lh-l4v/lib/Word_Lib_l4v/More_Word_Operations.thy

1126 lines
39 KiB
Plaintext

(*
* Copyright Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
section \<open>Misc word operations\<close>
theory More_Word_Operations
imports
"HOL-Library.Word"
Aligned
Reversed_Bit_Lists
More_Misc
Signed_Words
Word_Lemmas
Many_More
Word_EqI
begin
context
includes bit_operations_syntax
begin
definition
ptr_add :: "'a :: len word \<Rightarrow> nat \<Rightarrow> 'a word" where
"ptr_add ptr n \<equiv> ptr + of_nat n"
definition
alignUp :: "'a::len word \<Rightarrow> nat \<Rightarrow> 'a word" where
"alignUp x n \<equiv> x + 2 ^ n - 1 AND NOT (2 ^ n - 1)"
lemma alignUp_unfold:
\<open>alignUp w n = (w + mask n) AND NOT (mask n)\<close>
by (simp add: alignUp_def mask_eq_exp_minus_1 add_mask_fold)
(* standard notation for blocks of 2^n-1 words, usually aligned;
abbreviation so it simplifies directly *)
abbreviation mask_range :: "'a::len word \<Rightarrow> nat \<Rightarrow> 'a word set" where
"mask_range p n \<equiv> {p .. p + mask n}"
definition
w2byte :: "'a :: len word \<Rightarrow> 8 word" where
"w2byte \<equiv> ucast"
(* Count leading zeros *)
definition
word_clz :: "'a::len word \<Rightarrow> nat"
where
"word_clz w \<equiv> length (takeWhile Not (to_bl w))"
(* Count trailing zeros *)
definition
word_ctz :: "'a::len word \<Rightarrow> nat"
where
"word_ctz w \<equiv> length (takeWhile Not (rev (to_bl w)))"
lemma word_ctz_unfold:
\<open>word_ctz w = length (takeWhile (Not \<circ> bit w) [0..<LENGTH('a)])\<close> for w :: \<open>'a::len word\<close>
by (simp add: word_ctz_def rev_to_bl_eq takeWhile_map)
lemma word_ctz_unfold':
\<open>word_ctz w = Min (insert LENGTH('a) {n. bit w n})\<close> for w :: \<open>'a::len word\<close>
proof (cases \<open>\<exists>n. bit w n\<close>)
case True
then obtain n where \<open>bit w n\<close> ..
from \<open>bit w n\<close> show ?thesis
apply (simp add: word_ctz_unfold)
apply (subst Min_eq_length_takeWhile [symmetric])
apply (auto simp add: bit_imp_le_length)
apply (subst Min_insert)
apply auto
apply (subst min.absorb2)
apply (subst Min_le_iff)
apply auto
apply (meson bit_imp_le_length order_less_le)
done
next
case False
then have \<open>bit w = bot\<close>
by auto
then have \<open>word_ctz w = LENGTH('a)\<close>
by (simp add: word_ctz_def rev_to_bl_eq bot_fun_def map_replicate_const)
with \<open>bit w = bot\<close> show ?thesis
by simp
qed
lemma word_ctz_le:
"word_ctz (w :: ('a::len word)) \<le> LENGTH('a)"
apply (clarsimp simp: word_ctz_def)
using length_takeWhile_le apply (rule order_trans)
apply simp
done
lemma word_ctz_less:
"w \<noteq> 0 \<Longrightarrow> word_ctz (w :: ('a::len word)) < LENGTH('a)"
apply (clarsimp simp: word_ctz_def eq_zero_set_bl)
using length_takeWhile_less apply (rule less_le_trans)
apply auto
done
lemma take_bit_word_ctz_eq [simp]:
\<open>take_bit LENGTH('a) (word_ctz w) = word_ctz w\<close>
for w :: \<open>'a::len word\<close>
apply (simp add: take_bit_nat_eq_self_iff word_ctz_def to_bl_unfold)
using length_takeWhile_le apply (rule le_less_trans)
apply simp
done
lemma word_ctz_not_minus_1:
\<open>word_of_nat (word_ctz (w :: 'a :: len word)) \<noteq> (- 1 :: 'a::len word)\<close> if \<open>1 < LENGTH('a)\<close>
proof -
note word_ctz_le
also from that have \<open>LENGTH('a) < mask LENGTH('a)\<close>
by (simp add: less_mask)
finally have \<open>word_ctz w < mask LENGTH('a)\<close> .
then have \<open>word_of_nat (word_ctz w) < (word_of_nat (mask LENGTH('a)) :: 'a word)\<close>
by (simp add: of_nat_word_less_iff)
also have \<open>\<dots> = - 1\<close>
by (rule bit_word_eqI) (simp add: bit_simps)
finally show ?thesis
by simp
qed
lemma unat_of_nat_ctz_mw:
"unat (of_nat (word_ctz (w :: 'a :: len word)) :: 'a :: len word) = word_ctz w"
by (simp add: unsigned_of_nat)
lemma unat_of_nat_ctz_smw:
"unat (of_nat (word_ctz (w :: 'a :: len word)) :: 'a :: len signed word) = word_ctz w"
by (simp add: unsigned_of_nat)
definition
word_log2 :: "'a::len word \<Rightarrow> nat"
where
"word_log2 (w::'a::len word) \<equiv> size w - 1 - word_clz w"
(* Bit population count. Equivalent of __builtin_popcount. *)
definition
pop_count :: "('a::len) word \<Rightarrow> nat"
where
"pop_count w \<equiv> length (filter id (to_bl w))"
(* Sign extension from bit n *)
definition
sign_extend :: "nat \<Rightarrow> 'a::len word \<Rightarrow> 'a word"
where
"sign_extend n w \<equiv> if bit w n then w OR NOT (mask n) else w AND mask n"
lemma sign_extend_eq_signed_take_bit:
\<open>sign_extend = signed_take_bit\<close>
proof (rule ext)+
fix n and w :: \<open>'a::len word\<close>
show \<open>sign_extend n w = signed_take_bit n w\<close>
proof (rule bit_word_eqI)
fix q
assume \<open>q < LENGTH('a)\<close>
then show \<open>bit (sign_extend n w) q \<longleftrightarrow> bit (signed_take_bit n w) q\<close>
by (auto simp add: bit_signed_take_bit_iff
sign_extend_def bit_and_iff bit_or_iff bit_not_iff bit_mask_iff not_less
exp_eq_0_imp_not_bit not_le min_def)
qed
qed
definition
sign_extended :: "nat \<Rightarrow> 'a::len word \<Rightarrow> bool"
where
"sign_extended n w \<equiv> \<forall>i. n < i \<longrightarrow> i < size w \<longrightarrow> bit w i = bit w n"
lemma ptr_add_0 [simp]:
"ptr_add ref 0 = ref "
unfolding ptr_add_def by simp
lemma pop_count_0[simp]:
"pop_count 0 = 0"
by (clarsimp simp:pop_count_def)
lemma pop_count_1[simp]:
"pop_count 1 = 1"
by (clarsimp simp:pop_count_def to_bl_1)
lemma pop_count_0_imp_0:
"(pop_count w = 0) = (w = 0)"
apply (rule iffI)
apply (clarsimp simp:pop_count_def)
apply (subst (asm) filter_empty_conv)
apply (clarsimp simp:eq_zero_set_bl)
apply fast
apply simp
done
lemma word_log2_zero_eq [simp]:
\<open>word_log2 0 = 0\<close>
by (simp add: word_log2_def word_clz_def word_size)
lemma word_log2_unfold:
\<open>word_log2 w = (if w = 0 then 0 else Max {n. bit w n})\<close>
for w :: \<open>'a::len word\<close>
proof (cases \<open>w = 0\<close>)
case True
then show ?thesis
by simp
next
case False
then obtain r where \<open>bit w r\<close>
by (auto simp add: bit_eq_iff)
then have \<open>Max {m. bit w m} = LENGTH('a) - Suc (length
(takeWhile (Not \<circ> bit w) (rev [0..<LENGTH('a)])))\<close>
by (subst Max_eq_length_takeWhile [of _ \<open>LENGTH('a)\<close>])
(auto simp add: bit_imp_le_length)
then have \<open>word_log2 w = Max {x. bit w x}\<close>
by (simp add: word_log2_def word_clz_def word_size to_bl_unfold rev_map takeWhile_map)
with \<open>w \<noteq> 0\<close> show ?thesis
by simp
qed
lemma word_log2_eqI:
\<open>word_log2 w = n\<close>
if \<open>w \<noteq> 0\<close> \<open>bit w n\<close> \<open>\<And>m. bit w m \<Longrightarrow> m \<le> n\<close>
for w :: \<open>'a::len word\<close>
proof -
from \<open>w \<noteq> 0\<close> have \<open>word_log2 w = Max {n. bit w n}\<close>
by (simp add: word_log2_unfold)
also have \<open>Max {n. bit w n} = n\<close>
using that by (auto intro: Max_eqI)
finally show ?thesis .
qed
lemma bit_word_log2:
\<open>bit w (word_log2 w)\<close> if \<open>w \<noteq> 0\<close>
proof -
from \<open>w \<noteq> 0\<close> have \<open>\<exists>r. bit w r\<close>
by (auto intro: bit_eqI)
then obtain r where \<open>bit w r\<close> ..
from \<open>w \<noteq> 0\<close> have \<open>word_log2 w = Max {n. bit w n}\<close>
by (simp add: word_log2_unfold)
also have \<open>Max {n. bit w n} \<in> {n. bit w n}\<close>
using \<open>bit w r\<close> by (subst Max_in) auto
finally show ?thesis
by simp
qed
lemma word_log2_maximum:
\<open>n \<le> word_log2 w\<close> if \<open>bit w n\<close>
proof -
have \<open>n \<le> Max {n. bit w n}\<close>
using that by (auto intro: Max_ge)
also from that have \<open>w \<noteq> 0\<close>
by force
then have \<open>Max {n. bit w n} = word_log2 w\<close>
by (simp add: word_log2_unfold)
finally show ?thesis .
qed
lemma word_log2_nth_same:
"w \<noteq> 0 \<Longrightarrow> bit w (word_log2 w)"
by (drule bit_word_log2) simp
lemma word_log2_nth_not_set:
"\<lbrakk> word_log2 w < i ; i < size w \<rbrakk> \<Longrightarrow> \<not> bit w i"
using word_log2_maximum [of w i] by auto
lemma word_log2_highest:
assumes a: "bit w i"
shows "i \<le> word_log2 w"
using a by (simp add: word_log2_maximum)
lemma word_log2_max:
"word_log2 w < size w"
apply (cases \<open>w = 0\<close>)
apply (simp_all add: word_size)
apply (drule bit_word_log2)
apply (fact bit_imp_le_length)
done
lemma word_clz_0[simp]:
"word_clz (0::'a::len word) = LENGTH('a)"
unfolding word_clz_def by simp
lemma word_clz_minus_one[simp]:
"word_clz (-1::'a::len word) = 0"
unfolding word_clz_def by simp
lemma is_aligned_alignUp[simp]:
"is_aligned (alignUp p n) n"
by (simp add: alignUp_def is_aligned_mask mask_eq_decr_exp word_bw_assocs)
lemma alignUp_le[simp]:
"alignUp p n \<le> p + 2 ^ n - 1"
unfolding alignUp_def by (rule word_and_le2)
lemma alignUp_idem:
fixes a :: "'a::len word"
assumes "is_aligned a n" "n < LENGTH('a)"
shows "alignUp a n = a"
using assms unfolding alignUp_def
by (metis add_cancel_right_right add_diff_eq and_mask_eq_iff_le_mask mask_eq_decr_exp mask_out_add_aligned order_refl word_plus_and_or_coroll2)
lemma alignUp_not_aligned_eq:
fixes a :: "'a :: len word"
assumes al: "\<not> is_aligned a n"
and sz: "n < LENGTH('a)"
shows "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
proof -
from \<open>n < LENGTH('a)\<close> have \<open>(2::int) ^ n < 2 ^ LENGTH('a)\<close>
by simp
with take_bit_int_less_exp [of n]
have *: \<open>take_bit n k < 2 ^ LENGTH('a)\<close> for k :: int
by (rule less_trans)
have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz) fact+
then have um: "unat (a mod 2 ^ n - 1) div 2 ^ n = 0"
apply (transfer fixing: n) using sz
apply (simp flip: take_bit_eq_mod add: div_eq_0_iff)
apply (subst take_bit_int_eq_self)
using *
apply (auto simp add: diff_less_eq intro: less_imp_le)
apply (simp add: less_le)
done
have "a + 2 ^ n - 1 = (a div 2 ^ n) * 2 ^ n + (a mod 2 ^ n) + 2 ^ n - 1"
by (simp add: word_mod_div_equality)
also have "\<dots> = (a mod 2 ^ n - 1) + (a div 2 ^ n + 1) * 2 ^ n"
by (simp add: field_simps)
finally show "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n" using sz
unfolding alignUp_def
apply (subst mask_eq_decr_exp [symmetric])
apply (erule ssubst)
apply (subst neg_mask_is_div)
apply (simp add: word_arith_nat_div)
apply (subst unat_word_ariths(1) unat_word_ariths(2))+
apply (subst uno_simps)
apply (subst unat_1)
apply (subst mod_add_right_eq)
apply simp
apply (subst power_mod_div)
apply (subst div_mult_self1)
apply simp
apply (subst um)
apply simp
apply (subst mod_mod_power)
apply simp
apply (subst word_unat_power, subst Abs_fnat_hom_mult)
apply (subst mult_mod_left)
apply (subst power_add [symmetric])
apply simp
apply (subst Abs_fnat_hom_1)
apply (subst Abs_fnat_hom_add)
apply (subst word_unat_power, subst Abs_fnat_hom_mult)
apply (subst word_unat.Rep_inverse[symmetric], subst Abs_fnat_hom_mult)
apply simp
done
qed
lemma alignUp_ge:
fixes a :: "'a :: len word"
assumes sz: "n < LENGTH('a)"
and nowrap: "alignUp a n \<noteq> 0"
shows "a \<le> alignUp a n"
proof (cases "is_aligned a n")
case True
then show ?thesis using sz
by (subst alignUp_idem, simp_all)
next
case False
have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz
by (metis le_add_diff_inverse2 less_mult_imp_div_less order_less_imp_le power_add unsigned_less)
have"2 ^ n * (unat a div 2 ^ n + 1) \<le> 2 ^ LENGTH('a)" using sz
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans nat_less_le)
moreover have "2 ^ n * (unat a div 2 ^ n + 1) \<noteq> 2 ^ LENGTH('a)" using nowrap sz
apply -
apply (erule contrapos_nn)
apply (subst alignUp_not_aligned_eq [OF False sz])
apply (subst unat_arith_simps)
apply (subst unat_word_ariths)
apply (subst unat_word_ariths)
apply simp
apply (subst mult_mod_left)
apply (simp add: unat_div field_simps power_add[symmetric] mod_mod_power)
done
ultimately have lt: "2 ^ n * (unat a div 2 ^ n + 1) < 2 ^ LENGTH('a)" by simp
have "a = a div 2 ^ n * 2 ^ n + a mod 2 ^ n" by (rule word_mod_div_equality [symmetric])
also have "\<dots> < (a div 2 ^ n + 1) * 2 ^ n" using sz lt
apply (simp add: field_simps)
apply (rule word_add_less_mono1)
apply (rule word_mod_less_divisor)
apply (simp add: word_less_nat_alt)
apply (subst unat_word_ariths)
apply (simp add: unat_div)
done
also have "\<dots> = alignUp a n"
by (rule alignUp_not_aligned_eq [symmetric]) fact+
finally show ?thesis by (rule order_less_imp_le)
qed
lemma alignUp_le_greater_al:
fixes x :: "'a :: len word"
assumes le: "a \<le> x"
and sz: "n < LENGTH('a)"
and al: "is_aligned x n"
shows "alignUp a n \<le> x"
proof (cases "is_aligned a n")
case True
then show ?thesis using sz le by (simp add: alignUp_idem)
next
case False
then have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz)
from al obtain k where xk: "x = 2 ^ n * of_nat k" and kv: "k < 2 ^ (LENGTH('a) - n)"
by (auto elim!: is_alignedE)
then have kn: "unat (of_nat k :: 'a word) * unat ((2::'a word) ^ n) < 2 ^ LENGTH('a)"
using sz
apply (subst unat_of_nat_eq)
apply (erule order_less_le_trans)
apply simp
apply (subst mult.commute)
apply simp
apply (rule nat_less_power_trans)
apply simp
apply simp
done
have au: "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
by (rule alignUp_not_aligned_eq) fact+
also have "\<dots> \<le> of_nat k * 2 ^ n"
proof (rule word_mult_le_mono1 [OF inc_le _ kn])
show "a div 2 ^ n < of_nat k" using kv xk le sz anz
by (simp add: alignUp_div_helper)
show "(0:: 'a word) < 2 ^ n" using sz by (simp add: p2_gt_0 sz)
qed
finally show ?thesis using xk by (simp add: field_simps)
qed
lemma alignUp_is_aligned_nz:
fixes a :: "'a :: len word"
assumes al: "is_aligned x n"
and sz: "n < LENGTH('a)"
and ax: "a \<le> x"
and az: "a \<noteq> 0"
shows "alignUp (a::'a :: len word) n \<noteq> 0"
proof (cases "is_aligned a n")
case True
then have "alignUp a n = a" using sz by (simp add: alignUp_idem)
then show ?thesis using az by simp
next
case False
then have anz: "a mod 2 ^ n \<noteq> 0"
by (rule not_aligned_mod_nz)
{
assume asm: "alignUp a n = 0"
have lt0: "unat a div 2 ^ n < 2 ^ (LENGTH('a) - n)" using sz
by (metis le_add_diff_inverse2 less_mult_imp_div_less order_less_imp_le power_add unsigned_less)
have leq: "2 ^ n * (unat a div 2 ^ n + 1) \<le> 2 ^ LENGTH('a)" using sz
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right lt0 nat_le_power_trans
order_less_imp_le)
from al obtain k where kv: "k < 2 ^ (LENGTH('a) - n)" and xk: "x = 2 ^ n * of_nat k"
by (auto elim!: is_alignedE)
then have "a div 2 ^ n < of_nat k" using ax sz anz
by (rule alignUp_div_helper)
then have r: "unat a div 2 ^ n < k" using sz
by (simp flip: drop_bit_eq_div unat_drop_bit_eq) (metis leI le_unat_uoi unat_mono)
have "alignUp a n = (a div 2 ^ n + 1) * 2 ^ n"
by (rule alignUp_not_aligned_eq) fact+
then have "\<dots> = 0" using asm by simp
then have "2 ^ LENGTH('a) dvd 2 ^ n * (unat a div 2 ^ n + 1)"
using sz by (simp add: unat_arith_simps ac_simps)
(simp add: unat_word_ariths mod_simps mod_eq_0_iff_dvd)
with leq have "2 ^ n * (unat a div 2 ^ n + 1) = 2 ^ LENGTH('a)"
by (force elim!: le_SucE)
then have "unat a div 2 ^ n = 2 ^ LENGTH('a) div 2 ^ n - 1"
by (metis (no_types, opaque_lifting) Groups.add_ac(2) add.right_neutral
add_diff_cancel_left' div_le_dividend div_mult_self4 gr_implies_not0
le_neq_implies_less power_eq_0_iff zero_neq_numeral)
then have "unat a div 2 ^ n = 2 ^ (LENGTH('a) - n) - 1"
using sz by (simp add: power_sub)
then have "2 ^ (LENGTH('a) - n) - 1 < k" using r
by simp
then have False using kv by simp
} then show ?thesis by clarsimp
qed
lemma alignUp_ar_helper:
fixes a :: "'a :: len word"
assumes al: "is_aligned x n"
and sz: "n < LENGTH('a)"
and sub: "{x..x + 2 ^ n - 1} \<subseteq> {a..b}"
and anz: "a \<noteq> 0"
shows "a \<le> alignUp a n \<and> alignUp a n + 2 ^ n - 1 \<le> b"
proof
from al have xl: "x \<le> x + 2 ^ n - 1" by (simp add: is_aligned_no_overflow)
from xl sub have ax: "a \<le> x"
by auto
show "a \<le> alignUp a n"
proof (rule alignUp_ge)
show "alignUp a n \<noteq> 0" using al sz ax anz
by (rule alignUp_is_aligned_nz)
qed fact+
show "alignUp a n + 2 ^ n - 1 \<le> b"
proof (rule order_trans)
from xl show tp: "x + 2 ^ n - 1 \<le> b" using sub
by auto
from ax have "alignUp a n \<le> x"
by (rule alignUp_le_greater_al) fact+
then have "alignUp a n + (2 ^ n - 1) \<le> x + (2 ^ n - 1)"
using xl al is_aligned_no_overflow' olen_add_eqv word_plus_mcs_3 by blast
then show "alignUp a n + 2 ^ n - 1 \<le> x + 2 ^ n - 1"
by (simp add: field_simps)
qed
qed
lemma alignUp_def2:
"alignUp a sz = a + 2 ^ sz - 1 AND NOT (mask sz)"
by (simp add: alignUp_def flip: mask_eq_decr_exp)
lemma alignUp_def3:
"alignUp a sz = 2^ sz + (a - 1 AND NOT (mask sz))"
by (simp add: alignUp_def2 is_aligned_triv field_simps mask_out_add_aligned)
lemma alignUp_plus:
"is_aligned w us \<Longrightarrow> alignUp (w + a) us = w + alignUp a us"
by (clarsimp simp: alignUp_def2 mask_out_add_aligned field_simps)
lemma alignUp_distance:
"alignUp (q :: 'a :: len word) sz - q \<le> mask sz"
by (metis (no_types) add.commute add_diff_cancel_left alignUp_def2 diff_add_cancel
mask_2pm1 subtract_mask(2) word_and_le1 word_sub_le_iff)
lemma is_aligned_diff_neg_mask:
"is_aligned p sz \<Longrightarrow> (p - q AND NOT (mask sz)) = (p - ((alignUp q sz) AND NOT (mask sz)))"
apply (clarsimp simp only:word_and_le2 diff_conv_add_uminus)
apply (subst mask_out_add_aligned[symmetric]; simp)
apply (simp add: eq_neg_iff_add_eq_0)
apply (subst add.commute)
apply (simp add: alignUp_distance is_aligned_neg_mask_eq mask_out_add_aligned and_mask_eq_iff_le_mask flip: mask_eq_x_eq_0)
done
lemma word_clz_max:
"word_clz w \<le> size (w::'a::len word)"
unfolding word_clz_def
by (metis length_takeWhile_le word_size_bl)
lemma word_clz_nonzero_max:
fixes w :: "'a::len word"
assumes nz: "w \<noteq> 0"
shows "word_clz w < size (w::'a::len word)"
proof -
{
assume a: "word_clz w = size (w::'a::len word)"
hence "length (takeWhile Not (to_bl w)) = length (to_bl w)"
by (simp add: word_clz_def word_size)
hence allj: "\<forall>j\<in>set(to_bl w). \<not> j"
by (metis a length_takeWhile_less less_irrefl_nat word_clz_def)
hence "to_bl w = replicate (length (to_bl w)) False"
using eq_zero_set_bl nz by fastforce
hence "w = 0"
by (metis to_bl_0 word_bl.Rep_eqD word_bl_Rep')
with nz have False by simp
}
thus ?thesis using word_clz_max
by (fastforce intro: le_neq_trans)
qed
(* Sign extension from bit n. *)
lemma bin_sign_extend_iff [bit_simps]:
\<open>bit (sign_extend e w) i \<longleftrightarrow> bit w (min e i)\<close>
if \<open>i < LENGTH('a)\<close> for w :: \<open>'a::len word\<close>
using that by (simp add: sign_extend_def bit_simps min_def)
lemma sign_extend_bitwise_if:
"i < size w \<Longrightarrow> bit (sign_extend e w) i \<longleftrightarrow> (if i < e then bit w i else bit w e)"
by (simp add: word_size bit_simps)
lemma sign_extend_bitwise_if' [word_eqI_simps]:
\<open>i < LENGTH('a) \<Longrightarrow> bit (sign_extend e w) i \<longleftrightarrow> (if i < e then bit w i else bit w e)\<close>
for w :: \<open>'a::len word\<close>
using sign_extend_bitwise_if [of i w e] by (simp add: word_size)
lemma sign_extend_bitwise_disj:
"i < size w \<Longrightarrow> bit (sign_extend e w) i \<longleftrightarrow> i \<le> e \<and> bit w i \<or> e \<le> i \<and> bit w e"
by (auto simp: sign_extend_bitwise_if)
lemma sign_extend_bitwise_cases:
"i < size w \<Longrightarrow> bit (sign_extend e w) i \<longleftrightarrow> (i \<le> e \<longrightarrow> bit w i) \<and> (e \<le> i \<longrightarrow> bit w e)"
by (auto simp: sign_extend_bitwise_if)
lemmas sign_extend_bitwise_disj' = sign_extend_bitwise_disj[simplified word_size]
lemmas sign_extend_bitwise_cases' = sign_extend_bitwise_cases[simplified word_size]
(* Often, it is easier to reason about an operation which does not overwrite
the bit which determines which mask operation to apply. *)
lemma sign_extend_def':
"sign_extend n w = (if bit w n then w OR NOT (mask (Suc n)) else w AND mask (Suc n))"
by (rule bit_word_eqI) (auto simp add: bit_simps sign_extend_eq_signed_take_bit min_def less_Suc_eq_le)
lemma sign_extended_sign_extend:
"sign_extended n (sign_extend n w)"
by (clarsimp simp: sign_extended_def word_size sign_extend_bitwise_if)
lemma sign_extended_iff_sign_extend:
"sign_extended n w \<longleftrightarrow> sign_extend n w = w"
apply auto
apply (auto simp add: bit_eq_iff)
apply (simp_all add: bit_simps sign_extend_eq_signed_take_bit not_le min_def sign_extended_def word_size split: if_splits)
using le_imp_less_or_eq apply auto
done
lemma sign_extended_weaken:
"sign_extended n w \<Longrightarrow> n \<le> m \<Longrightarrow> sign_extended m w"
unfolding sign_extended_def by (cases "n < m") auto
lemma sign_extend_sign_extend_eq:
"sign_extend m (sign_extend n w) = sign_extend (min m n) w"
by (rule bit_word_eqI) (simp add: sign_extend_eq_signed_take_bit bit_simps)
lemma sign_extended_high_bits:
"\<lbrakk> sign_extended e p; j < size p; e \<le> i; i < j \<rbrakk> \<Longrightarrow> bit p i = bit p j"
by (drule (1) sign_extended_weaken; simp add: sign_extended_def)
lemma sign_extend_eq:
"w AND mask (Suc n) = v AND mask (Suc n) \<Longrightarrow> sign_extend n w = sign_extend n v"
by (simp flip: take_bit_eq_mask add: sign_extend_eq_signed_take_bit signed_take_bit_eq_iff_take_bit_eq)
lemma sign_extended_add:
assumes p: "is_aligned p n"
assumes f: "f < 2 ^ n"
assumes e: "n \<le> e"
assumes "sign_extended e p"
shows "sign_extended e (p + f)"
proof (cases "e < size p")
case True
note and_or = is_aligned_add_or[OF p f]
have "\<not> bit f e"
using True e less_2p_is_upper_bits_unset[THEN iffD1, OF f]
by (fastforce simp: word_size)
hence i: "bit (p + f) e = bit p e"
by (simp add: and_or bit_simps)
have fm: "f AND mask e = f"
by (fastforce intro: subst[where P="\<lambda>f. f AND mask e = f", OF less_mask_eq[OF f]]
simp: mask_twice e)
show ?thesis
using assms
apply (simp add: sign_extended_iff_sign_extend sign_extend_def i)
apply (simp add: and_or word_bw_comms[of p f])
apply (clarsimp simp: word_ao_dist fm word_bw_assocs split: if_splits)
done
next
case False thus ?thesis
by (simp add: sign_extended_def word_size)
qed
lemma sign_extended_neq_mask:
"\<lbrakk>sign_extended n ptr; m \<le> n\<rbrakk> \<Longrightarrow> sign_extended n (ptr AND NOT (mask m))"
by (fastforce simp: sign_extended_def word_size neg_mask_test_bit bit_simps)
definition
"limited_and (x :: 'a :: len word) y \<longleftrightarrow> (x AND y = x)"
lemma limited_and_eq_0:
"\<lbrakk> limited_and x z; y AND NOT z = y \<rbrakk> \<Longrightarrow> x AND y = 0"
unfolding limited_and_def
apply (subst arg_cong2[where f="(AND)"])
apply (erule sym)+
apply (simp(no_asm) add: word_bw_assocs word_bw_comms word_bw_lcs)
done
lemma limited_and_eq_id:
"\<lbrakk> limited_and x z; y AND z = z \<rbrakk> \<Longrightarrow> x AND y = x"
unfolding limited_and_def
by (erule subst, fastforce simp: word_bw_lcs word_bw_assocs word_bw_comms)
lemma lshift_limited_and:
"limited_and x z \<Longrightarrow> limited_and (x << n) (z << n)"
using push_bit_and [of n x z] by (simp add: limited_and_def shiftl_def)
lemma rshift_limited_and:
"limited_and x z \<Longrightarrow> limited_and (x >> n) (z >> n)"
using drop_bit_and [of n x z] by (simp add: limited_and_def shiftr_def)
lemmas limited_and_simps1 = limited_and_eq_0 limited_and_eq_id
lemmas is_aligned_limited_and
= is_aligned_neg_mask_eq[unfolded mask_eq_decr_exp, folded limited_and_def]
lemmas limited_and_simps = limited_and_simps1
limited_and_simps1[OF is_aligned_limited_and]
limited_and_simps1[OF lshift_limited_and]
limited_and_simps1[OF rshift_limited_and]
limited_and_simps1[OF rshift_limited_and, OF is_aligned_limited_and]
not_one_eq
definition
from_bool :: "bool \<Rightarrow> 'a::len word" where
"from_bool b \<equiv> case b of True \<Rightarrow> of_nat 1
| False \<Rightarrow> of_nat 0"
lemma from_bool_eq:
\<open>from_bool = of_bool\<close>
by (simp add: fun_eq_iff from_bool_def)
lemma from_bool_0:
"(from_bool x = 0) = (\<not> x)"
by (simp add: from_bool_def split: bool.split)
lemma from_bool_eq_if':
"((if P then 1 else 0) = from_bool Q) = (P = Q)"
by (cases Q) (simp_all add: from_bool_def)
definition
to_bool :: "'a::len word \<Rightarrow> bool" where
"to_bool \<equiv> (\<noteq>) 0"
lemma to_bool_and_1:
"to_bool (x AND 1) \<longleftrightarrow> bit x 0"
by (simp add: to_bool_def word_and_1)
lemma to_bool_from_bool [simp]:
"to_bool (from_bool r) = r"
unfolding from_bool_def to_bool_def
by (simp split: bool.splits)
lemma from_bool_neq_0 [simp]:
"(from_bool b \<noteq> 0) = b"
by (simp add: from_bool_def split: bool.splits)
lemma from_bool_mask_simp [simp]:
"(from_bool r :: 'a::len word) AND 1 = from_bool r"
unfolding from_bool_def
by (clarsimp split: bool.splits)
lemma from_bool_1 [simp]:
"(from_bool P = 1) = P"
by (simp add: from_bool_def split: bool.splits)
lemma ge_0_from_bool [simp]:
"(0 < from_bool P) = P"
by (simp add: from_bool_def split: bool.splits)
lemma limited_and_from_bool:
"limited_and (from_bool b) 1"
by (simp add: from_bool_def limited_and_def split: bool.split)
lemma to_bool_1 [simp]: "to_bool 1" by (simp add: to_bool_def)
lemma to_bool_0 [simp]: "\<not>to_bool 0" by (simp add: to_bool_def)
lemma from_bool_eq_if:
"(from_bool Q = (if P then 1 else 0)) = (P = Q)"
by (cases Q) (simp_all add: from_bool_def)
lemma to_bool_eq_0:
"(\<not> to_bool x) = (x = 0)"
by (simp add: to_bool_def)
lemma to_bool_neq_0:
"(to_bool x) = (x \<noteq> 0)"
by (simp add: to_bool_def)
lemma from_bool_all_helper:
"(\<forall>bool. from_bool bool = val \<longrightarrow> P bool)
= ((\<exists>bool. from_bool bool = val) \<longrightarrow> P (val \<noteq> 0))"
by (auto simp: from_bool_0)
lemma fold_eq_0_to_bool:
"(v = 0) = (\<not> to_bool v)"
by (simp add: to_bool_def)
lemma from_bool_to_bool_iff:
"w = from_bool b \<longleftrightarrow> to_bool w = b \<and> (w = 0 \<or> w = 1)"
by (cases b) (auto simp: from_bool_def to_bool_def)
lemma from_bool_eqI:
"from_bool x = from_bool y \<Longrightarrow> x = y"
unfolding from_bool_def
by (auto split: bool.splits)
lemma from_bool_odd_eq_and:
"from_bool (odd w) = w AND 1"
unfolding from_bool_def by (simp add: word_and_1 bit_0)
lemma neg_mask_in_mask_range:
"is_aligned ptr bits \<Longrightarrow> (ptr' AND NOT(mask bits) = ptr) = (ptr' \<in> mask_range ptr bits)"
apply (erule is_aligned_get_word_bits)
apply (rule iffI)
apply (drule sym)
apply (simp add: word_and_le2)
apply (subst word_plus_and_or_coroll, word_eqI_solve)
apply (metis bit.disj_ac(2) bit.disj_conj_distrib2 le_word_or2 word_and_max word_or_not)
apply clarsimp
apply (smt add.right_neutral eq_iff is_aligned_neg_mask_eq mask_out_add_aligned neg_mask_mono_le
word_and_not)
apply (simp add: power_overflow mask_eq_decr_exp)
done
lemma aligned_offset_in_range:
"\<lbrakk> is_aligned (x :: 'a :: len word) m; y < 2 ^ m; is_aligned p n; n \<ge> m; n < LENGTH('a) \<rbrakk>
\<Longrightarrow> (x + y \<in> {p .. p + mask n}) = (x \<in> mask_range p n)"
apply (subst disjunctive_add)
apply (simp add: bit_simps)
apply (erule is_alignedE')
apply (auto simp add: bit_simps not_le)[1]
apply (metis less_2p_is_upper_bits_unset)
apply (simp only: is_aligned_add_or word_ao_dist flip: neg_mask_in_mask_range)
apply (subgoal_tac \<open>y AND NOT (mask n) = 0\<close>)
apply simp
apply (metis (full_types) is_aligned_mask is_aligned_neg_mask less_mask_eq word_bw_comms(1) word_bw_lcs(1))
done
lemma mask_range_to_bl':
"\<lbrakk> is_aligned (ptr :: 'a :: len word) bits; bits < LENGTH('a) \<rbrakk>
\<Longrightarrow> mask_range ptr bits
= {x. take (LENGTH('a) - bits) (to_bl x) = take (LENGTH('a) - bits) (to_bl ptr)}"
apply (rule set_eqI, rule iffI)
apply clarsimp
apply (subgoal_tac "\<exists>y. x = ptr + y \<and> y < 2 ^ bits")
apply clarsimp
apply (subst is_aligned_add_conv)
apply assumption
apply simp
apply simp
apply (rule_tac x="x - ptr" in exI)
apply (simp add: add_diff_eq[symmetric])
apply (simp only: word_less_sub_le[symmetric])
apply (rule word_diff_ls')
apply (simp add: field_simps mask_eq_decr_exp)
apply assumption
apply simp
apply (subgoal_tac "\<exists>y. y < 2 ^ bits \<and> to_bl (ptr + y) = to_bl x")
apply clarsimp
apply (rule conjI)
apply (erule(1) is_aligned_no_wrap')
apply (simp only: add_diff_eq[symmetric] mask_eq_decr_exp)
apply (rule word_plus_mono_right)
apply simp
apply (erule is_aligned_no_wrap')
apply simp
apply (rule_tac x="of_bl (drop (LENGTH('a) - bits) (to_bl x))" in exI)
apply (rule context_conjI)
apply (rule order_less_le_trans [OF of_bl_length])
apply simp
apply simp
apply (subst is_aligned_add_conv)
apply assumption
apply simp
apply (drule sym)
apply (simp add: word_rep_drop)
done
lemma mask_range_to_bl:
"is_aligned (ptr :: 'a :: len word) bits
\<Longrightarrow> mask_range ptr bits
= {x. take (LENGTH('a) - bits) (to_bl x) = take (LENGTH('a) - bits) (to_bl ptr)}"
apply (erule is_aligned_get_word_bits)
apply (erule(1) mask_range_to_bl')
apply (rule set_eqI)
apply (simp add: power_overflow mask_eq_decr_exp)
done
lemma aligned_mask_range_cases:
"\<lbrakk> is_aligned (p :: 'a :: len word) n; is_aligned (p' :: 'a :: len word) n' \<rbrakk>
\<Longrightarrow> mask_range p n \<inter> mask_range p' n' = {} \<or>
mask_range p n \<subseteq> mask_range p' n' \<or>
mask_range p n \<supseteq> mask_range p' n'"
apply (simp add: mask_range_to_bl)
apply (rule Meson.disj_comm, rule disjCI)
apply auto
apply (subgoal_tac "(\<exists>n''. LENGTH('a) - n = (LENGTH('a) - n') + n'')
\<or> (\<exists>n''. LENGTH('a) - n' = (LENGTH('a) - n) + n'')")
apply (fastforce simp: take_add)
apply arith
done
lemma aligned_mask_range_offset_subset:
assumes al: "is_aligned (ptr :: 'a :: len word) sz" and al': "is_aligned x sz'"
and szv: "sz' \<le> sz"
and xsz: "x < 2 ^ sz"
shows "mask_range (ptr+x) sz' \<subseteq> mask_range ptr sz"
using al
proof (rule is_aligned_get_word_bits)
assume p0: "ptr = 0" and szv': "LENGTH ('a) \<le> sz"
then have "(2 ::'a word) ^ sz = 0" by simp
show ?thesis using p0
by (simp add: \<open>2 ^ sz = 0\<close> mask_eq_decr_exp)
next
assume szv': "sz < LENGTH('a)"
hence blah: "2 ^ (sz - sz') < (2 :: nat) ^ LENGTH('a)"
using szv by auto
show ?thesis using szv szv'
apply auto
using al assms(4) is_aligned_no_wrap' apply blast
apply (simp only: flip: add_diff_eq add_mask_fold)
apply (subst add.assoc, rule word_plus_mono_right)
using al' is_aligned_add_less_t2n xsz
apply fastforce
apply (simp add: field_simps szv al is_aligned_no_overflow)
done
qed
lemma aligned_mask_ranges_disjoint:
"\<lbrakk> is_aligned (p :: 'a :: len word) n; is_aligned (p' :: 'a :: len word) n';
p AND NOT(mask n') \<noteq> p'; p' AND NOT(mask n) \<noteq> p \<rbrakk>
\<Longrightarrow> mask_range p n \<inter> mask_range p' n' = {}"
using aligned_mask_range_cases
by (auto simp: neg_mask_in_mask_range)
lemma aligned_mask_ranges_disjoint2:
"\<lbrakk> is_aligned p n; is_aligned ptr bits; n \<ge> m; n < size p; m \<le> bits;
(\<forall>y < 2 ^ (n - m). p + (y << m) \<notin> mask_range ptr bits) \<rbrakk>
\<Longrightarrow> mask_range p n \<inter> mask_range ptr bits = {}"
apply safe
apply (simp only: flip: neg_mask_in_mask_range)
apply (drule_tac x="x AND mask n >> m" in spec)
apply (erule notE[OF mp])
apply (simp flip: take_bit_eq_mask add: shiftr_def drop_bit_take_bit)
apply transfer
apply simp
apply (simp add: word_size and_mask_less_size)
apply (subst disjunctive_add)
apply (auto simp add: bit_simps word_size intro!: bit_eqI)
done
lemma word_clz_sint_upper[simp]:
"LENGTH('a) \<ge> 3 \<Longrightarrow> sint (of_nat (word_clz (w :: 'a :: len word)) :: 'a sword) \<le> int (LENGTH('a))"
using word_clz_max [of w]
apply (simp add: word_size signed_of_nat)
apply (subst signed_take_bit_int_eq_self)
apply simp_all
apply (metis negative_zle of_nat_numeral semiring_1_class.of_nat_power)
apply (drule small_powers_of_2)
apply (erule le_less_trans)
apply simp
done
lemma word_clz_sint_lower[simp]:
"LENGTH('a) \<ge> 3
\<Longrightarrow> - sint (of_nat (word_clz (w :: 'a :: len word)) :: 'a signed word) \<le> int (LENGTH('a))"
apply (subst sint_eq_uint)
using word_clz_max [of w]
apply (simp_all add: word_size unsigned_of_nat)
apply (rule not_msb_from_less)
apply (simp add: word_less_nat_alt unsigned_of_nat)
apply (subst take_bit_nat_eq_self)
apply (simp add: le_less_trans)
apply (drule small_powers_of_2)
apply (erule le_less_trans)
apply simp
done
lemma mask_range_subsetD:
"\<lbrakk> p' \<in> mask_range p n; x' \<in> mask_range p' n'; n' \<le> n; is_aligned p n; is_aligned p' n' \<rbrakk> \<Longrightarrow>
x' \<in> mask_range p n"
using aligned_mask_step by fastforce
lemma add_mult_in_mask_range:
"\<lbrakk> is_aligned (base :: 'a :: len word) n; n < LENGTH('a); bits \<le> n; x < 2 ^ (n - bits) \<rbrakk>
\<Longrightarrow> base + x * 2^bits \<in> mask_range base n"
by (simp add: is_aligned_no_wrap' mask_2pm1 nasty_split_lt word_less_power_trans2
word_plus_mono_right)
lemma from_to_bool_last_bit:
"from_bool (to_bool (x AND 1)) = x AND 1"
by (metis from_bool_to_bool_iff word_and_1)
lemma sint_ctz:
\<open>0 \<le> sint (of_nat (word_ctz (x :: 'a :: len word)) :: 'a signed word)
\<and> sint (of_nat (word_ctz x) :: 'a signed word) \<le> int (LENGTH('a))\<close> (is \<open>?P \<and> ?Q\<close>)
if \<open>LENGTH('a) > 2\<close>
proof
have *: \<open>word_ctz x < 2 ^ (LENGTH('a) - Suc 0)\<close>
using word_ctz_le apply (rule le_less_trans)
using that small_powers_of_2 [of \<open>LENGTH('a)\<close>] apply simp
done
have \<open>int (word_ctz x) div 2 ^ (LENGTH('a) - Suc 0) = 0\<close>
apply (rule div_pos_pos_trivial)
apply (simp_all add: *)
done
then show ?P by (simp add: signed_of_nat bit_iff_odd)
show ?Q
apply (auto simp add: signed_of_nat)
apply (subst signed_take_bit_int_eq_self)
apply (auto simp add: word_ctz_le * minus_le_iff [of _ \<open>int (word_ctz x)\<close>])
apply (rule order.trans [of _ 0])
apply simp_all
done
qed
lemma unat_of_nat_word_log2:
"LENGTH('a) < 2 ^ LENGTH('b)
\<Longrightarrow> unat (of_nat (word_log2 (n :: 'a :: len word)) :: 'b :: len word) = word_log2 n"
by (metis less_trans unat_of_nat_eq word_log2_max word_size)
lemma aligned_mask_diff:
"\<lbrakk> is_aligned (dest :: 'a :: len word) bits; is_aligned (ptr :: 'a :: len word) sz;
bits \<le> sz; sz < LENGTH('a); dest < ptr \<rbrakk>
\<Longrightarrow> mask bits + dest < ptr"
apply (frule_tac p' = ptr in aligned_mask_range_cases, assumption)
apply (elim disjE)
apply (drule_tac is_aligned_no_overflow_mask, simp)+
apply (simp add: algebra_split_simps word_le_not_less)
apply (drule is_aligned_no_overflow_mask; fastforce)
apply (simp add: is_aligned_weaken algebra_split_simps)
apply (auto simp add: not_le)
using is_aligned_no_overflow_mask leD apply blast
apply (meson aligned_add_mask_less_eq is_aligned_weaken le_less_trans)
done
lemma Suc_mask_eq_mask:
"\<not>bit a n \<Longrightarrow> a AND mask (Suc n) = a AND mask n" for a::"'a::len word"
by (metis sign_extend_def sign_extend_def')
lemma word_less_high_bits:
fixes a::"'a::len word"
assumes high_bits: "\<forall>i > n. bit a i = bit b i"
assumes less: "a AND mask (Suc n) < b AND mask (Suc n)"
shows "a < b"
proof -
let ?masked = "\<lambda>x. x AND NOT (mask (Suc n))"
from high_bits
have "?masked a = ?masked b"
by - word_eqI_solve
then
have "?masked a + (a AND mask (Suc n)) < ?masked b + (b AND mask (Suc n))"
by (metis AND_NOT_mask_plus_AND_mask_eq less word_and_le2 word_plus_strict_mono_right)
then
show ?thesis
by (simp add: AND_NOT_mask_plus_AND_mask_eq)
qed
lemma word_less_bitI:
fixes a :: "'a::len word"
assumes hi_bits: "\<forall>i > n. bit a i = bit b i"
assumes a_bits: "\<not>bit a n"
assumes b_bits: "bit b n" "n < LENGTH('a)"
shows "a < b"
proof -
from b_bits
have "a AND mask n < b AND mask (Suc n)"
by (metis bit_mask_iff impossible_bit le2p_bits_unset leI lessI less_Suc_eq_le mask_eq_decr_exp
word_and_less' word_ao_nth)
with a_bits
have "a AND mask (Suc n) < b AND mask (Suc n)"
by (simp add: Suc_mask_eq_mask)
with hi_bits
show ?thesis
by (rule word_less_high_bits)
qed
lemma word_less_bitD:
fixes a::"'a::len word"
assumes less: "a < b"
shows "\<exists>n. (\<forall>i > n. bit a i = bit b i) \<and> \<not>bit a n \<and> bit b n"
proof -
define xs where "xs \<equiv> zip (to_bl a) (to_bl b)"
define tk where "tk \<equiv> length (takeWhile (\<lambda>(x,y). x = y) xs)"
define n where "n \<equiv> LENGTH('a) - Suc tk"
have n_less: "n < LENGTH('a)"
by (simp add: n_def)
moreover
{ fix i
have "\<not> i < LENGTH('a) \<Longrightarrow> bit a i = bit b i"
using bit_imp_le_length by blast
moreover
assume "i > n"
with n_less
have "i < LENGTH('a) \<Longrightarrow> LENGTH('a) - Suc i < tk"
unfolding n_def by arith
hence "i < LENGTH('a) \<Longrightarrow> bit a i = bit b i"
unfolding n_def tk_def xs_def
by (fastforce dest: takeWhile_take_has_property_nth simp: rev_nth simp flip: nth_rev_to_bl)
ultimately
have "bit a i = bit b i"
by blast
}
note all = this
moreover
from less
have "a \<noteq> b" by simp
then
obtain i where "to_bl a ! i \<noteq> to_bl b ! i"
using nth_equalityI word_bl.Rep_eqD word_rotate.lbl_lbl by blast
then
have "tk \<noteq> length xs"
unfolding tk_def xs_def
by (metis length_takeWhile_less list_eq_iff_zip_eq nat_neq_iff word_rotate.lbl_lbl)
then
have "tk < length xs"
using length_takeWhile_le order_le_neq_trans tk_def by blast
from nth_length_takeWhile[OF this[unfolded tk_def]]
have "fst (xs ! tk) \<noteq> snd (xs ! tk)"
by (clarsimp simp: tk_def)
with `tk < length xs`
have "bit a n \<noteq> bit b n"
by (clarsimp simp: xs_def n_def tk_def nth_rev simp flip: nth_rev_to_bl)
with less all
have "\<not>bit a n \<and> bit b n"
by (metis n_less order.asym word_less_bitI)
ultimately
show ?thesis by blast
qed
lemma word_less_bit_eq:
"(a < b) = (\<exists>n < LENGTH('a). (\<forall>i > n. bit a i = bit b i) \<and> \<not>bit a n \<and> bit b n)" for a::"'a::len word"
by (meson bit_imp_le_length word_less_bitD word_less_bitI)
end
end