \<le> y \<and> y \<le> upper} = (lower \<le> x \<and> x \<le> upper)"
by (rule mem_Collect_eq)
lemma card_map_elide:
"card ((of_nat :: nat \<Rightarrow> 'a::len word) ` {0..<n}) = card {0..<n}"
if "n \<le> CARD('a::len word)"
proof -
let ?of_nat = "of_nat :: nat \<Rightarrow> 'a word"
from word_unat.Abs_inj_on
have "inj_on ?of_nat {i. i < CARD('a word)}"
by (simp add: unats_def card_word)
moreover have "{0..<n} \<subseteq> {i. i < CARD('a word)}"
using that by auto
ultimately have "inj_on ?of_nat {0..<n}"
by (rule inj_on_subset)
then show ?thesis
by (simp add: card_image)
qed
lemma card_map_elide2:
"n \<le> CARD('a::len word) \<Longrightarrow> card ((of_nat::nat \<Rightarrow> 'a::len word) ` {0..<n}) = n"
by (subst card_map_elide) clarsimp+
lemma le_max_word_ucast_id:
assumes "(x::'a::len word) \<le> ucast (max_word::'b::len word)"
shows "ucast ((ucast x)::'b word) = x"
proof -
{
assume a1: "x \<le> word_of_int (uint (word_of_int (2 ^ len_of (TYPE('b)) - 1)::'b word))"
have f2: "((\<exists>i ia. (0::int) \<le> i \<and> \<not> 0 \<le> i + - 1 * ia \<and> i mod ia \<noteq> i) \<or>
\<not> (0::int) \<le> - 1 + 2 ^ LENGTH('b) \<or> (0::int) \<le> - 1 + 2 ^ LENGTH('b) + - 1 * 2 ^ LENGTH('b) \<or>
(- (1::int) + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b) =
- 1 + 2 ^ LENGTH('b)) = ((\<exists>i ia. (0::int) \<le> i \<and> \<not> 0 \<le> i + - 1 * ia \<and> i mod ia \<noteq> i) \<or>
\<not> (1::int) \<le> 2 ^ LENGTH('b) \<or>
2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)) = 1)"
by force
have f3: "\<forall>i ia. \<not> (0::int) \<le> i \<or> 0 \<le> i + - 1 * ia \<or> i mod ia = i"
using mod_pos_pos_trivial by force
have "(1::int) \<le> 2 ^ LENGTH('b)"
by simp
then have "2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ len_of TYPE ('b)) = 1"
using f3 f2 by blast
then have f4: "- (1::int) + 2 ^ LENGTH('b) = (- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)"
by linarith
have f5: "x \<le> word_of_int (uint (word_of_int (- 1 + 2 ^ LENGTH('b))::'b word))"
using a1 by force
have f6: "2 ^ len_of (TYPE('b)::'b itself) + - (1::int) = - 1 + 2 ^ len_of (TYPE('b))"
by force
have f7: "- (1::int) * 1 = - 1"
by auto
have "\<forall>x0 x1. (x1::int) - x0 = x1 + - 1 * x0"
by force
then have "x \<le> 2 ^ LENGTH('b) - 1"
using f7 f6 f5 f4 by (metis uint_word_of_int wi_homs(2) word_arith_wis(8) word_of_int_2p)
}
with assms show ?thesis
unfolding ucast_def
apply (subst word_ubin.eq_norm)
apply (subst and_mask_bintr[symmetric])
apply (subst and_mask_eq_iff_le_mask)
apply (clarsimp simp: max_word_def mask_def)
done
qed
lemma remdups_enum_upto:
fixes s::"'a::len word"
shows "remdups [s .e. e] = [s .e. e]"
by simp
lemma card_enum_upto:
fixes s::"'a::len word"
shows "card (set [s .e. e]) = Suc (unat e) - unat s"
by (subst List.card_set) (simp add: remdups_enum_upto)
lemma unat_mask:
"unat (mask n :: 'a :: len word) = 2 ^ (min n (LENGTH('a))) - 1"
apply (subst min.commute)
apply (simp add: mask_def not_less min_def split: if_split_asm)
apply (intro conjI impI)
apply (simp add: unat_sub_if_size)
apply (simp add: power_overflow word_size)
apply (simp add: unat_sub_if_size)
done
lemma word_shiftr_lt:
fixes w :: "'a::len word"
shows "unat (w >> n) < (2 ^ (len_of(TYPE('a)) - n))"
apply (subst shiftr_div_2n')
by (metis nat_mod_lem nat_zero_less_power_iff power_mod_div
word_unat.Rep_inverse word_unat.eq_norm zero_less_numeral)
lemma complement_nth_w2p:
shows "n' < len_of(TYPE('a)) \<Longrightarrow> (~~ (2 ^ n :: ('a::len word))) !! n' = (n' \<noteq> n)"
by (fastforce simp: word_ops_nth_size word_size nth_w2p)
lemma word_unat_and_lt:
"unat x < n \<or> unat y < n \<Longrightarrow> unat (x && y) < n"
by (meson le_less_trans word_and_le1 word_and_le2 word_le_nat_alt)
lemma word_unat_mask_lt:
"m \<le> size w \<Longrightarrow> unat ((w::'a::len word) && mask m) < 2 ^ m"
by (rule word_unat_and_lt) (simp add: unat_mask word_size)
lemma unat_shiftr_less_t2n:
fixes x :: "'a :: len word"
shows "unat x < 2 ^ (n + m) \<Longrightarrow> unat (x >> n) < 2 ^ m"
by (simp add: shiftr_div_2n' power_add mult.commute td_gal_lt)
lemma le_or_mask:
"w \<le> w' \<Longrightarrow> w || mask x \<le> w' || mask x"
by (metis neg_mask_add_mask add.commute le_word_or1 mask_2pm1 neg_mask_mono_le word_plus_mono_left)
lemma le_shiftr1':
"\<lbrakk> shiftr1 u \<le> shiftr1 v ; shiftr1 u \<noteq> shiftr1 v \<rbrakk> \<Longrightarrow> u \<le> v"
apply (unfold word_le_def shiftr1_def word_ubin.eq_norm)
apply (unfold bin_rest_trunc_i
trans [OF bintrunc_bintrunc_l word_ubin.norm_Rep,
unfolded word_ubin.norm_Rep,
OF order_refl [THEN le_SucI]])
apply (case_tac "uint u" rule: bin_exhaust)
apply (case_tac "uint v" rule: bin_exhaust)
by (smt Bit_def bin_rest_BIT)
lemma le_shiftr':
"\<lbrakk> u >> n \<le> v >> n ; u >> n \<noteq> v >> n \<rbrakk> \<Longrightarrow> (u::'a::len0 word) \<le> v"
apply (induct n; simp add: shiftr_def)
apply (case_tac "(shiftr1 ^^ n) u = (shiftr1 ^^ n) v", simp)
apply (fastforce dest: le_shiftr1')
done
lemma word_log2_nth_same:
"w \<noteq> 0 \<Longrightarrow> w !! word_log2 w"
unfolding word_log2_def
using nth_length_takeWhile[where P=Not and xs="to_bl w"]
apply (simp add: word_clz_def word_size to_bl_nth)
apply (fastforce simp: linorder_not_less eq_zero_set_bl
dest: takeWhile_take_has_property)
done
lemma word_log2_nth_not_set:
"\<lbrakk> word_log2 w < i ; i < size w \<rbrakk> \<Longrightarrow> \<not> w !! i"
unfolding word_log2_def word_clz_def
using takeWhile_take_has_property_nth[where P=Not and xs="to_bl w" and n="size w - Suc i"]
by (fastforce simp add: to_bl_nth word_size)
lemma word_log2_highest:
assumes a: "w !! i"
shows "i \<le> word_log2 w"
proof -
from a have "i < size w" by - (rule test_bit_size)
with a show ?thesis
by - (rule ccontr, simp add: word_log2_nth_not_set)
qed
lemma word_log2_max:
"word_log2 w < size w"
unfolding word_log2_def word_clz_def
by simp
lemma word_clz_0[simp]:
"word_clz (0::'a::len word) \<equiv> len_of (TYPE('a))"
unfolding word_clz_def
by (simp add: takeWhile_replicate)
lemma word_clz_minus_one[simp]:
"word_clz (-1::'a::len word) \<equiv> 0"
unfolding word_clz_def
by (simp add: max_word_bl[simplified max_word_minus] takeWhile_replicate)
lemma word_add_no_overflow:"(x::'a::len word) < max_word \<Longrightarrow> x < x + 1"
using less_x_plus_1 order_less_le by blast
lemma lt_plus_1_le_word:
fixes x :: "'a::len word"
assumes bound:"n < unat (maxBound::'a word)"
shows "x < 1 + of_nat n = (x \<le> of_nat n)"
by (metis add.commute bound max_word_max word_Suc_leq word_not_le word_of_nat_less)
lemma unat_ucast_up_simp:
fixes x :: "'a::len word"
assumes "LENGTH('a) \<le> LENGTH('b)"
shows "unat (ucast x :: 'b::len word) = unat x"
unfolding ucast_def unat_def
apply (subst int_word_uint)
apply (subst mod_pos_pos_trivial; simp?)
apply (rule lt2p_lem)
apply (simp add: assms)
done
lemma unat_ucast_less_no_overflow:
"\<lbrakk>n < 2 ^ LENGTH('a); unat f < n\<rbrakk> \<Longrightarrow> (f::('a::len) word) < of_nat n"
by (erule (1) order_le_less_trans[OF _ of_nat_mono_maybe,rotated]) simp
lemma unat_ucast_less_no_overflow_simp:
"n < 2 ^ LENGTH('a) \<Longrightarrow> (unat f < n) = ((f::('a::len) word) < of_nat n)"
using unat_less_helper unat_ucast_less_no_overflow by blast
lemma unat_ucast_no_overflow_le:
assumes no_overflow: "unat b < (2 :: nat) ^ LENGTH('a)"
and upward_cast: "LENGTH('a) < LENGTH('b)"
shows "(ucast (f::'a::len word) < (b :: 'b :: len word)) = (unat f < unat b)"
proof -
have LR: "ucast f < b \<Longrightarrow> unat f < unat b"
apply (rule unat_less_helper)
apply (simp add:ucast_nat_def)
apply (rule_tac 'b1 = 'b in ucast_less_ucast[THEN iffD1])
apply (rule upward_cast)
apply (simp add: ucast_ucast_mask less_mask_eq word_less_nat_alt
unat_power_lower[OF upward_cast] no_overflow)
done
have RL: "unat f < unat b \<Longrightarrow> ucast f < b"
proof-
assume ineq: "unat f < unat b"
have "ucast (f::'a::len word) < ((ucast (ucast b ::'a::len word)) :: 'b :: len word)"
apply (simp add: ucast_less_ucast upward_cast)
apply (simp add: ucast_nat_def[symmetric])
apply (rule unat_ucast_less_no_overflow[OF no_overflow ineq])
done
then show ?thesis
apply (rule order_less_le_trans)
apply (simp add:ucast_ucast_mask word_and_le2)
done
qed
then show ?thesis by (simp add:RL LR iffI)
qed
(* casting a long word to a shorter word and casting back to the long word
is equal to the original long word -- if the word is small enough.
'l is the longer word.
's is the shorter word.
*)
lemma bl_cast_long_short_long_ingoreLeadingZero_generic:
"\<lbrakk> length (dropWhile Not (to_bl w)) \<le> LENGTH('s); LENGTH('s) \<le> LENGTH('l) \<rbrakk> \<Longrightarrow>
(of_bl :: _ \<Rightarrow> 'l::len word) (to_bl ((of_bl::_ \<Rightarrow> 's::len word) (to_bl w))) = w"
by (rule word_uint_eqI) (simp add: uint_of_bl_is_bl_to_bin uint_of_bl_is_bl_to_bin_drop)
(*
Casting between longer and shorter word.
'l is the longer word.
's is the shorter word.
For example: 'l::len word is 128 word (full ipv6 address)
's::len word is 16 word (address piece of ipv6 address in colon-text-representation)
*)
corollary ucast_short_ucast_long_ingoreLeadingZero:
"\<lbrakk> length (dropWhile Not (to_bl w)) \<le> LENGTH('s); LENGTH('s) \<le> LENGTH('l) \<rbrakk> \<Longrightarrow>
(ucast:: 's::len word \<Rightarrow> 'l::len word) ((ucast:: 'l::len word \<Rightarrow> 's::len word) w) = w"
apply (subst Word.ucast_bl)+
apply (rule bl_cast_long_short_long_ingoreLeadingZero_generic; simp)
done
lemma length_drop_mask:
fixes w::"'a::len word"
shows "length (dropWhile Not (to_bl (w AND mask n))) \<le> n"
proof -
have "length (takeWhile Not (replicate n False @ ls)) = n + length (takeWhile Not ls)"
for ls n by(subst takeWhile_append2) simp+
then show ?thesis
unfolding bl_and_mask by (simp add: dropWhile_eq_drop)
qed
lemma minus_one_word:
"(-1 :: 'a :: len word) = 2 ^ LENGTH('a) - 1"
by simp
lemma mask_exceed:
"n \<ge> LENGTH('a) \<Longrightarrow> (x::'a::len word) && ~~ mask n = 0"
by (simp add: and_not_mask shiftr_eq_0)
lemma two_power_strict_part_mono:
"strict_part_mono {..LENGTH('a) - 1} (\<lambda>x. (2 :: 'a :: len word) ^ x)"
proof -
{ fix n
have "n < LENGTH('a) \<Longrightarrow> strict_part_mono {..n} (\<lambda>x. (2 :: 'a :: len word) ^ x)"
proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
from Suc.prems
have "2 ^ n < (2 :: 'a :: len word) ^ Suc n"
using power_strict_increasing unat_power_lower word_less_nat_alt by fastforce
with Suc
show ?case by (subst strict_part_mono_by_steps) simp
qed
}
then show ?thesis by simp
qed
lemma word_shift_by_2:
"x * 4 = (x::'a::len word) << 2"
by (simp add: shiftl_t2n)
lemma le_2p_upper_bits:
"\<lbrakk> (p::'a::len word) \<le> 2^n - 1; n < LENGTH('a) \<rbrakk> \<Longrightarrow>
\<forall>n'\<ge>n. n' < LENGTH('a) \<longrightarrow> \<not> p !! n'"
by (subst upper_bits_unset_is_l2p; simp)
lemma le2p_bits_unset:
"p \<le> 2 ^ n - 1 \<Longrightarrow> \<forall>n'\<ge>n. n' < LENGTH('a) \<longrightarrow> \<not> (p::'a::len word) !! n'"
using upper_bits_unset_is_l2p [where p=p]
by (cases "n < LENGTH('a)") auto
lemma ucast_less_shiftl_helper:
"\<lbrakk> LENGTH('b) + 2 < LENGTH('a); 2 ^ (LENGTH('b) + 2) \<le> n\<rbrakk>
\<Longrightarrow> (ucast (x :: 'b::len word) << 2) < (n :: 'a::len word)"
apply (erule order_less_le_trans[rotated])
using ucast_less[where x=x and 'a='a]
apply (simp only: shiftl_t2n field_simps)
apply (rule word_less_power_trans2; simp)
done
lemma word_power_nonzero:
"\<lbrakk> (x :: 'a::len word) < 2 ^ (LENGTH('a) - n); n < LENGTH('a); x \<noteq> 0 \<rbrakk>
\<Longrightarrow> x * 2 ^ n \<noteq> 0"
by (metis and_mask_eq_iff_shiftr_0 less_mask_eq p2_gt_0 semiring_normalization_rules(7)
shiftl_shiftr_id shiftl_t2n)
lemma less_1_helper:
"n \<le> m \<Longrightarrow> (n - 1 :: int) < m"
by arith
lemma div_power_helper:
"\<lbrakk> x \<le> y; y < LENGTH('a) \<rbrakk> \<Longrightarrow> (2 ^ y - 1) div (2 ^ x :: 'a::len word) = 2 ^ (y - x) - 1"
apply (rule word_uint.Rep_eqD)
apply (simp only: uint_word_ariths uint_div uint_power_lower)
apply (subst mod_pos_pos_trivial, fastforce, fastforce)+
apply (subst mod_pos_pos_trivial)
apply (simp add: le_diff_eq uint_2p_alt)
apply (rule less_1_helper)
apply (rule power_increasing; simp)
apply (subst mod_pos_pos_trivial)
apply (simp add: uint_2p_alt)
apply (rule less_1_helper)
apply (rule power_increasing; simp)
apply (subst int_div_sub_1; simp add: uint_2p_alt)
apply (subst power_0[symmetric])
apply (simp add: uint_2p_alt le_imp_power_dvd power_sub_int)
done
lemma word_add_power_off:
fixes a :: "'a :: len word"
assumes ak: "a < k"
and kw: "k < 2 ^ (LENGTH('a) - m)"
and mw: "m < LENGTH('a)"
and off: "off < 2 ^ m"
shows "(a * 2 ^ m) + off < k * 2 ^ m"
proof (cases "m = 0")
case True
then show ?thesis using off ak by simp
next
case False
from ak have ak1: "a + 1 \<le> k" by (rule inc_le)
then have "(a + 1) * 2 ^ m \<noteq> 0"
apply -
apply (rule word_power_nonzero)
apply (erule order_le_less_trans [OF _ kw])
apply (rule mw)
apply (rule less_is_non_zero_p1 [OF ak])
done
then have "(a * 2 ^ m) + off < ((a + 1) * 2 ^ m)" using kw mw
apply -
apply (simp add: distrib_right)
apply (rule word_plus_strict_mono_right [OF off])
apply (rule is_aligned_no_overflow'')
apply (rule is_aligned_mult_triv2)
apply assumption
done
also have "\<dots> \<le> k * 2 ^ m" using ak1 mw kw False
apply -
apply (erule word_mult_le_mono1)
apply (simp add: p2_gt_0)
apply (simp add: word_less_nat_alt)
apply (rule nat_less_power_trans2[simplified])
apply (simp add: word_less_nat_alt)
apply simp
done
finally show ?thesis .
qed
lemma offset_not_aligned:
"\<lbrakk> is_aligned (p::'a::len word) n; i > 0; i < 2 ^ n; n < LENGTH('a)\<rbrakk> \<Longrightarrow>
\<not> is_aligned (p + of_nat i) n"
apply (erule is_aligned_add_not_aligned)
unfolding is_aligned_def
by (metis le_unat_uoi nat_dvd_not_less order_less_imp_le unat_power_lower)
lemma length_upto_enum_one:
fixes x :: "'a :: len word"
assumes lt1: "x < y" and lt2: "z < y" and lt3: "x \<le> z"
shows "[x , y .e. z] = [x]"
unfolding upto_enum_step_def
proof (subst upto_enum_red, subst if_not_P [OF leD [OF lt3]], clarsimp, rule conjI)
show "unat ((z - x) div (y - x)) = 0"
proof (subst unat_div, rule div_less)
have syx: "unat (y - x) = unat y - unat x"
by (rule unat_sub [OF order_less_imp_le]) fact
moreover have "unat (z - x) = unat z - unat x"
by (rule unat_sub) fact
ultimately show "unat (z - x) < unat (y - x)"
using lt2 lt3 unat_mono word_less_minus_mono_left by blast
qed
then show "(z - x) div (y - x) * (y - x) = 0"
by (metis mult_zero_left unat_0 word_unat.Rep_eqD)
qed
lemma max_word_mask:
shows "(max_word :: 'a::len word) = mask (LENGTH('a))"
unfolding mask_def by (metis max_word_eq shiftl_1)
lemma is_aligned_alignUp[simp]:
"is_aligned (alignUp p n) n"
by (simp add: alignUp_def complement_def is_aligned_mask mask_def word_bw_assocs)
lemma alignUp_le[simp]:
"alignUp p n \<le> p + 2 ^ n - 1"
unfolding alignUp_def by (rule word_and_le2)
lemma complement_mask:
"complement (2 ^ n - 1) = ~~ mask n"
unfolding complement_def mask_def by simp
lemma alignUp_idem:
fixes a :: "'a::len word"
assumes "is_aligned a n" "n < LENGTH('a)"
shows "alignUp a n = a"
using assms unfolding alignUp_def
by (metis complement_mask is_aligned_add_helper p_assoc_help power_2_ge_iff)
lemma alignUp_not_aligned_eq:
fixes a :: "'a :: len word"
assumes al: "\<not> is_aligned a n"
and sz: "n < LENGTH('a)"
shows "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
proof -
have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz) fact+
then have um: "unat (a mod 2 ^ n - 1) div 2 ^ n = 0" using sz
by (meson Euclidean_Division.div_eq_0_iff le_m1_iff_lt measure_unat order_less_trans
unat_less_power word_less_sub_le word_mod_less_divisor)
have "a + 2 ^ n - 1 = (a div 2 ^ n) * 2 ^ n + (a mod 2 ^ n) + 2 ^ n - 1"
by (simp add: word_mod_div_equality)
also have "\<dots> = (a mod 2 ^ n - 1) + (a div 2 ^ n + 1) * 2 ^ n"
by (simp add: field_simps)
finally show "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" using sz
unfolding alignUp_def
apply (subst complement_mask)
apply (erule ssubst)
apply (subst neg_mask_is_div)
apply (simp add: word_arith_nat_div)
apply (subst unat_word_ariths(1) unat_word_ariths(2))+
apply (subst uno_simps)
apply (subst unat_1)
apply (subst mod_add_right_eq)
apply simp
apply (subst power_mod_div)
apply (subst div_mult_self1)
apply simp
apply (subst um)
apply simp
apply (subst mod_mod_power)
apply simp
apply (subst word_unat_power, subst Abs_fnat_hom_mult)
apply (subst mult_mod_left)
apply (subst power_add [symmetric])
apply simp
apply (subst Abs_fnat_hom_1)
apply (subst Abs_fnat_hom_add)
apply (subst word_unat_power, subst Abs_fnat_hom_mult)
apply (subst word_unat.Rep_inverse[symmetric], subst Abs_fnat_hom_mult)
apply simp
done
qed
lemma alignUp_ge:
fixes a :: "'a :: len word"
assumes sz: "n < LENGTH('a)"
and nowrap: "alignUp a n \<noteq> 0"
shows "a \<le> alignUp a n"
proof (cases "is_aligned a n")
case True
then show ?thesis using sz
by (subst alignUp_idem, simp_all)
next
case False
have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz
by (metis shiftr_div_2n' word_shiftr_lt)
have"2 ^ n * (unat a div 2 ^ n + 1) \<le> 2 ^ LENGTH('a)" using sz
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans nat_less_le)
moreover have "2 ^ n * (unat a div 2 ^ n + 1) \<noteq> 2 ^ LENGTH('a)" using nowrap sz
apply -
apply (erule contrapos_nn)
apply (subst alignUp_not_aligned_eq [OF False sz])
apply (subst unat_arith_simps)
apply (subst unat_word_ariths)
apply (subst unat_word_ariths)
apply simp
apply (subst mult_mod_left)
apply (simp add: unat_div field_simps power_add[symmetric] mod_mod_power min.absorb2)
done
ultimately have lt: "2 ^ n * (unat a div 2 ^ n + 1) < 2 ^ LENGTH('a)" by simp
have "a = a div 2 ^ n * 2 ^ n + a mod 2 ^ n" by (rule word_mod_div_equality [symmetric])
also have "\<dots> < (a div 2 ^ n + 1) * 2 ^ n" using sz lt
apply (simp add: field_simps)
apply (rule word_add_less_mono1)
apply (rule word_mod_less_divisor)
apply (simp add: word_less_nat_alt)
apply (subst unat_word_ariths)
apply (simp add: unat_div)
done
also have "\<dots> = alignUp a n"
by (rule alignUp_not_aligned_eq [symmetric]) fact+
finally show ?thesis by (rule order_less_imp_le)
qed
lemma alignUp_le_greater_al:
fixes x :: "'a :: len word"
assumes le: "a \<le> x"
and sz: "n < LENGTH('a)"
and al: "is_aligned x n"
shows "alignUp a n \<le> x"
proof (cases "is_aligned a n")
case True
then show ?thesis using sz le by (simp add: alignUp_idem)
next
case False
then have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz)
from al obtain k where xk: "x = 2 ^ n * of_nat k" and kv: "k < 2 ^ (LENGTH('a) - n)"
by (auto elim!: is_alignedE)
then have kn: "unat (of_nat k :: 'a word) * unat ((2::'a word) ^ n) < 2 ^ LENGTH('a)"
using sz
apply (subst unat_of_nat_eq)
apply (erule order_less_le_trans)
apply simp
apply (subst mult.commute)
apply simp
apply (rule nat_less_power_trans)
apply simp
apply simp
done
have au: "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
by (rule alignUp_not_aligned_eq) fact+
also have "\<dots> \<le> of_nat k * 2 ^ n"
proof (rule word_mult_le_mono1 [OF inc_le _ kn])
show "a div 2 ^ n < of_nat k" using kv xk le sz anz
by (simp add: alignUp_div_helper)
show "(0:: 'a word) < 2 ^ n" using sz by (simp add: p2_gt_0 sz)
qed
finally show ?thesis using xk by (simp add: field_simps)
qed
lemma alignUp_is_aligned_nz:
fixes a :: "'a :: len word"
assumes al: "is_aligned x n"
and sz: "n < LENGTH('a)"
and ax: "a \<le> x"
and az: "a \<noteq> 0"
shows "alignUp (a::'a :: len word) n \<noteq> 0"
proof (cases "is_aligned a n")
case True
then have "alignUp a n = a" using sz by (simp add: alignUp_idem)
then show ?thesis using az by simp
next
case False
then have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz)
{
assume asm: "alignUp a n = 0"
have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz
by (metis shiftr_div_2n' word_shiftr_lt)
have leq: "2 ^ n * (unat a div 2 ^ n + 1) \<le> 2 ^ LENGTH('a)" using sz
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans
order_less_imp_le)
from al obtain k where kv: "k < 2 ^ (LENGTH('a) - n)" and xk: "x = 2 ^ n * of_nat k"
by (auto elim!: is_alignedE)
then have "a div 2 ^ n < of_nat k" using ax sz anz
by (rule alignUp_div_helper)
then have r: "unat a div 2 ^ n < k" using sz
by (metis unat_div unat_less_helper unat_power_lower)
have "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
by (rule alignUp_not_aligned_eq) fact+
then have "\<dots> = 0" using asm by simp
then have "2 ^ LENGTH('a) dvd 2 ^ n * (unat a div 2 ^ n + 1)"
using sz by (simp add: unat_arith_simps ac_simps)
(simp add: unat_word_ariths mod_simps mod_eq_0_iff_dvd)
with leq have "2 ^ n * (unat a div 2 ^ n + 1) = 2 ^ LENGTH('a)"
by (force elim!: le_SucE)
then have "unat a div 2 ^ n = 2 ^ LENGTH('a) div 2 ^ n - 1"
by (metis (no_types, hide_lams) Groups.add_ac(2) add.right_neutral
add_diff_cancel_left' div_le_dividend div_mult_self4 gr_implies_not0
le_neq_implies_less power_eq_0_iff unat_def zero_neq_numeral)
then have "unat a div 2 ^ n = 2 ^ (LENGTH('a) - n) - 1"
using sz by (simp add: power_sub)
then have "2 ^ (LENGTH('a) - n) - 1 < k" using r
by simp
then have False using kv by simp
} then show ?thesis by clarsimp
qed
lemma alignUp_ar_helper:
fixes a :: "'a :: len word"
assumes al: "is_aligned x n"
and sz: "n < LENGTH('a)"
and sub: "{x..x + 2 ^ n - 1} \<subseteq> {a..b}"
and anz: "a \<noteq> 0"
shows "a \<le> alignUp a n \<and> alignUp a n + 2 ^ n - 1 \<le> b"
proof
from al have xl: "x \<le> x + 2 ^ n - 1" by (simp add: is_aligned_no_overflow)
from xl sub have ax: "a \<le> x"
by (clarsimp elim!: range_subset_lower [where x = x])
show "a \<le> alignUp a n"
proof (rule alignUp_ge)
show "alignUp a n \<noteq> 0" using al sz ax anz
by (rule alignUp_is_aligned_nz)
qed fact+
show "alignUp a n + 2 ^ n - 1 \<le> b"
proof (rule order_trans)
from xl show tp: "x + 2 ^ n - 1 \<le> b" using sub
by (clarsimp elim!: range_subset_upper [where x = x])
from ax have "alignUp a n \<le> x"
by (rule alignUp_le_greater_al) fact+
then have "alignUp a n + (2 ^ n - 1) \<le> x + (2 ^ n - 1)"
using xl al is_aligned_no_overflow' olen_add_eqv word_plus_mcs_3 by blast
then show "alignUp a n + 2 ^ n - 1 \<le> x + 2 ^ n - 1"
by (simp add: field_simps)
qed
qed
lemma alignUp_def2:
"alignUp a sz = a + 2 ^ sz - 1 && ~~ mask sz"
unfolding alignUp_def[unfolded complement_def]
by (simp add:mask_def[symmetric,unfolded shiftl_t2n,simplified])
lemma mask_out_first_mask_some:
"\<lbrakk> x && ~~ mask n = y; n \<le> m \<rbrakk> \<Longrightarrow> x && ~~ mask m = y && ~~ mask m"
by word_eqI_solve
lemma gap_between_aligned:
"\<lbrakk>a < (b :: 'a ::len word); is_aligned a n; is_aligned b n; n < LENGTH('a) \<rbrakk>
\<Longrightarrow> a + (2^n - 1) < b"
by (simp add: aligned_add_offset_less)
lemma mask_out_add_aligned:
assumes al: "is_aligned p n"
shows "p + (q && ~~ mask n) = (p + q) && ~~ mask n"
using mask_add_aligned [OF al]
by (simp add: mask_out_sub_mask)
lemma alignUp_def3:
"alignUp a sz = 2^ sz + (a - 1 && ~~ mask sz)"
by (simp add: alignUp_def2 is_aligned_triv field_simps mask_out_add_aligned)
lemma alignUp_plus:
"is_aligned w us \<Longrightarrow> alignUp (w + a) us = w + alignUp a us"
by (clarsimp simp: alignUp_def2 mask_out_add_aligned field_simps)
lemma mask_lower_twice:
"n \<le> m \<Longrightarrow> (x && ~~ mask n) && ~~ mask m = x && ~~ mask m"
by word_eqI_solve
lemma mask_lower_twice2:
"(a && ~~ mask n) && ~~ mask m = a && ~~ mask (max n m)"
by word_eqI
lemma ucast_and_neg_mask:
"ucast (x && ~~ mask n) = ucast x && ~~ mask n"
by word_eqI_solve
lemma ucast_and_mask:
"ucast (x && mask n) = ucast x && mask n"
by word_eqI_solve
lemma ucast_mask_drop:
"LENGTH('a :: len) \<le> n \<Longrightarrow> (ucast (x && mask n) :: 'a word) = ucast x"
by word_eqI
lemma alignUp_distance:
"alignUp (q :: 'a :: len word) sz - q \<le> mask sz"
by (metis (no_types, lifting) add_diff_cancel_left add_diff_eq alignUp_def2 diff_add_cancel
linordered_field_class.sign_simps(2) mask_2pm1 subtract_mask(2)
word_and_le1 word_sub_le_iff)
lemma is_aligned_diff_neg_mask:
"is_aligned p sz \<Longrightarrow> (p - q && ~~ mask sz) = (p - ((alignUp q sz) && ~~ mask sz))"
apply (clarsimp simp only:word_and_le2 diff_conv_add_uminus)
apply (subst mask_out_add_aligned[symmetric]; simp)
apply (rule sum_to_zero)
apply (subst add.commute)
by (simp add: alignUp_distance and_mask_0_iff_le_mask is_aligned_neg_mask_eq mask_out_add_aligned)
lemma map_bits_rev_to_bl:
"map ((!!) x) [0..<size x] = rev (to_bl x)"
by (auto simp: list_eq_iff_nth_eq test_bit_bl word_size)
(* negating a mask which has been shifted to the very left *)
lemma NOT_mask_shifted_lenword:
"~~ ((mask len << (len_of(TYPE('a)) - len))::'a::len word) = mask (len_of(TYPE('a)) - len)"
by (rule Word.word_bool_alg.compl_unique, simp) word_eqI_solve
(* Comparisons between different word sizes. *)
lemma eq_ucast_ucast_eq:
"LENGTH('b) \<le> LENGTH('a) \<Longrightarrow> x = ucast y \<Longrightarrow> ucast x = y"
for x :: "'a::len word" and y :: "'b::len word"
by (simp add: is_down ucast_id ucast_ucast_a)
lemma le_ucast_ucast_le:
"x \<le> ucast y \<Longrightarrow> ucast x \<le> y"
for x :: "'a::len word" and y :: "'b::len word"
by (smt le_unat_uoi linorder_not_less order_less_imp_le ucast_nat_def unat_arith_simps(1))
lemma less_ucast_ucast_less:
"LENGTH('b) \<le> LENGTH('a) \<Longrightarrow> x < ucast y \<Longrightarrow> ucast x < y"
for x :: "'a::len word" and y :: "'b::len word"
by (metis ucast_nat_def unat_mono unat_ucast_up_simp word_of_nat_less)
lemma ucast_le_ucast:
"LENGTH('a) \<le> LENGTH('b) \<Longrightarrow> (ucast x \<le> (ucast y::'b::len word)) = (x \<le> y)"
for x :: "'a::len word"
by (simp add: unat_arith_simps(1) unat_ucast_up_simp)
lemma ucast_le_ucast_eq:
fixes x y :: "'a::len word"
assumes x: "x < 2 ^ n"
assumes y: "y < 2 ^ n"
assumes n: "n = LENGTH('b::len)"
shows "(UCAST('a \<rightarrow> 'b) x \<le> UCAST('a \<rightarrow> 'b) y) = (x \<le> y)"
apply (rule iffI)
apply (cases "LENGTH('b) < LENGTH('a)")
apply (subst less_mask_eq[OF x, symmetric])
apply (subst less_mask_eq[OF y, symmetric])
apply (unfold n)
apply (subst ucast_ucast_mask[symmetric])+
apply (simp add: ucast_le_ucast)+
apply (erule ucast_mono_le[OF _ y[unfolded n]])
done
lemma word_le_not_less:
"((b::'a::len word) \<le> a) = (\<not>(a < b))"
by fastforce
lemma ucast_or_distrib:
fixes x :: "'a::len word"
fixes y :: "'a::len word"
shows "(ucast (x || y) :: ('b::len) word) = ucast x || ucast y"
unfolding ucast_def Word.bitOR_word.abs_eq uint_or
by blast
lemma shiftr_less:
"(w::'a::len word) < k \<Longrightarrow> w >> n < k"
by (metis div_le_dividend le_less_trans shiftr_div_2n' unat_arith_simps(2))
lemma word_and_notzeroD:
"w && w' \<noteq> 0 \<Longrightarrow> w \<noteq> 0 \<and> w' \<noteq> 0"
by auto
lemma word_clz_max:
"word_clz w \<le> size (w::'a::len word)"
unfolding word_clz_def
by (metis length_takeWhile_le word_size_bl)
lemma word_clz_nonzero_max:
fixes w :: "'a::len word"
assumes nz: "w \<noteq> 0"
shows "word_clz w < size (w::'a::len word)"
proof -
{
assume a: "word_clz w = size (w::'a::len word)"
hence "length (takeWhile Not (to_bl w)) = length (to_bl w)"
by (simp add: word_clz_def word_size)
hence allj: "\<forall>j\<in>set(to_bl w). \<not> j"
by (metis a length_takeWhile_less less_irrefl_nat word_clz_def)
hence "to_bl w = replicate (length (to_bl w)) False"
by (fastforce intro!: list_of_false)
hence "w = 0"
by (metis to_bl_0 word_bl.Rep_eqD word_bl_Rep')
with nz have False by simp
}
thus ?thesis using word_clz_max
by (fastforce intro: le_neq_trans)
qed
lemma unat_add_lem':
"(unat x + unat y < 2 ^ LENGTH('a)) \<Longrightarrow>
(unat (x + y :: 'a :: len word) = unat x + unat y)"
by (subst unat_add_lem[symmetric], assumption)
lemma from_bool_eq_if':
"((if P then 1 else 0) = from_bool Q) = (P = Q)"
by (simp add: case_bool_If from_bool_def split: if_split)
lemma word_exists_nth:
"(w::'a::len word) \<noteq> 0 \<Longrightarrow> \<exists>i. w !! i"
using word_log2_nth_same by blast
lemma shiftr_le_0:
"unat (w::'a::len word) < 2 ^ n \<Longrightarrow> w >> n = (0::'a::len word)"
by (rule word_unat.Rep_eqD) (simp add: shiftr_div_2n')
lemma of_nat_shiftl:
"(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)"
proof -
have "(of_nat x::'a word) << n = of_nat (2 ^ n) * of_nat x"
using shiftl_t2n by (metis word_unat_power)
thus ?thesis by simp
qed
lemma shiftl_1_not_0:
"n < LENGTH('a) \<Longrightarrow> (1::'a::len word) << n \<noteq> 0"
by (simp add: shiftl_t2n)
lemma max_word_not_0[simp]:
"max_word \<noteq> 0"
by (simp add: max_word_minus)
lemma ucast_zero_is_aligned:
"UCAST('a::len \<rightarrow> 'b::len) w = 0 \<Longrightarrow> n \<le> LENGTH('b) \<Longrightarrow> is_aligned w n"
by (clarsimp simp: is_aligned_mask word_eq_iff word_size nth_ucast)
lemma unat_ucast_eq_unat_and_mask:
"unat (UCAST('b::len \<rightarrow> 'a::len) w) = unat (w && mask LENGTH('a))"
proof -
have "unat (UCAST('b \<rightarrow> 'a) w) = unat (UCAST('a \<rightarrow> 'b) (UCAST('b \<rightarrow> 'a) w))"
by (cases "LENGTH('a) < LENGTH('b)"; simp add: is_down ucast_ucast_a unat_ucast_up_simp)
thus ?thesis using ucast_ucast_mask by simp
qed
lemma unat_max_word_pos[simp]: "0 < unat max_word"
by (auto simp: unat_gt_0)
(* Miscellaneous conditional injectivity rules. *)
lemma mult_pow2_inj:
assumes ws: "m + n \<le> LENGTH('a)"
assumes le: "x \<le> mask m" "y \<le> mask m"
assumes eq: "x * 2^n = y * (2^n::'a::len word)"
shows "x = y"
proof (cases n)
case 0 thus ?thesis using eq by simp
next
case (Suc n')
have m_lt: "m < LENGTH('a)" using Suc ws by simp
have xylt: "x < 2^m" "y < 2^m" using le m_lt unfolding mask_2pm1 by auto
have lenm: "n \<le> LENGTH('a) - m" using ws by simp
show ?thesis
using eq xylt
apply (fold shiftl_t2n[where n=n, simplified mult.commute])
apply (simp only: word_bl.Rep_inject[symmetric] bl_shiftl)
apply (erule ssubst[OF less_is_drop_replicate])+
apply (clarsimp elim!: drop_eq_mono[OF lenm])
done
qed
lemma word_of_nat_inj:
assumes bounded: "x < 2 ^ LENGTH('a)" "y < 2 ^ LENGTH('a)"
assumes of_nats: "of_nat x = (of_nat y :: 'a::len word)"
shows "x = y"
by (rule contrapos_pp[OF of_nats]; cases "x < y"; cases "y < x")
(auto dest: bounded[THEN of_nat_mono_maybe])
(* Sign extension from bit n. *)
lemma sign_extend_bitwise_if:
"i < size w \<Longrightarrow> sign_extend e w !! i \<longleftrightarrow> (if i < e then w !! i else w !! e)"
by (simp add: sign_extend_def neg_mask_bang word_size)
lemma sign_extend_bitwise_disj:
"i < size w \<Longrightarrow> sign_extend e w !! i \<longleftrightarrow> i \<le> e \<and> w !! i \<or> e \<le> i \<and> w !! e"
by (auto simp: sign_extend_bitwise_if)
lemma sign_extend_bitwise_cases:
"i < size w \<Longrightarrow> sign_extend e w !! i \<longleftrightarrow> (i \<le> e \<longrightarrow> w !! i) \<and> (e \<le> i \<longrightarrow> w !! e)"
by (auto simp: sign_extend_bitwise_if)
lemmas sign_extend_bitwise_if'[word_eqI_simps] = sign_extend_bitwise_if[simplified word_size]
lemmas sign_extend_bitwise_disj' = sign_extend_bitwise_disj[simplified word_size]
lemmas sign_extend_bitwise_cases' = sign_extend_bitwise_cases[simplified word_size]
(* Often, it is easier to reason about an operation which does not overwrite
the bit which determines which mask operation to apply. *)
lemma sign_extend_def':
"sign_extend n w = (if w !! n then w || ~~ mask (Suc n) else w && mask (Suc n))"
by word_eqI (auto dest: less_antisym)
lemma sign_extended_sign_extend:
"sign_extended n (sign_extend n w)"
by (clarsimp simp: sign_extended_def word_size sign_extend_bitwise_if')
lemma sign_extended_iff_sign_extend:
"sign_extended n w \<longleftrightarrow> sign_extend n w = w"
apply (rule iffI)
apply (word_eqI, rename_tac i)
apply (case_tac "n < i"; simp add: sign_extended_def word_size)
apply (erule subst, rule sign_extended_sign_extend)
done
lemma sign_extended_weaken:
"sign_extended n w \<Longrightarrow> n \<le> m \<Longrightarrow> sign_extended m w"
unfolding sign_extended_def by (cases "n < m") auto
lemma sign_extend_sign_extend_eq:
"sign_extend m (sign_extend n w) = sign_extend (min m n) w"
by word_eqI
lemma sign_extended_high_bits:
"\<lbrakk> sign_extended e p; j < size p; e \<le> i; i < j \<rbrakk> \<Longrightarrow> p !! i = p !! j"
by (drule (1) sign_extended_weaken; simp add: sign_extended_def)
lemma sign_extend_eq:
"w && mask (Suc n) = v && mask (Suc n) \<Longrightarrow> sign_extend n w = sign_extend n v"
by word_eqI_solve
lemma sign_extended_add:
assumes p: "is_aligned p n"
assumes f: "f < 2 ^ n"
assumes e: "n \<le> e"
assumes "sign_extended e p"
shows "sign_extended e (p + f)"
proof (cases "e < size p")
case True
note and_or = is_aligned_add_or[OF p f]
have "\<not> f !! e"
using True e less_2p_is_upper_bits_unset[THEN iffD1, OF f]
by (fastforce simp: word_size)
hence i: "(p + f) !! e = p !! e"
by (simp add: and_or)
have fm: "f && mask e = f"
by (fastforce intro: subst[where P="\<lambda>f. f && mask e = f", OF less_mask_eq[OF f]]
simp: mask_twice e)
show ?thesis
using assms
apply (simp add: sign_extended_iff_sign_extend sign_extend_def i)
apply (simp add: and_or word_bw_comms[of p f])
apply (clarsimp simp: word_ao_dist fm word_bw_assocs split: if_splits)
done
next
case False thus ?thesis
by (simp add: sign_extended_def word_size)
qed
lemma sign_extended_neq_mask:
"\<lbrakk>sign_extended n ptr; m \<le> n\<rbrakk> \<Longrightarrow> sign_extended n (ptr && ~~ mask m)"
by (fastforce simp: sign_extended_def word_size neg_mask_bang)
(* Uints *)
lemma uints_mono_iff: "uints l \<subseteq> uints m \<longleftrightarrow> l \<le> m"
using power_increasing_iff[of "2::int" l m]
apply (auto simp: uints_num subset_iff simp del: power_increasing_iff)
by (meson less_irrefl not_less zle2p)
lemmas uints_monoI = uints_mono_iff[THEN iffD2]
lemma Bit_in_uints_Suc: "w BIT c \<in> uints (Suc m)" if "w \<in> uints m"
using that
by (auto simp: uints_num Bit_def)
lemma Bit_in_uintsI: "w BIT c \<in> uints m" if "w \<in> uints (m - 1)" "m > 0"
using Bit_in_uints_Suc[OF that(1)] that(2)
by auto
lemma bin_cat_in_uintsI: "bin_cat a n b \<in> uints m" if "a \<in> uints l" "m \<ge> l + n"
using that
proof (induction n arbitrary: b m)
case 0
then have "uints l \<subseteq> uints m"
by (intro uints_monoI) auto
then show ?case using 0 by auto
next
case (Suc n)
then show ?case
by (auto intro!: Bit_in_uintsI)
qed
lemma bin_cat_cong: "bin_cat a n b = bin_cat c m d"
if "n = m" "a = c" "bintrunc m b = bintrunc m d"
using that(3) unfolding that(1,2)
proof (induction m arbitrary: b d)
case (Suc m)
show ?case
using Suc.prems by (auto intro: Suc.IH)
qed simp
lemma bin_cat_eqD1: "bin_cat a n b = bin_cat c n d \<Longrightarrow> a = c"
by (induction n arbitrary: b d) auto
lemma bin_cat_eqD2: "bin_cat a n b = bin_cat c n d \<Longrightarrow> bintrunc n b = bintrunc n d"
by (induction n arbitrary: b d) auto
lemma bin_cat_inj: "(bin_cat a n b) = bin_cat c n d \<longleftrightarrow> a = c \<and> bintrunc n b = bintrunc n d"
by (auto intro: bin_cat_cong bin_cat_eqD1 bin_cat_eqD2)
lemma word_of_int_bin_cat_eq_iff:
"(word_of_int (bin_cat (uint a) LENGTH('b) (uint b))::'c::len0 word) =
word_of_int (bin_cat (uint c) LENGTH('b) (uint d)) \<longleftrightarrow> b = d \<and> a = c"
if "LENGTH('a) + LENGTH('b) \<le> LENGTH('c)"
for a::"'a::len0 word" and b::"'b::len0 word"
by (subst word_uint.Abs_inject)
(auto simp: bin_cat_inj intro!: that bin_cat_in_uintsI)
lemma word_cat_inj: "(word_cat a b::'c::len0 word) = word_cat c d \<longleftrightarrow> a = c \<and> b = d"
if "LENGTH('a) + LENGTH('b) \<le> LENGTH('c)"
for a::"'a::len0 word" and b::"'b::len0 word"
by (auto simp: word_cat_def word_uint.Abs_inject word_of_int_bin_cat_eq_iff that)
lemma p2_eq_1: "2 ^ n = (1::'a::len word) \<longleftrightarrow> n = 0"
proof -
have "2 ^ n = (1::'a word) \<Longrightarrow> n = 0"
by (metis One_nat_def not_less one_less_numeral_iff p2_eq_0 p2_gt_0 power_0 power_0
power_inject_exp semiring_norm(76) unat_power_lower zero_neq_one)
then show ?thesis by auto
qed
(* usually: x,y = (len_of TYPE ('a)) *)
lemma bitmagic_zeroLast_leq_or1Last:
"(a::('a::len) word) AND (mask len << x - len) \<le> a OR mask (y - len)"
by (meson le_word_or2 order_trans word_and_le2)
lemma zero_base_lsb_imp_set_eq_as_bit_operation:
fixes base ::"'a::len word"
assumes valid_prefix: "mask (LENGTH('a) - len) AND base = 0"
shows "(base = NOT mask (LENGTH('a) - len) AND a) \<longleftrightarrow>
(a \<in> {base .. base OR mask (LENGTH('a) - len)})"
proof
have helper3: "x OR y = x OR y AND NOT x" for x y ::"'a::len word" by (simp add: word_oa_dist2)
from assms show "base = NOT mask (LENGTH('a) - len) AND a \<Longrightarrow>
a \<in> {base..base OR mask (LENGTH('a) - len)}"
apply(simp add: word_and_le1)
apply(metis helper3 le_word_or2 word_bw_comms(1) word_bw_comms(2))
done
next
assume "a \<in> {base..base OR mask (LENGTH('a) - len)}"
hence a: "base \<le> a \<and> a \<le> base OR mask (LENGTH('a) - len)" by simp
show "base = NOT mask (LENGTH('a) - len) AND a"
proof -
have f2: "\<forall>x\<^sub>0. base AND NOT mask x\<^sub>0 \<le> a AND NOT mask x\<^sub>0"
using a neg_mask_mono_le by blast
have f3: "\<forall>x\<^sub>0. a AND NOT mask x\<^sub>0 \<le> (base OR mask (LENGTH('a) - len)) AND NOT mask x\<^sub>0"
using a neg_mask_mono_le by blast
have f4: "base = base AND NOT mask (LENGTH('a) - len)"
using valid_prefix by (metis mask_eq_0_eq_x word_bw_comms(1))
hence f5: "\<forall>x\<^sub>6. (base OR x\<^sub>6) AND NOT mask (LENGTH('a) - len) =
base OR x\<^sub>6 AND NOT mask (LENGTH('a) - len)"
using word_ao_dist by (metis)
have f6: "\<forall>x\<^sub>2 x\<^sub>3. a AND NOT mask x\<^sub>2 \<le> x\<^sub>3 \<or>
\<not> (base OR mask (LENGTH('a) - len)) AND NOT mask x\<^sub>2 \<le> x\<^sub>3"
using f3 dual_order.trans by auto
have "base = (base OR mask (LENGTH('a) - len)) AND NOT mask (LENGTH('a) - len)"
using f5 by auto
hence "base = a AND NOT mask (LENGTH('a) - len)"
using f2 f4 f6 by (metis eq_iff)
thus "base = NOT mask (LENGTH('a) - len) AND a"
by (metis word_bw_comms(1))
qed
qed
lemma unat_minus_one_word:
"unat (-1 :: 'a :: len word) = 2 ^ LENGTH('a) - 1"
by (subst minus_one_word)
(subst unat_sub_if', clarsimp)
lemma of_nat_eq_signed_scast:
"(of_nat x = (y :: ('a::len) signed word))
= (of_nat x = (scast y :: 'a word))"
by (metis scast_of_nat scast_scast_id(2))
lemma word_ctz_le:
"word_ctz (w :: ('a::len word)) \<le> LENGTH('a)"
apply (clarsimp simp: word_ctz_def)
apply (rule nat_le_Suc_less_imp[where y="LENGTH('a) + 1" , simplified])
apply (rule order_le_less_trans[OF List.length_takeWhile_le])
apply simp
done
lemma word_ctz_less:
"w \<noteq> 0 \<Longrightarrow> word_ctz (w :: ('a::len word)) < LENGTH('a)"
apply (clarsimp simp: word_ctz_def eq_zero_set_bl)
apply (rule order_less_le_trans[OF length_takeWhile_less])
apply fastforce+
done
lemma word_ctz_not_minus_1:
"1 < LENGTH('a) \<Longrightarrow> of_nat (word_ctz (w :: 'a :: len word)) \<noteq> (- 1 :: 'a::len word)"
by (metis (mono_tags) One_nat_def add.right_neutral add_Suc_right le_diff_conv le_less_trans
n_less_equal_power_2 not_le suc_le_pow_2 unat_minus_one_word unat_of_nat_len
word_ctz_le)
lemma word_aligned_add_no_wrap_bounded:
"\<lbrakk> w + 2^n \<le> x; w + 2^n \<noteq> 0; is_aligned w n \<rbrakk> \<Longrightarrow> (w::'a::len word) < x"
by (blast dest: is_aligned_no_overflow le_less_trans word_leq_le_minus_one)
lemma mask_Suc:
"mask (Suc n) = 2^n + mask n"
by (simp add: mask_def)
lemma is_aligned_no_overflow_mask:
"is_aligned x n \<Longrightarrow> x \<le> x + mask n"
by (simp add: mask_def) (erule is_aligned_no_overflow')
lemma is_aligned_mask_offset_unat:
fixes off :: "('a::len) word"
and x :: "'a word"
assumes al: "is_aligned x sz"
and offv: "off \<le> mask sz"
shows "unat x + unat off < 2 ^ LENGTH('a)"
proof cases
assume szv: "sz < LENGTH('a)"
from al obtain k where xv: "x = 2 ^ sz * (of_nat k)"
and kl: "k < 2 ^ (LENGTH('a) - sz)"
by (auto elim: is_alignedE)
from offv szv have offv': "unat off < 2 ^ sz"
by (simp add: mask_2pm1 unat_less_power)
show ?thesis using szv
using al is_aligned_no_wrap''' offv' by blast
next
assume "\<not> sz < LENGTH('a)"
with al have "x = 0" by - word_eqI
thus ?thesis by simp
qed
lemma of_bl_max:
"(of_bl xs :: 'a::len word) \<le> mask (length xs)"
apply (induct xs)
apply simp
apply (simp add: of_bl_Cons mask_Suc)
apply (rule conjI; clarsimp)
apply (erule word_plus_mono_right)
apply (rule is_aligned_no_overflow_mask)
apply (rule is_aligned_triv)
apply (simp add: word_le_nat_alt)
apply (subst unat_add_lem')
apply (rule is_aligned_mask_offset_unat)
apply (rule is_aligned_triv)
apply (simp add: mask_def)
apply simp
done
lemma mask_over_length:
"LENGTH('a) \<le> n \<Longrightarrow> mask n = (-1::'a::len word)"
by (simp add: mask_def)
lemma is_aligned_over_length:
"\<lbrakk> is_aligned p n; LENGTH('a) \<le> n \<rbrakk> \<Longrightarrow> (p::'a::len word) = 0"
by (simp add: is_aligned_mask mask_over_length)
lemma Suc_2p_unat_mask:
"n < LENGTH('a) \<Longrightarrow> Suc (2 ^ n * k + unat (mask n :: 'a::len word)) = 2 ^ n * (k+1)"
by (simp add: unat_mask)
lemma is_aligned_add_step_le:
"\<lbrakk> is_aligned (a::'a::len word) n; is_aligned b n; a < b; b \<le> a + mask n \<rbrakk> \<Longrightarrow> False"
apply (simp flip: not_le)
apply (erule notE)
apply (cases "LENGTH('a) \<le> n")
apply (drule (1) is_aligned_over_length)+
apply (drule mask_over_length)
apply clarsimp
apply (clarsimp simp: word_le_nat_alt not_less)
apply (subst (asm) unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask)
apply (clarsimp simp: is_aligned_def dvd_def word_le_nat_alt)
apply (drule le_imp_less_Suc)
apply (simp add: Suc_2p_unat_mask)
by (metis Groups.mult_ac(2) Suc_leI linorder_not_less mult_le_mono order_refl times_nat.simps(2))
lemma power_2_mult_step_le:
"\<lbrakk>n' \<le> n; 2 ^ n' * k' < 2 ^ n * k\<rbrakk> \<Longrightarrow> 2 ^ n' * (k' + 1) \<le> 2 ^ n * (k::nat)"
apply (cases "n'=n", simp)
apply (metis Suc_leI le_refl mult_Suc_right mult_le_mono semiring_normalization_rules(7))
apply (drule (1) le_neq_trans)
apply clarsimp
apply (subgoal_tac "\<exists>m. n = n' + m")
prefer 2
apply (simp add: le_Suc_ex)
apply (clarsimp simp: power_add)
by (metis Suc_leI mult.assoc mult_Suc_right nat_mult_le_cancel_disj)
lemma aligned_mask_step:
"\<lbrakk> n' \<le> n; p' \<le> p + mask n; is_aligned p n; is_aligned p' n' \<rbrakk> \<Longrightarrow>
(p'::'a::len word) + mask n' \<le> p + mask n"
apply (cases "LENGTH('a) \<le> n")
apply (frule (1) is_aligned_over_length)
apply (drule mask_over_length)
apply clarsimp
apply (simp add: not_le)
apply (simp add: word_le_nat_alt unat_plus_simple)
apply (subst unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask)+
apply (subst (asm) unat_plus_simple[THEN iffD1], erule is_aligned_no_overflow_mask)
apply (clarsimp simp: is_aligned_def dvd_def)
apply (rename_tac k k')
apply (thin_tac "unat p = x" for p x)+
apply (subst Suc_le_mono[symmetric])
apply (simp only: Suc_2p_unat_mask)
apply (drule le_imp_less_Suc, subst (asm) Suc_2p_unat_mask, assumption)
apply (erule (1) power_2_mult_step_le)
done
lemma mask_mono:
"sz' \<le> sz \<Longrightarrow> mask sz' \<le> (mask sz :: 'a::len word)"
by (simp add: le_mask_iff shiftr_mask_le)
lemma aligned_mask_disjoint:
"\<lbrakk> is_aligned (a :: 'a :: len word) n; b \<le> mask n \<rbrakk> \<Longrightarrow> a && b = 0"
by word_eqI_solve
lemma word_and_or_mask_aligned:
"\<lbrakk> is_aligned a n; b \<le> mask n \<rbrakk> \<Longrightarrow> a + b = a || b"
by (simp add: aligned_mask_disjoint word_plus_and_or_coroll)
lemmas word_and_or_mask_aligned2 =
word_and_or_mask_aligned[where a=b and b=a for a b,
simplified add.commute word_bool_alg.disj.commute]
lemma is_aligned_ucastI:
"is_aligned w n \<Longrightarrow> is_aligned (ucast w) n"
by (clarsimp simp: word_eqI_simps)
lemma ucast_le_maskI:
"a \<le> mask n \<Longrightarrow> UCAST('a::len \<rightarrow> 'b::len) a \<le> mask n"
by (metis and_mask_eq_iff_le_mask ucast_and_mask)
lemma ucast_add_mask_aligned:
"\<lbrakk> a \<le> mask n; is_aligned b n \<rbrakk> \<Longrightarrow> UCAST ('a::len \<rightarrow> 'b::len) (a + b) = ucast a + ucast b"
by (metis is_aligned_ucastI ucast_le_maskI ucast_or_distrib word_and_or_mask_aligned2)
lemma ucast_shiftl:
"LENGTH('b) \<le> LENGTH ('a) \<Longrightarrow> UCAST ('a::len \<rightarrow> 'b::len) x << n = ucast (x << n)"
by word_eqI_solve
lemma ucast_leq_mask:
"LENGTH('a) \<le> n \<Longrightarrow> ucast (x::'a::len0 word) \<le> mask n"
by (clarsimp simp: le_mask_high_bits word_size nth_ucast)
lemma shiftl_inj:
"\<lbrakk> x << n = y << n; x \<le> mask (LENGTH('a)-n); y \<le> mask (LENGTH('a)-n) \<rbrakk> \<Longrightarrow>
x = (y :: 'a :: len word)"
sledgehammer
apply word_eqI
apply (rename_tac n')
apply (case_tac "LENGTH('a) - n \<le> n'", simp)
by (metis add.commute add.right_neutral diff_add_inverse le_diff_conv linorder_not_less zero_order(1))
lemma distinct_word_add_ucast_shift_inj:
"\<lbrakk> p + (UCAST('a::len \<rightarrow> 'b::len) off << n) = p' + (ucast off' << n);
is_aligned p n'; is_aligned p' n'; n' = n + LENGTH('a); n' < LENGTH('b) \<rbrakk>
\<Longrightarrow> p' = p \<and> off' = off"
apply (simp add: word_and_or_mask_aligned le_mask_shiftl_le_mask[where n="LENGTH('a)"]
ucast_leq_mask)
apply (simp add: is_aligned_nth)
apply (rule conjI; word_eqI)
apply (metis add.commute bang_conj_lt diff_add_inverse le_diff_conv nat_less_le)
apply (rename_tac i)
apply (erule_tac x="i+n" in allE)
apply simp
done
lemma aligned_add_mask_lessD:
"\<lbrakk> x + mask n < y; is_aligned x n \<rbrakk> \<Longrightarrow> x < y" for y::"'a::len word"
by (metis is_aligned_no_overflow' mask_2pm1 order_le_less_trans)
lemma aligned_add_mask_less_eq:
"\<lbrakk> is_aligned x n; is_aligned y n; n < LENGTH('a) \<rbrakk> \<Longrightarrow> (x + mask n < y) = (x < y)"
for y::"'a::len word"
using aligned_add_mask_lessD is_aligned_add_step_le word_le_not_less by blast
lemma word_upto_Nil:
"y < x \<Longrightarrow> [x .e. y ::'a::len word] = []"
by (simp add: upto_enum_red not_le word_less_nat_alt)
lemma word_enum_decomp_elem:
assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
shows "x \<le> a \<and> a \<le> y"
proof -
have "set as \<subseteq> set [x .e. y] \<and> a \<in> set [x .e. y]"
using assms by (auto dest: arg_cong[where f=set])
then show ?thesis by auto
qed
lemma max_word_not_less[simp]:
"\<not> max_word < x"
by (simp add: not_less)
lemma word_enum_prefix:
"[x .e. (y ::'a::len word)] = as @ a # bs \<Longrightarrow> as = (if x < a then [x .e. a - 1] else [])"
apply (induct as arbitrary: x; clarsimp)
apply (case_tac "x < y")
prefer 2
apply (case_tac "x = y", simp)
apply (simp add: not_less)
apply (drule (1) dual_order.not_eq_order_implies_strict)
apply (simp add: word_upto_Nil)
apply (simp add: word_upto_Cons_eq)
apply (case_tac "x < y")
prefer 2
apply (case_tac "x = y", simp)
apply (simp add: not_less)
apply (drule (1) dual_order.not_eq_order_implies_strict)
apply (simp add: word_upto_Nil)
apply (clarsimp simp: word_upto_Cons_eq)
apply (frule word_enum_decomp_elem)
apply clarsimp
apply (rule conjI)
prefer 2
apply (subst word_Suc_le[symmetric]; clarsimp)
apply (drule meta_spec)
apply (drule (1) meta_mp)
apply clarsimp
apply (rule conjI; clarsimp)
apply (subst (2) word_upto_Cons_eq)
apply unat_arith
apply simp
done
lemma word_enum_decomp_set:
"[x .e. (y ::'a::len word)] = as @ a # bs \<Longrightarrow> a \<notin> set as"
by (metis distinct_append distinct_enum_upto' not_distinct_conv_prefix)
lemma word_enum_decomp:
assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
shows "x \<le> a \<and> a \<le> y \<and> a \<notin> set as \<and> (\<forall>z \<in> set as. x \<le> z \<and> z \<le> y)"
proof -
from assms
have "set as \<subseteq> set [x .e. y] \<and> a \<in> set [x .e. y]"
by (auto dest: arg_cong[where f=set])
with word_enum_decomp_set[OF assms]
show ?thesis by auto
qed
lemma of_nat_unat_le_mask_ucast:
"\<lbrakk>of_nat (unat t) = w; t \<le> mask LENGTH('a)\<rbrakk> \<Longrightarrow> t = UCAST('a::len \<rightarrow> 'b::len) w"
by (clarsimp simp: ucast_nat_def ucast_ucast_mask simp flip: and_mask_eq_iff_le_mask)
end