lh-l4v/tools/c-parser/stmt_translation.ML

859 lines
32 KiB
Standard ML

(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
structure stmt_translation =
struct
open ExpressionTranslation TermsTypes Absyn Basics
open ExpressionTyping
fun might_raise trap s =
case snode s of
While (_, _, b) => might_raise trap b
| IfStmt(_, s1, s2) => might_raise trap s1 orelse might_raise trap s2
| Switch(_, cases) =>
List.exists (List.exists (bi_might_raise trap) o #2) cases
| Block bis => List.exists (bi_might_raise trap) bis
| Trap(trap', s) => trap <> trap' andalso might_raise trap s
| Spec(_, slist, _) => List.exists (might_raise trap) slist
| Break => trap = BreakT
| Continue => trap = ContinueT
| _ => false
and bi_might_raise trap (BI_Stmt s) = might_raise trap s
| bi_might_raise _ (BI_Decl _) = false
fun var_updator sg globty k_upd (name, ty, _(*cty*), vsort) newvalue state = let
open CalculateState NameGeneration
val pfx = case vsort of Local _ => local_rcd_name | _ => global_rcd_name
val fullname =
Sign.intern_const sg (pfx ^ "." ^ suffix Record.updateN name)
val statety = type_of state
val newvalue' = if k_upd then K_rec ty $ newvalue else newvalue
in
case vsort of
Local _ => Const(fullname, (ty --> ty) --> (statety --> statety)) $
newvalue' $ state
| NSGlobal => let
val glob_update =
Sign.intern_const sg (suffix Record.updateN "globals")
val globupd_t = #upd (get_globals_data statety globty sg)
val fldupd = Const(fullname, (ty --> ty) --> (globty --> globty))
in
globupd_t $ (fldupd $ newvalue') $ state
end
| AddressedGlobal => raise Fail "var_updator: shouldn't be called on addressed global"
| UntouchedGlobal => raise Fail "var_updator: shouldn't be called on untouched global"
end
fun var_accessor sg globty (name, ty, _ (*cty *), vsort) state = let
open CalculateState NameGeneration
in
case vsort of
Local _ => Const(Sign.intern_const sg (local_rcd_name ^ "." ^ name),
type_of state --> ty) $ state
| NSGlobal => let
val glob_t = #acc (get_globals_data (type_of state) globty sg)
in
Const(Sign.intern_const sg (global_rcd_name ^ "." ^ name),
globty --> ty) $
(glob_t $ state)
end
| AddressedGlobal => raise Fail "var_updator: shouldn't be called on addressed global"
| UntouchedGlobal => raise Fail "var_updator: shouldn't be called on untouched global"
end
(* statement parsers now have type (conceptually)
absyn.stmt -> (term list -> term) * (string * typ) list
the list of strings returned is the strings that need to be parsed to
invariants and the like. The function returned takes the list of
terms generated by the parsing process (which has to happen elsewhere)
and gives back the completed term.
*)
type stmt_result = (term list -> term) * (string * typ) list
fun noparse tm = ((fn [] => tm | _ => raise Fail "noparse"), [])
fun un_noparse (f, []) = f []
| un_noparse _ = raise Fail "noparse"
val single_id = (hd, [("", TermsTypes.bool)])
(* use split_apply when you have a list of stmt_results, and wish to create
a function that takes a list of terms and returns another list of terms *)
fun split_apply f_s_list tlist = let
fun recurse ts f_s_list acc =
case f_s_list of
[] => List.rev acc
| (f,strs)::rest_f_s_list => let
val (f_args, rest_ts) = Library.chop (length strs) ts
in
recurse rest_ts rest_f_s_list (f f_args :: acc)
end
in
recurse tlist f_s_list []
end
fun trans_list f styargs l : stmt_result = let
val parse_results = map f l
fun strip acc s =
case s of
Const(@{const_name "Language.com.Seq"}, _) $ s1 $ s2 =>
strip (strip acc s2) s1
| _ => s::acc
fun stripl acc [] = acc
| stripl acc (s::rest) = strip (stripl acc rest) s
fun doit terms = let
val stmts = split_apply parse_results terms
in
case stripl [] stmts of
[] => mk_skip_t styargs
| list => list_mk_seq list
end
in
(doit, List.concat (map #2 parse_results))
end
fun bilist2stmts [] = []
| bilist2stmts (BI_Stmt st :: rest) = st :: bilist2stmts rest
| bilist2stmts (BI_Decl _ :: rest) = bilist2stmts rest
fun calc_asm_params styargs statety globty thy = let
open CalculateState
val gs = get_standard_globals statety globty thy
val ((ghost_acc, _), _) = #ghost gs
val ((ms_acc, _), _) = #phantom gs
val ((hp_acc, _), _) = #hp gs
val gdata_acc = Abs ("s", domain_type (fastype_of ghost_acc),
HOLogic.mk_prod (ghost_acc $ Bound 0,
@{term "hrs_htd"} $ (hp_acc $ Bound 0)))
val msT = range_type (fastype_of ms_acc)
in
(msT, gdata_acc)
end
fun calc_asm_spec styargs statety globty thy vol spec lval rvals = let
val (msT, gdata_acc) = calc_asm_params styargs statety globty thy
in
mk_asm_spec styargs msT gdata_acc vol spec lval rvals
end
fun calc_asm_semantics_ok_to_ignore styargs statety globty thy vol spec = let
val (msT, _) = calc_asm_params styargs statety globty thy
in
mk_asm_ok_to_ignore msT vol spec
end
fun stmt_term (ctxt : Proof.context)
(cse : ProgramAnalysis.csenv)
(fname : string)
(termbuilders : varinfo termbuilder)
(varinfo : MString.t -> varinfo option)
(fninfo : HPInter.fninfo list)
(statetype : Term.typ)
(globty : Term.typ)
(styargs : Term.typ list)
(ms : bool)
(stmt : Absyn.statement) : stmt_result = let
val stmt_term =
stmt_term ctxt cse fname termbuilders varinfo fninfo
statetype globty styargs ms
val sg = Proof_Context.theory_of ctxt
val progname = Config.get_global sg CalculateState.current_C_filename
val region = Region.make{left = sleft stmt, right = sright stmt}
val error = fn s => error(Region.toString region ^ ": " ^ s)
val this_fn_info = valOf (List.find (fn r => #fname r = fname) fninfo)
handle Option =>
error("No function information for "^ fname)
val expr_term = expr_term ctxt cse termbuilders varinfo
val emptystmt = mk_skip_t styargs
fun stmtl (slist : statement list) = trans_list stmt_term styargs slist
val svar = Free("s", statetype)
val exn_var_data = (NameGeneration.global_exn_var, c_exntype_ty,
true, (* unused parameter *)
CalculateState.Local "cparser'internal")
fun exn_assign value = let
val updator = var_updator sg globty true exn_var_data
in
mk_basic_t styargs $ (mk_abs(svar, updator value svar))
end
val exn_accessor = var_accessor sg globty exn_var_data
fun wrap_cont_on_loop body_tm = let (* handles Continue "exception" *)
val condition =
mk_collect_t statetype $
mk_abs(svar, mk_eqt(exn_accessor svar, Continue_exn))
val check_continue =
mk_cond_t styargs $ condition $ emptystmt $
mk_throw_t styargs
in
mk_catch_t styargs $ body_tm $ check_continue
end
fun wrap_break_on_loop loop_tm = let
val check_break = mk_ccatchbrk sg styargs statetype
in
mk_catch_t styargs $ loop_tm $ check_break
end
fun guard_it (gds : (term -> term * term) list) (com : term) : term = let
fun foldthis (f,com) = let
val (gcond, gtype) = f svar
val gcond_set = mk_collect_t statetype $ mk_abs(svar, gcond)
in
mk_guard gcond_set gtype com
end
in
List.foldr foldthis com gds
end
fun implicit_cast_rval (cty : int ctype) (e : Absyn.expr) : expr_info = let
val e_info = array_decay (strip_kb (expr_term e))
val e_cty = ctype_of e_info
in
if cty = e_cty then e_info
else if assignment_compatible (cty,e_cty,e) then
typecast(sg, cty, e_info)
else error ("Can't assign from type "^tyname e_cty^" to type "^
tyname cty)
end
in
case snode stmt of
Block bilist => stmtl (bilist2stmts bilist)
| Assign(e1, e2) => let
val e1_info = expr_term e1
val e1_cty = ctype_of e1_info
val (e1_lval,e1_rval) = (valOf (lval_of e1_info), rval_of e1_info)
handle Option => error "No lvalue for lhs of assignment"
val e2' =
(* if the lvar on the left is of array type, assume that this is an
initialisation of an array, rather than an attempt to do an
illegal assignment to an array object. Could enforce by having
two Assign forms in the statement type, but for now just rely
on having a C compiler check code for well-formedness *)
case e1_cty of
Array _ => expr_term e2
| _ => implicit_cast_rval e1_cty e2
val gds = guards_of e1_info @ guards_of e2' @
(if ms then lguards_of e1_info else [])
in
noparse (guard_it gds
(mk_basic_t styargs $
mk_abs(svar, e1_lval (rval_of e2' svar) svar)))
end
| LocalInit v_e => let
open TermsTypes
val vname =
case enode v_e of
Var(nm, ref extra) => let
in
case extra of
SOME (_, MungedVar mvi) => MString.dest (#munge mvi)
| _ => error "Confused by lack of variable info"
end
| _ => error "Bad variable being initialised"
val vinfo = expr_term v_e
val vty = CalculateState.ctype_to_typ(sg, ctype_of vinfo)
val acc_ty = statetype --> vty
val acc_name =
Sign.intern_const sg (HoarePackage.varname vname)
val acc_t = Const(acc_name, acc_ty)
val upd_ty = (vty --> vty) --> statetype --> statetype
val upd_name =
Sign.intern_const sg
(suffix Record.updateN
(HoarePackage.varname vname))
val vupd_t = Const (upd_name, upd_ty)
val com_t = Const(@{const_name "lvar_nondet_init"},
acc_ty --> upd_ty --> mk_com_ty styargs)
in
noparse (com_t $ acc_t $ vupd_t)
end
| Auxupd r => let
open MemoryModelExtras
val hrs = (NameGeneration.global_heap_var,
extended_heap_ty,
NONE, (* no corresponding C type *)
CalculateState.NSGlobal)
fun upd r_tm =
mk_abs(svar,
var_updator sg globty false hrs (mk_aux_update (r_tm $ svar))
svar)
fun gcond_set r_tm =
mk_collect_t statetype $ mk_abs(svar, mk_aux_guard (r_tm $ svar))
in
((fn [r_tm] =>
(mk_guard (gcond_set r_tm) safety_error (mk_basic_t styargs $ upd r_tm))),
[(NameGeneration.apt_string r, mk_aux_type statetype)])
end
| Ghostupd s => let
open MemoryModelExtras
val ghostty = case CalculateState.get_ghostty sg progname of
NONE => raise Fail ("No ghosttype data for "^progname)
| SOME typ => typ
val ghostvar = (NameGeneration.global_var NameGeneration.ghost_state_name,
ghostty,
NONE,
CalculateState.NSGlobal)
val stype = mk_prod_ty (bool,ghostty --> ghostty)
val fst = Const(@{const_name "fst"}, stype --> bool)
val snd = Const(@{const_name "snd"}, stype --> ghostty --> ghostty)
fun upd t = mk_abs(svar,
var_updator sg globty false ghostvar (snd $ (t $ svar)) svar)
fun guard t =
mk_collect_t statetype $ mk_abs(svar, fst $ (t $ svar))
in
((fn [t] =>
(mk_guard (guard t)
@{const "GhostStateError"}
(mk_basic_t styargs $ upd t))),
[(NameGeneration.apt_string s, statetype --> stype)])
end
| EmptyStmt => noparse emptystmt
| Trap(trappable, stmt) => let
val (stmtf, stmt_parses) = stmt_term stmt
val wrap0 = case trappable of BreakT => wrap_break_on_loop
| ContinueT => wrap_cont_on_loop
val wrap = if might_raise trappable stmt then wrap0 else (fn x => x)
in
((fn tlist => (wrap (stmtf tlist))), stmt_parses)
end
| While(guard,inv,body) => let
val guard' = mk_isabool (expr_term guard)
val guard_val = rval_of guard'
val guard_guards = guards_of guard'
val guard_tm = mk_collect_t statetype $ mk_abs(svar, guard_val svar)
val var_tm =
mk_arbitrary (mk_set_type (mk_prod_ty(statetype, statetype)))
val (body_f, body_parses) = stmt_term body
fun mkloop body_tm inv_tm = let
val body' = if null guard_guards then body_tm
else list_mk_seq [body_tm, guard_it guard_guards emptystmt]
val base = mk_while_t styargs $ guard_tm $ inv_tm $ var_tm $ body'
in
guard_it guard_guards base
end
in
case inv of
NONE => let
val inv_tm = mk_empty_INV statetype
fun doit tlist = mkloop (body_f tlist) inv_tm
in
(doit, body_parses)
end
| SOME s => let
val parse_needed = (node s, mk_set_type statetype)
fun doit tlist = mkloop (body_f (tl tlist)) (hd tlist)
in
(doit, parse_needed :: body_parses)
end
end
| IfStmt(guard,thenbr,elsebr) => let
val guard_ei = mk_isabool (expr_term guard)
val guard_val = rval_of guard_ei
val then_r as (_, then_parses) = stmt_term thenbr
val else_r as (_, else_parses) = stmt_term elsebr
fun doit tlist = let
val [then_tm, else_tm] = split_apply [then_r, else_r] tlist
in
guard_it (guards_of guard_ei)
(mk_cond_t styargs $
(mk_collect_t statetype $
mk_abs(svar, guard_val svar)) $
then_tm $
else_tm)
end
in
(doit, then_parses @ else_parses)
end
| Return (SOME e) => let
val (retvar_name, retvar_ty, retvar_cty) = (hd (#outparams this_fn_info))
handle Empty =>
error ("No return parameter for function "^fname)
val retvar = Const (Sign.intern_const sg (suffix Record.updateN
(Hoare.varname retvar_name)), (* ??? *)
(retvar_ty --> retvar_ty) --> statetype --> statetype)
val e' = implicit_cast_rval retvar_cty e
val value = mk_abs (svar, rval_of e' svar) (* Is svar safe? *)
in
noparse (guard_it (guards_of e')
(mk_creturn sg styargs statetype retvar value))
end
| Return NONE =>
noparse (mk_creturn_void sg styargs statetype)
| ReturnFnCall (s, args) => let
val (retvar_name, _, cretty) =
hd (#outparams this_fn_info)
handle Empty => error ("No return parameter for function "^fname)
val mvi = MungedVar {munge = MString.mk retvar_name, owned_by = NONE}
val retvar =
ewrap (Var (retvar_name, ref (SOME (cretty, mvi))),
eleft s,
eright s)
val retvar_assign =
un_noparse (stmt_term(swrap(AssignFnCall(SOME retvar, s, args),
sleft stmt, sright stmt)))
val return_t =
un_noparse (stmt_term (swrap(Return (SOME retvar),
sleft stmt, sright stmt)))
in
noparse (list_mk_seq [retvar_assign, return_t])
end
| Break => noparse (mk_cbreak sg styargs statetype)
| Continue => let
val exn_assign = exn_assign Continue_exn
in
noparse (list_mk_seq [exn_assign, mk_throw_t styargs])
end
| EmbFnCall(lval,callname,args) => let
in
stmt_term (swrap (AssignFnCall(SOME lval, callname, args),
sleft stmt,
sright stmt))
end
| AssignFnCall(lvalopt, call_e, args) => let
open ProgramAnalysis
val (HP_call_t, fndes_t, informals, outname_info_opt, callname, callgds) =
case fndes_callinfo cse call_e of
(DirectCall callname, _) => let
fun mk_param (s,ty,ctyopt) =
(HoarePackage.varname s, ty, valOf ctyopt)
handle Option => error ("No C type recorded for "^s^
" in function "^ callname)
val (ips, outopt) =
case List.find (fn {fname,...} => fname = callname) fninfo of
NONE => error ("Unknown function: "^callname)
| SOME r => (#inparams r,
case #outparams r of [] => NONE
| p :: _ => SOME p)
in
(mk_call_t styargs,
mk_VCGfn_name sg callname,
map mk_param ips,
outopt,
callname,
[])
end
| (FnPtrCall(rty, _ (* argtys *)), _) => let
val call_ei = expr_term call_e
open NameGeneration
val naming = Const (Sign.intern_const sg naming_scheme_name,
int --> mk_option_ty string_ty)
val (pbody, pguard) = MemoryModelExtras.mk_lookup_proc_pair
symbol_table naming
(mk_ptr_val (rval_of call_ei svar))
val retinfo =
case rty of
Void => NONE
| _ => SOME (NameGeneration.return_var_name rty |> MString.dest,
CalculateState.ctype_to_typ(sg,rty),
rty)
fun guard s = let
val fptr_val = rval_of call_ei s
in
(mk_conj (@{const "c_fnptr_guard"} $ fptr_val, pguard),
c_guard_error)
end
in
(mk_dyncall_t styargs,
mk_abs(svar, pbody), [], retinfo,
"fn. ptr", [guard])
end
(* call's arguments are:
1. initialisation (copying actual parameters to formals)
2. name of procedure to call (a string in all likelihood)
3. a return modification function where the first argument is the
very original state, and the next one is the final state that is
going to be modified.
4. the continuation, if you like: what to do after returning.
Gets the same parameters as 3 gets.
Doesn't get called with exception returns. Will get called
in a third state again, that pertaining after 3 has been
applied.
*)
(* first step is to match up actuals to formals *)
val actuals = map (fn e => (array_decay (strip_kb (expr_term e)), e)) args
val gds = List.concat (map (fn (ei,_) => guards_of ei) actuals) @
callgds
fun param_to_lval (param_name,ipty,pty) ((actual_info, actuale), st) = let
val fullname =
Sign.intern_const sg (suffix Record.updateN param_name)
val stty = type_of st
val actual_cty = ctype_of actual_info
val coerced_value =
if actual_cty = pty then actual_info
else if assignment_compatible(pty, actual_cty, actuale) then
typecast(sg,pty,actual_info)
else
error ("Actual parameter's type: "^tyname actual_cty^
" is not compatible with formal parameter's type: "^
tyname pty)
val Kupd = K_rec ipty $ rval_of coerced_value svar
in
Const(fullname, (ipty --> ipty) --> (stty --> stty)) $ Kupd $ st
end
val formal_fs = map param_to_lval informals
val _ = if length formal_fs <> length actuals then
error("Number of arguments ("
^Int.toString (length actuals)^
") in call to "^callname^
" doesn't match declarations ("
^Int.toString (length formal_fs)^")")
else ()
fun mkinit formals actuals =
case (formals, actuals) of
([], []) => svar
| (f::fs, ac::acs) => f (ac, mkinit fs acs)
| _ => raise Fail "Catastrophic invariant failure XXX"
val init = mk_abs(svar, mkinit (List.rev formal_fs) (List.rev actuals))
val return = mk_callreturn globty statetype
val result = let
val tvar = Free("t", statetype)
in
case lvalopt of
NONE => let
val skip_equivalent =
mk_basic_t styargs $ mk_abs(svar, svar)
in
mk_abs(svar, mk_abs(tvar, skip_equivalent))
end
| SOME e => let
val lhs_ei = expr_term e
val lhs_cty = ctype_of lhs_ei
val outlval = valOf (lval_of lhs_ei)
handle Option => error "Assigning function call to non-lvalue"
val (outname0, out_typ, out_ctyp) = valOf outname_info_opt
handle Option =>
error ("Using return value from void function "^
callname)
val outname = HoarePackage.varname outname0
fun outrval0 st = let
val fullname = Sign.intern_const sg outname
in
Const(fullname, type_of st --> out_typ) $ st
end
val out_einfo = mk_rval(outrval0, out_ctyp, false, sleft stmt,
sright stmt)
val outrval =
if lhs_cty = out_ctyp then outrval0
else if assignment_compatible(lhs_cty, out_ctyp,
(* expression is irrelevant *)
ewrap(Arbitrary (Signed Int),
SourcePos.bogus,
SourcePos.bogus))
then
rval_of (typecast(sg,lhs_cty,out_einfo))
else
error("Return type of function "^callname^
" not compatible with value assigned to")
val uvar = Free("u", statetype)
in
mk_abs(svar,
mk_abs(tvar,
mk_basic_t styargs $
mk_abs(uvar, outlval (outrval tvar) uvar)))
end
end
in
noparse
(guard_it gds
(HP_call_t $ init $ fndes_t $ return $ result))
end
| Spec((prevar, pre), body, post) => let
val body_r as (_, body_parses) = stmtl body
fun doit tlist = let
val [pre_tm, post_tm, body_tm] =
split_apply [single_id, single_id, body_r] tlist
in
mk_specAnno pre_tm (Abs(prevar, statetype, body_tm)) post_tm
end
fun mk_abs_string s = "\<lambda> "^prevar^" . (" ^ s ^")"
in
(doit, (mk_abs_string pre, statetype --> mk_set_type statetype) ::
(mk_abs_string post, statetype --> mk_set_type statetype) ::
body_parses)
end
| Switch (testexp, cases) => let
(* "The integer promotions are performed on the controlling expression." *)
val e = intprom_ei sg (expr_term testexp)
val testexp_t = ctype_of e
val e_rv = rval_of e
val test_body = e_rv svar
val gty = type_of test_body
val e_test = mk_abs(svar, test_body)
fun mk_case (labs : expr option list, bilist : block_item list) = let
val s_r = stmtl (bilist2stmts bilist)
val lab_t : term = let
fun foldthis (lab,acc) : term = let
(* "The constant expression in each case label is converted to the
* promoted type of the controlling expression." *)
val e = typecast (sg, testexp_t, expr_term (valOf lab))
val e_t = rval_of e svar
in
mk_insert(e_t,acc)
end
in
if labs = [NONE] then mk_UNIV gty
else List.foldl foldthis (mk_empty gty) labs
end
in
(lab_t, s_r)
end
val case_results0 : (term * stmt_result) list = map mk_case cases
val (guards, case_results) = ListPair.unzip case_results0
fun doit tlist = let
val case_ts0 = split_apply case_results tlist
val case_ts1 = ListPair.zip(guards, case_ts0)
val case_ts = map mk_pair case_ts1
in
mk_switch (e_test, HOLogic.mk_list (type_of (hd case_ts)) case_ts)
|> guard_it (guards_of e)
end
in
(doit, List.concat (map #2 case_results))
end
| Chaos expr =>
let
val ei = expr_term expr
val lv = valOf (lval_of ei)
handle Option => error ("Value (" ^ expr_string expr ^
") without l-value passed to Chaos")
val cty = ctype_of ei
val v = Free("v", CalculateState.ctype_to_typ(sg,cty))
val f = list_mk_abs([v,svar], lv v svar)
in
noparse (Const(@{const_name "cchaos"}, type_of f --> mk_com_ty styargs) $ f)
end
| AsmStmt st =>
(let
val (nm, vol, ret, args) = ProgramAnalysis.split_asm_stmt (AsmStmt st)
val sty = hd styargs
val ret = case ret of NONE => (fn x => (fn s => s))
| SOME r => valOf (lval_of (expr_term r))
handle Option => error ("Value (" ^ expr_string r
^ ") without l-value used as asm stmt lval specifier.")
val x = Free ("x", addr_ty)
val ret = mk_abs (x, mk_abs (svar, ret x svar))
val reg_ty = Unsigned Int (* FIXME: not true in 64-bit world. *)
fun conv_arg arg = mk_abs (svar, rval_of (typecast
(sg, reg_ty, expr_term arg)) svar)
handle Option => error ("Value (" ^ expr_string arg
^ ") without r-value used as asm stmt rval specifier.")
val args = map conv_arg args
in
noparse (calc_asm_spec styargs statetype globty sg
(#volatilep st) nm ret args)
end handle Fail str => let
val nm = #head (#asmblock st)
val ok = calc_asm_semantics_ok_to_ignore styargs statetype globty sg
(#volatilep st) nm
val err = unspecified_syntax_error2 str
val guard = mk_collect_t statetype
$ mk_abs (svar, HOLogic.mk_disj (ok, err))
in noparse (mk_guard guard unspecified_syntax_error1 emptystmt) end)
| _ => error ("Can not yet handle "^stmt_type stmt^" statement forms")
end
fun lookup_fld alist (s, f) =
case assoc(alist, s) of
NONE => error ("No struct information for type "^s)
| SOME flds => let
in
case List.find (fn (fldname, ty, cty) => fldname = f) flds of
NONE => error ("No type information for fld "^f^" in struct "^s)
| SOME (_, ty, _) => ty
end
fun rcd_accessor sg rcdinfo (sname, fldname) rcdterm = let
val fullname = Sign.intern_const sg (sname ^ "." ^ fldname)
val fldty = lookup_fld rcdinfo (sname, fldname)
in
Const(fullname, type_of rcdterm --> fldty) $ rcdterm
end
fun rcd_updator sg (sname, fldname) newvalue rcdterm = let
val fullname =
Sign.intern_const sg (sname ^ "." ^ suffix Record.updateN fldname)
val valty = type_of newvalue
val rcdty = type_of rcdterm
val ty = (valty --> valty) --> (rcdty --> rcdty)
val Kupd = K_rec valty $ newvalue
in
Const(fullname, ty) $ Kupd $ rcdterm
end
fun state_vlookup (fname_opt : string option) (s:MString.t) (state:CalculateState.mungedb) = let
in
case CNameTab.lookup state {varname = s, fnname = fname_opt} of
NONE => NONE
| SOME (realnm, ty, cty, vsort) => let
val realnm' = case fname_opt of
NONE => NameGeneration.global_var (MString.dest realnm)
| SOME f => HoarePackage.varname (MString.dest realnm)
in
SOME(realnm',ty,cty,vsort)
end
end
fun state_varlookup fname s state =
(* check to see if it's a normal local variable *)
case state_vlookup (SOME fname) s state of
NONE => let
in
(* check to see if it's a global variable (one accessed through a
pointer) *)
case state_vlookup NONE (NameGeneration.C_global_var s) state of
NONE => let
in
(* check to see if it's a embedded function call return variable *)
case NameGeneration.dest_embret s of
SOME _ => state_vlookup (SOME "") s state
| NONE => NONE
end
| x => x
end
| x => x
fun strip_invs com statetype =
case com of
(c as Const("Language.whileAnno", T)) $ g $ i $ v $ b => let
in
c $ g $ mk_empty_INV statetype $ v $ strip_invs b statetype
end
| (Const("Language.specAnno", T) $ _ $ (Abs(_, _, bdy)) $ _ $ _) => let
in
strip_invs bdy statetype
end
| (t $ g) => strip_invs t statetype $ strip_invs g statetype
| Abs (v, T, b) => Abs (v, T, strip_invs b statetype)
| t => t
(* called so that parsing of invariants etc can be done in a context where
Isabelle variables corresponding to global variables (x_addr, for example)
get the right type *)
fun lookup_addr_vars state = let
fun foldthis ({varname,fnname}, (realnm,ty,cty,vsort)) acc =
case fnname of
NONE => Symtab.update
(NameGeneration.global_addr (MString.dest varname), mk_ptr_ty ty)
acc
| SOME _ => acc
in
CNameTab.fold foldthis state Symtab.empty
end
fun fndefn_term (state : CalculateState.mungedb) cse fninfo rcdinfo ms globty styargs ctxt decl = let
val thy = Proof_Context.theory_of ctxt
open CalculateState
val statetype = hd styargs
val ((_ (* rettype *), fname), _ (* params *), _ (* prepost *), locbodyw) =
decl
val fname = node fname
val bilist = node locbodyw
val _ = tracing ("Translating function "^fname)
val body = bilist2stmts bilist
fun varinfo s = state_varlookup fname s state
val termbuilders : varinfo termbuilder =
TB { var_updator = var_updator thy globty,
var_accessor = var_accessor thy globty,
rcd_updator = rcd_updator thy,
rcd_accessor = rcd_accessor thy rcdinfo}
val (ecenv,senv) = let
open ProgramAnalysis
in
(cse2ecenv cse, get_senv cse)
end
val stmt_trans = stmt_term ctxt cse fname termbuilders
varinfo fninfo
statetype globty styargs ms
val (body_f, body_parses) = trans_list stmt_trans styargs body
val body_parse_terms = let
val ctxt = thy2ctxt thy
val rawterms = map (apfst (Syntax.parse_term ctxt)) body_parses
val typetable = lookup_addr_vars state
fun foldthis (vnm,ty) acc = (Free(vnm, dummyT), Free(vnm, ty)) :: acc
val theta = Symtab.fold foldthis typetable []
fun mapthis (rawterm,ty) = let
val substterm = subst_free theta rawterm
in
Const(@{const_name "HOL.eq"}, dummyT) $ substterm $ mk_arbitrary ty
end
val typedterms = map mapthis rawterms
val checked_terms = Syntax.check_terms ctxt typedterms
in
map (fn (_ $ x $ _) => x) checked_terms
end
val body_stmts = body_f body_parse_terms
(* a function is translated to a TRY body CATCH SKIP END form;
the catch is for any return statements in the body. Other abrupt
terminations would be of break or continue statements, which would
be handled by the looping forms. For this reason the catch doesn't
check to see if the global exn variable has been set appropriately.
If the last statement of the function is not a return, the flow of
control will just fall through the bottom of the function, which is
fine.
*)
val body_stmts' =
case ProgramAnalysis.get_rettype fname cse of
NONE => raise Fail ("No return type info for function "^fname)
| SOME Void => body_stmts
| _ => list_mk_seq [body_stmts,
mk_guard (mk_empty statetype) dont_reach_error
(mk_skip_t styargs)]
val body = mk_catch_t styargs $ body_stmts' $ mk_skip_t styargs
in
(fname, body, strip_invs body statetype)
end
fun extract_defined_functions ast = let
fun recurse acc decls =
case decls of
[] => List.rev acc
| FnDefn p :: ds => recurse (p::acc) ds
| _ :: ds => recurse acc ds
in
recurse [] ast
end
(* this function is directly called by the Isar loop, and is passed the
variable state information, as well as the AST of the C program being
installed
state :
ast : Absyn.ext_decl list
*)
fun define_functions (globty, styargs)
(vdecls : CalculateState.mungedb)
cse
fninfo
rcdinfo
ms
ast
ctxt =
let
open TermsTypes CalculateState
val fns = extract_defined_functions ast
val function_info =
map (fndefn_term vdecls cse fninfo rcdinfo ms globty styargs ctxt) fns
in
function_info
end
end (* struct *)