lh-l4v/proof/invariant-abstract/KHeapPre_AI.thy

133 lines
4.7 KiB
Plaintext

(*
* Copyright 2014, General Dynamics C4 Systems
*
* This software may be distributed and modified according to the terms of
* the GNU General Public License version 2. Note that NO WARRANTY is provided.
* See "LICENSE_GPLv2.txt" for details.
*
* @TAG(GD_GPL)
*)
theory KHeapPre_AI
imports "./$L4V_ARCH/Machine_AI"
begin
primrec
same_caps :: "Structures_A.kernel_object \<Rightarrow> Structures_A.kernel_object \<Rightarrow> bool"
where
"same_caps val (CNode sz cs) = (val = CNode sz cs)"
| "same_caps val (TCB tcb) = (\<exists>tcb'. val = TCB tcb'
\<and> (\<forall>(getF, t) \<in> ran tcb_cap_cases. getF tcb' = getF tcb))"
| "same_caps val (Endpoint ep) = is_ep val"
| "same_caps val (Notification ntfn) = is_ntfn val"
| "same_caps val (ArchObj ao) = (\<exists>ao'. val = ArchObj ao')"
lemma same_caps_more_simps[simp]:
"same_caps (CNode sz cs) val = (val = CNode sz cs)"
"same_caps (TCB tcb) val = (\<exists>tcb'. val = TCB tcb'
\<and> (\<forall>(getF, t) \<in> ran tcb_cap_cases. getF tcb' = getF tcb))"
"same_caps (Endpoint ep) val = is_ep val"
"same_caps (Notification ntfn) val = is_ntfn val"
"same_caps (ArchObj ao) val = (\<exists>ao'. val = ArchObj ao')"
by (cases val, (fastforce simp: is_obj_defs)+)+
lemma dmo_return [simp]:
"do_machine_op (return x) = return x"
by (simp add: do_machine_op_def select_f_def return_def gets_def get_def
bind_def modify_def put_def)
lemma get_object_sp:
"\<lbrace>P\<rbrace> get_object p \<lbrace>\<lambda>r. P and ko_at r p\<rbrace>"
apply (simp add: get_object_def)
apply wp
apply (auto simp add: obj_at_def)
done
definition non_arch_obj :: "kernel_object \<Rightarrow> bool" where
"non_arch_obj \<equiv> \<lambda>ko. \<forall>ako. ko \<noteq> ArchObj ako"
lemma non_arch_objs[intro]:
"non_arch_obj (Endpoint ep)"
"non_arch_obj (CNode sz cnode_contents)"
"non_arch_obj (TCB tcb)"
"non_arch_obj (Notification notification)"
by (auto simp add: non_arch_obj_def)
definition arch_obj_pred :: "(kernel_object \<Rightarrow> bool) \<Rightarrow> bool" where
"arch_obj_pred P \<equiv>
\<forall>ko ko'. non_arch_obj ko \<longrightarrow> non_arch_obj ko' \<longrightarrow>
P ko = P ko'"
lemma arch_obj_predE:
"\<lbrakk>arch_obj_pred P; non_arch_obj ko; non_arch_obj ko'\<rbrakk> \<Longrightarrow> P ko = P ko'"
apply (unfold arch_obj_pred_def)
apply (erule allE[where ?x="ko"])
apply (erule allE[where ?x="ko'"])
by blast
lemmas arch_obj_pred_defs = non_arch_obj_def arch_obj_pred_def
lemma arch_obj_pred_a_type[intro, simp]: "arch_obj_pred (\<lambda>ko. a_type ko = AArch T)"
by (auto simp add: arch_obj_pred_defs a_type_def split: kernel_object.splits)
lemma
arch_obj_pred_arch_obj_l[intro, simp]: "arch_obj_pred (\<lambda>ko. ArchObj ako = ko)" and
arch_obj_pred_arch_obj_r[intro, simp]: "arch_obj_pred (\<lambda>ko. ko = ArchObj ako)"
by (auto simp add: arch_obj_pred_defs)
lemma arch_obj_pred_fun_lift: "arch_obj_pred (\<lambda>ko. F (arch_obj_fun_lift P N ko))"
by (simp add: arch_obj_pred_defs)
lemmas arch_obj_pred_fun_lift_id[simp]
= arch_obj_pred_fun_lift[where F=id, simplified]
lemmas arch_obj_pred_fun_lift_k[intro]
= arch_obj_pred_fun_lift[where F="K R" for R, simplified]
lemmas arch_obj_pred_fun_lift_el[simp]
= arch_obj_pred_fun_lift[where F="\<lambda> S. x \<in> S" for x, simplified]
lemma arch_obj_pred_const_conjI[intro]:
"arch_obj_pred P \<Longrightarrow>
arch_obj_pred P' \<Longrightarrow>
arch_obj_pred (\<lambda>ko. P ko \<and> P' ko)"
apply (simp only: arch_obj_pred_def)
apply blast
done
lemma arch_obj_pred_fI:
"(\<And>x. arch_obj_pred (P x)) \<Longrightarrow> arch_obj_pred (\<lambda>ko. f (\<lambda>x :: 'a :: type. P x ko))"
apply (simp only: arch_obj_pred_def)
apply (intro allI impI)
apply (rule arg_cong[where f=f])
by blast
declare
arch_obj_pred_fI[where f=All, intro]
arch_obj_pred_fI[where f=Ex, intro]
locale arch_only_obj_pred =
fixes P :: "kernel_object \<Rightarrow> bool"
assumes arch_only: "arch_obj_pred P"
lemma set_object_typ_at:
"\<lbrace>\<lambda>s. typ_at (a_type ko) p s \<and> P (typ_at T p' s)\<rbrace>
set_object p ko \<lbrace>\<lambda>rv s. P (typ_at T p' s)\<rbrace>"
apply (simp add: set_object_def)
apply wp
apply clarsimp
apply (erule rsubst [where P=P])
apply (clarsimp simp: obj_at_def)
done
lemma set_object_neg_ko:
"\<lbrace>not ko_at ko' p' and K (p = p' \<longrightarrow> ko \<noteq> ko')\<rbrace>
set_object p ko
\<lbrace>\<lambda>_ s. \<not> ko_at ko' p' s\<rbrace>"
apply (simp add: set_object_def)
apply wp
apply (simp add: pred_neg_def obj_at_def)
done
end