lh-l4v/lib/Apply_Trace.thy

324 lines
10 KiB
Plaintext

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(* Backend for tracing apply statements. Useful for doing proof step dependency analysis.
* Provides an alternate refinement function which takes an additional stateful journaling operation. *)
theory Apply_Trace
imports Main
begin
ML {*
signature APPLY_TRACE =
sig
val apply_results :
{silent_fail : bool} ->
(Proof.context -> thm -> ((string * int option) * term) list -> unit) ->
Method.text_range -> Proof.state -> Proof.state Seq.result Seq.seq
(* Lower level interface. *)
val can_clear : theory -> bool
val clear_deps : thm -> thm
val join_deps : thm -> thm -> thm
val used_facts : Proof.context -> thm -> ((string * int option) * term) list
val pretty_deps: bool -> (string * Position.T) option -> Proof.context -> thm ->
((string * int option) * term) list -> Pretty.T
end
structure Apply_Trace : APPLY_TRACE =
struct
(*TODO: Add more robust oracle without hyp clearing *)
fun thm_to_cterm keep_hyps thm =
let
val thy = Thm.theory_of_thm thm
val pairs = Thm.tpairs_of thm
val ceqs = map (Thm.global_cterm_of thy o Logic.mk_equals) pairs
val hyps = Thm.chyps_of thm
val prop = Thm.cprop_of thm
val thm' = if keep_hyps then Drule.list_implies (hyps,prop) else prop
in
Drule.list_implies (ceqs,thm') end
val (_, clear_thm_deps') =
Context.>>> (Context.map_theory_result (Thm.add_oracle (Binding.name "count_cheat", thm_to_cterm false)));
fun clear_deps thm =
let
val thm' = try clear_thm_deps' thm
|> Option.map (fold (fn _ => fn t => (@{thm Pure.reflexive} RS t)) (Thm.tpairs_of thm))
in case thm' of SOME thm' => thm' | NONE => error "Can't clear deps here" end
fun can_clear thy = Context.subthy(@{theory},thy)
fun join_deps pre_thm post_thm =
let
val pre_thm' = Thm.flexflex_rule NONE pre_thm |> Seq.hd
|> Thm.adjust_maxidx_thm (Thm.maxidx_of post_thm + 1)
in
Conjunction.intr pre_thm' post_thm |> Conjunction.elim |> snd
end
fun get_ref_from_nm' nm =
let
val exploded = space_explode "_" nm;
val base = List.take (exploded, (length exploded) - 1) |> space_implode "_"
val idx = List.last exploded |> Int.fromString;
in if is_some idx andalso base <> "" then SOME (base, the idx) else NONE end
fun get_ref_from_nm nm = Option.join (try get_ref_from_nm' nm);
fun maybe_nth l = try (curry List.nth l)
fun fact_from_derivation ctxt xnm =
let
val facts = Proof_Context.facts_of ctxt;
(* TODO: Check that exported local fact is equivalent to external one *)
val idx_result =
let
val (name', idx) = get_ref_from_nm xnm |> the;
val entry = try (Facts.retrieve (Context.Proof ctxt) facts) (name', Position.none) |> the;
val thm = maybe_nth (#thms entry) (idx - 1) |> the;
in SOME (xnm, thm) end handle Option => NONE;
fun non_idx_result () =
let
val entry = try (Facts.retrieve (Context.Proof ctxt) facts) (xnm, Position.none) |> the;
val thm = try the_single (#thms entry) |> the;
in SOME (#name entry, thm) end handle Option => NONE;
in
case idx_result of
SOME thm => SOME thm
| NONE => non_idx_result ()
end
fun most_local_fact_of ctxt xnm =
let
val local_name = try (fn xnm => Long_Name.explode xnm |> tl |> tl |> Long_Name.implode) xnm |> the;
in SOME (fact_from_derivation ctxt local_name |> the) end handle Option =>
fact_from_derivation ctxt xnm;
fun thms_of (PBody {thms,...}) = thms
fun proof_body_descend' f get_fact (ident, thm_node) deptab = let
val nm = Proofterm.thm_node_name thm_node
val body = Proofterm.thm_node_body thm_node
in
(if not (f nm) then
(Inttab.update_new (ident, SOME (nm, get_fact nm |> the)) deptab handle Inttab.DUP _ => deptab)
else raise Option) handle Option =>
((fold (proof_body_descend' f get_fact) (thms_of (Future.join body))
(Inttab.update_new (ident, NONE) deptab)) handle Inttab.DUP _ => deptab)
end
fun used_facts' f get_fact thm =
let
val body = thms_of (Thm.proof_body_of thm);
in fold (proof_body_descend' f get_fact) body Inttab.empty end
fun used_pbody_facts ctxt thm =
let
val nm = Thm.get_name_hint thm;
val get_fact = most_local_fact_of ctxt;
in
used_facts' (fn nm' => nm' = "" orelse nm' = nm) get_fact thm
|> Inttab.dest |> map_filter snd |> map snd |> map (apsnd (Thm.prop_of))
end
fun raw_primitive_text f = Method.Basic (fn _ => ((K (fn (ctxt, thm) => Seq.make_results (Seq.single (ctxt, f thm))))))
(*Find local facts from new hyps*)
fun used_local_facts ctxt thm =
let
val hyps = Thm.hyps_of thm
val facts = Proof_Context.facts_of ctxt |> Facts.dest_static true []
fun match_hyp hyp =
let
fun get (nm,thms) =
case (get_index (fn t => if (Thm.prop_of t) aconv hyp then SOME hyp else NONE) thms)
of SOME t => SOME (nm,t)
| NONE => NONE
in
get_first get facts
end
in
map_filter match_hyp hyps end
fun used_facts ctxt thm =
let
val used_from_pbody = used_pbody_facts ctxt thm |> map (fn (nm,t) => ((nm,NONE),t))
val used_from_hyps = used_local_facts ctxt thm |> map (fn (nm,(i,t)) => ((nm,SOME i),t))
in
(used_from_hyps @ used_from_pbody)
end
(* Perform refinement step, and run the given stateful function
against computed dependencies afterwards. *)
fun refine args f text state =
let
val ctxt = Proof.context_of state
val thm = Proof.simple_goal state |> #goal
fun save_deps deps = f ctxt thm deps
in
if (can_clear (Proof.theory_of state)) then
Proof.refine (Method.Combinator (Method.no_combinator_info,Method.Then, [raw_primitive_text (clear_deps),text,
raw_primitive_text (fn thm' => (save_deps (used_facts ctxt thm');join_deps thm thm'))])) state
else
(if (#silent_fail args) then (save_deps [];Proof.refine text state) else error "Apply_Trace theory must be imported to trace applies")
end
(* Boilerplate from Proof.ML *)
fun method_error kind pos state =
Seq.single (Proof_Display.method_error kind pos (Proof.raw_goal state));
fun apply args f text = Proof.assert_backward #> refine args f text #>
Seq.maps_results (Proof.apply ((raw_primitive_text I),(Position.none, Position.none)));
fun apply_results args f (text, range) =
Seq.APPEND (apply args f text, method_error "" (Position.range_position range));
structure Filter_Thms = Named_Thms
(
val name = @{binding no_trace}
val description = "thms to be ignored from tracing"
)
datatype adjusted_name =
FoundName of ((string * int option) * thm)
| UnknownName of (string * term)
(* Parse the index of a theorem name in the form "x_1". *)
fun parse_thm_index name =
case (String.tokens (fn c => c = #"_") name |> rev) of
(possible_index::xs) =>
(case Lexicon.read_nat possible_index of
SOME n => (space_implode "_" (rev xs), SOME (n - 1))
| NONE => (name, NONE))
| _ => (name, NONE)
(*
* Names stored in proof bodies may have the form "x_1" which can either
* mean "x(1)" or "x_1". Attempt to determine the correct name for the
* given theorem. If we can't find the correct theorem, or it is
* ambiguous, return the original name.
*)
fun adjust_thm_name ctxt (name,index) term =
let
val possible_names = case index of NONE => distinct (op =) [(name, NONE), parse_thm_index name]
| SOME i => [(name,SOME i)]
fun match (n, i) =
let
val idx = the_default 0 i
val thms = Proof_Context.get_fact ctxt (Facts.named n) handle ERROR _ => []
in
if idx >= 0 andalso length thms > idx then
if length thms > 1 then
SOME ((n, i), nth thms idx)
else
SOME ((n,NONE), hd thms)
else
NONE
end
in
case map_filter match possible_names of
[x] => FoundName x
| _ => UnknownName (name, term)
end
(* Render the given fact. *)
fun pretty_fact only_names ctxt (FoundName ((name, idx), thm)) =
Pretty.block
([Pretty.mark_str (Facts.markup_extern ctxt (Proof_Context.facts_of ctxt) name),
case idx of
SOME n => Pretty.str ("(" ^ string_of_int (n + 1) ^ ")")
| NONE => Pretty.str ""] @
(if only_names then []
else [Pretty.str ":",Pretty.brk 1, Thm.pretty_thm ctxt thm]))
| pretty_fact _ ctxt (UnknownName (name, prop)) =
Pretty.block
[Pretty.str name, Pretty.str "(?) :", Pretty.brk 1,
Syntax.unparse_term ctxt prop]
fun fact_ref_to_name ((Facts.Named ((nm,_), (SOME [Facts.Single i]))),thm) = FoundName ((nm,SOME i),thm)
| fact_ref_to_name ((Facts.Named ((nm,_), (NONE))),thm) = FoundName ((nm,NONE),thm)
| fact_ref_to_name (_,thm) = UnknownName ("",Thm.prop_of thm)
(* Print out the found dependencies. *)
fun pretty_deps only_names query ctxt thm deps =
let
(* Remove duplicates. *)
val deps = sort_distinct (prod_ord (prod_ord string_ord (option_ord int_ord)) Term_Ord.term_ord) deps
(* Fetch canonical names and theorems. *)
val deps = map (fn (ident, term) => adjust_thm_name ctxt ident term) deps
(* Remove "boring" theorems. *)
val deps = subtract (fn (a, FoundName (_, thm)) => Thm.eq_thm (thm, a)
| _ => false) (Filter_Thms.get ctxt) deps
val deps = case query of SOME (raw_query,pos) =>
let
val pos' = perhaps (try (Position.advance_offset 1)) pos;
val q = Find_Theorems.read_query pos' raw_query;
val results = Find_Theorems.find_theorems_cmd ctxt (SOME thm) (SOME 1000000000) false q
|> snd
|> map fact_ref_to_name;
(* Only consider theorems from our query. *)
val deps = inter (fn (FoundName (nmidx,_), FoundName (nmidx',_)) => nmidx = nmidx'
| _ => false) results deps
in deps end
| _ => deps
in
if only_names then
Pretty.block
(Pretty.separate "" (map ((pretty_fact only_names) ctxt) deps))
else
(* Pretty-print resulting theorems. *)
Pretty.big_list "used theorems:"
(map (Pretty.item o single o (pretty_fact only_names) ctxt) deps)
end
val _ = Context.>> (Context.map_theory Filter_Thms.setup)
end
*}
end