Automated_Stateful_Protocol.../Automated_Stateful_Protocol.../trac/ml-yacc-lib/parser2.sml

568 lines
20 KiB
Standard ML

(******************************************************************************
* STANDARD ML OF NEW JERSEY COPYRIGHT NOTICE, LICENSE AND DISCLAIMER.
*
* Copyright (c) 1989-2002 by Lucent Technologies
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both the copyright notice and this permission notice and warranty
* disclaimer appear in supporting documentation, and that the name of
* Lucent Technologies, Bell Labs or any Lucent entity not be used in
* advertising or publicity pertaining to distribution of the software
* without specific, written prior permission.
*
* Lucent disclaims all warranties with regard to this software,
* including all implied warranties of merchantability and fitness. In no
* event shall Lucent be liable for any special, indirect or
* consequential damages or any damages whatsoever resulting from loss of
* use, data or profits, whether in an action of contract, negligence or
* other tortious action, arising out of or in connection with the use
* or performance of this software.
******************************************************************************)
(* $Id$ *)
(* ML-Yacc Parser Generator (c) 1989 Andrew W. Appel, David R. Tarditi *)
(* parser.sml: This is a parser driver for LR tables with an error-recovery
routine added to it. The routine used is described in detail in this
article:
'A Practical Method for LR and LL Syntactic Error Diagnosis and
Recovery', by M. Burke and G. Fisher, ACM Transactions on
Programming Langauges and Systems, Vol. 9, No. 2, April 1987,
pp. 164-197.
This program is an implementation is the partial, deferred method discussed
in the article. The algorithm and data structures used in the program
are described below.
This program assumes that all semantic actions are delayed. A semantic
action should produce a function from unit -> value instead of producing the
normal value. The parser returns the semantic value on the top of the
stack when accept is encountered. The user can deconstruct this value
and apply the unit -> value function in it to get the answer.
It also assumes that the lexer is a lazy stream.
Data Structures:
----------------
* The parser:
The state stack has the type
(state * (semantic value * line # * line #)) list
The parser keeps a queue of (state stack * lexer pair). A lexer pair
consists of a terminal * value pair and a lexer. This allows the
parser to reconstruct the states for terminals to the left of a
syntax error, and attempt to make error corrections there.
The queue consists of a pair of lists (x,y). New additions to
the queue are cons'ed onto y. The first element of x is the top
of the queue. If x is nil, then y is reversed and used
in place of x.
Algorithm:
----------
* The steady-state parser:
This parser keeps the length of the queue of state stacks at
a steady state by always removing an element from the front when
another element is placed on the end.
It has these arguments:
stack: current stack
queue: value of the queue
lexPair ((terminal,value),lex stream)
When SHIFT is encountered, the state to shift to and the value are
are pushed onto the state stack. The state stack and lexPair are
placed on the queue. The front element of the queue is removed.
When REDUCTION is encountered, the rule is applied to the current
stack to yield a triple (nonterm,value,new stack). A new
stack is formed by adding (goto(top state of stack,nonterm),value)
to the stack.
When ACCEPT is encountered, the top value from the stack and the
lexer are returned.
When an ERROR is encountered, fixError is called. FixError
takes the arguments to the parser, fixes the error if possible and
returns a new set of arguments.
* The distance-parser:
This parser includes an additional argument distance. It pushes
elements on the queue until it has parsed distance tokens, or an
ACCEPT or ERROR occurs. It returns a stack, lexer, the number of
tokens left unparsed, a queue, and an action option.
*)
signature FIFO =
sig type 'a queue
val empty : 'a queue
exception Empty
val get : 'a queue -> 'a * 'a queue
val put : 'a * 'a queue -> 'a queue
end
(* drt (12/15/89) -- the functor should be used in development work, but
it wastes space in the release version.
functor ParserGen(structure LrTable : LR_TABLE
structure Stream : STREAM) : LR_PARSER =
*)
structure LrParser :> LR_PARSER =
struct
structure LrTable = LrTable
structure Stream = Stream
val print = warning (* fn s => TextIO.output(TextIO.stdOut,s) *)
fun eqT (LrTable.T i, LrTable.T i') = i = i'
structure Token : TOKEN =
struct
structure LrTable = LrTable
datatype ('a,'b) token = TOKEN of LrTable.term * ('a * 'b * 'b)
val sameToken = fn (TOKEN(t,_),TOKEN(t',_)) => eqT (t,t')
end
open LrTable
open Token
val DEBUG1 = false
val DEBUG2 = false
exception ParseError
exception ParseImpossible of int
structure Fifo :> FIFO =
struct
type 'a queue = ('a list * 'a list)
val empty = (nil,nil)
exception Empty
fun get(a::x, y) = (a, (x,y))
| get(nil, nil) = raise Empty
| get(nil, y) = get(rev y, nil)
fun put(a,(x,y)) = (x,a::y)
end
type ('a,'b) elem = (state * ('a * 'b * 'b))
type ('a,'b) stack = ('a,'b) elem list
type ('a,'b) lexv = ('a,'b) token
type ('a,'b) lexpair = ('a,'b) lexv * (('a,'b) lexv Stream.stream)
type ('a,'b) distanceParse =
('a,'b) lexpair *
('a,'b) stack *
(('a,'b) stack * ('a,'b) lexpair) Fifo.queue *
int ->
('a,'b) lexpair *
('a,'b) stack *
(('a,'b) stack * ('a,'b) lexpair) Fifo.queue *
int *
action option
type ('a,'b) ecRecord =
{is_keyword : term -> bool,
preferred_change : (term list * term list) list,
error : string * 'b * 'b -> unit,
errtermvalue : term -> 'a,
terms : term list,
showTerminal : term -> string,
noShift : term -> bool}
local
val print = warning (* fn s => TextIO.output(TextIO.stdOut,s) *)
val println = fn s => (print s; print "\n")
val showState = fn (STATE s) => "STATE " ^ (Int.toString s)
in
fun printStack(stack: ('a,'b) stack, n: int) =
case stack
of (state,_) :: rest =>
(print("\t" ^ Int.toString n ^ ": ");
println(showState state);
printStack(rest, n+1))
| nil => ()
fun prAction showTerminal
(stack as (state,_) :: _, next as (TOKEN (term,_),_), action) =
(println "Parse: state stack:";
printStack(stack, 0);
print(" state="
^ showState state
^ " next="
^ showTerminal term
^ " action="
);
case action
of SHIFT state => println ("SHIFT " ^ (showState state))
| REDUCE i => println ("REDUCE " ^ (Int.toString i))
| ERROR => println "ERROR"
| ACCEPT => println "ACCEPT")
| prAction _ (_,_,action) = ()
end
(* ssParse: parser which maintains the queue of (state * lexvalues) in a
steady-state. It takes a table, showTerminal function, saction
function, and fixError function. It parses until an ACCEPT is
encountered, or an exception is raised. When an error is encountered,
fixError is called with the arguments of parseStep (lexv,stack,and
queue). It returns the lexv, and a new stack and queue adjusted so
that the lexv can be parsed *)
val ssParse =
fn (table,showTerminal,saction,fixError,arg) =>
let val prAction = prAction showTerminal
val action = LrTable.action table
val goto = LrTable.goto table
fun parseStep(args as
(lexPair as (TOKEN (terminal, value as (_,leftPos,_)),
lexer
),
stack as (state,_) :: _,
queue)) =
let val nextAction = action (state,terminal)
val _ = if DEBUG1 then prAction(stack,lexPair,nextAction)
else ()
in case nextAction
of SHIFT s =>
let val newStack = (s,value) :: stack
val newLexPair = Stream.get lexer
val (_,newQueue) =Fifo.get(Fifo.put((newStack,newLexPair),
queue))
in parseStep(newLexPair,(s,value)::stack,newQueue)
end
| REDUCE i =>
(case saction(i,leftPos,stack,arg)
of (nonterm,value,stack as (state,_) :: _) =>
parseStep(lexPair,(goto(state,nonterm),value)::stack,
queue)
| _ => raise (ParseImpossible 197))
| ERROR => parseStep(fixError args)
| ACCEPT =>
(case stack
of (_,(topvalue,_,_)) :: _ =>
let val (token,restLexer) = lexPair
in (topvalue,Stream.cons(token,restLexer))
end
| _ => raise (ParseImpossible 202))
end
| parseStep _ = raise (ParseImpossible 204)
in parseStep
end
(* distanceParse: parse until n tokens are shifted, or accept or
error are encountered. Takes a table, showTerminal function, and
semantic action function. Returns a parser which takes a lexPair
(lex result * lexer), a state stack, a queue, and a distance
(must be > 0) to parse. The parser returns a new lex-value, a stack
with the nth token shifted on top, a queue, a distance, and action
option. *)
val distanceParse =
fn (table,showTerminal,saction,arg) =>
let val prAction = prAction showTerminal
val action = LrTable.action table
val goto = LrTable.goto table
fun parseStep(lexPair,stack,queue,0) = (lexPair,stack,queue,0,NONE)
| parseStep(lexPair as (TOKEN (terminal, value as (_,leftPos,_)),
lexer
),
stack as (state,_) :: _,
queue,distance) =
let val nextAction = action(state,terminal)
val _ = if DEBUG1 then prAction(stack,lexPair,nextAction)
else ()
in case nextAction
of SHIFT s =>
let val newStack = (s,value) :: stack
val newLexPair = Stream.get lexer
in parseStep(newLexPair,(s,value)::stack,
Fifo.put((newStack,newLexPair),queue),distance-1)
end
| REDUCE i =>
(case saction(i,leftPos,stack,arg)
of (nonterm,value,stack as (state,_) :: _) =>
parseStep(lexPair,(goto(state,nonterm),value)::stack,
queue,distance)
| _ => raise (ParseImpossible 240))
| ERROR => (lexPair,stack,queue,distance,SOME nextAction)
| ACCEPT => (lexPair,stack,queue,distance,SOME nextAction)
end
| parseStep _ = raise (ParseImpossible 242)
in parseStep : ('_a,'_b) distanceParse
end
(* mkFixError: function to create fixError function which adjusts parser state
so that parse may continue in the presence of an error *)
fun mkFixError({is_keyword,terms,errtermvalue,
preferred_change,noShift,
showTerminal,error,...} : ('_a,'_b) ecRecord,
distanceParse : ('_a,'_b) distanceParse,
minAdvance,maxAdvance)
(lexv as (TOKEN (term,value as (_,leftPos,_)),_),stack,queue) =
let val _ = if DEBUG2 then
error("syntax error found at " ^ (showTerminal term),
leftPos,leftPos)
else ()
fun tokAt(t,p) = TOKEN(t,(errtermvalue t,p,p))
val minDelta = 3
(* pull all the state * lexv elements from the queue *)
val stateList =
let fun f q = let val (elem,newQueue) = Fifo.get q
in elem :: (f newQueue)
end handle Fifo.Empty => nil
in f queue
end
(* now number elements of stateList, giving distance from
error token *)
val (_, numStateList) =
List.foldr (fn (a,(num,r)) => (num+1,(a,num)::r)) (0, []) stateList
(* Represent the set of potential changes as a linked list.
Values of datatype Change hold information about a potential change.
oper = oper to be applied
pos = the # of the element in stateList that would be altered.
distance = the number of tokens beyond the error token which the
change allows us to parse.
new = new terminal * value pair at that point
orig = original terminal * value pair at the point being changed.
*)
datatype ('a,'b) change = CHANGE of
{pos : int, distance : int, leftPos: 'b, rightPos: 'b,
new : ('a,'b) lexv list, orig : ('a,'b) lexv list}
val showTerms = String.concat o map (fn TOKEN(t,_) => " " ^ showTerminal t)
val printChange = fn c =>
let val CHANGE {distance,new,orig,pos,...} = c
in (print ("{distance= " ^ (Int.toString distance));
print (",orig ="); print(showTerms orig);
print (",new ="); print(showTerms new);
print (",pos= " ^ (Int.toString pos));
print "}\n")
end
val printChangeList = app printChange
(* parse: given a lexPair, a stack, and the distance from the error
token, return the distance past the error token that we are able to parse.*)
fun parse (lexPair,stack,queuePos : int) =
case distanceParse(lexPair,stack,Fifo.empty,queuePos+maxAdvance+1)
of (_,_,_,distance,SOME ACCEPT) =>
if maxAdvance-distance-1 >= 0
then maxAdvance
else maxAdvance-distance-1
| (_,_,_,distance,_) => maxAdvance - distance - 1
(* catList: String.concatenate results of scanning list *)
fun catList l f = List.foldr (fn(a,r)=> f a @ r) [] l
fun keywordsDelta new = if List.exists (fn(TOKEN(t,_))=>is_keyword t) new
then minDelta else 0
fun tryChange{lex,stack,pos,leftPos,rightPos,orig,new} =
let val lex' = List.foldr (fn (t',p)=>(t',Stream.cons p)) lex new
val distance = parse(lex',stack,pos+length new-length orig)
in if distance >= minAdvance + keywordsDelta new
then [CHANGE{pos=pos,leftPos=leftPos,rightPos=rightPos,
distance=distance,orig=orig,new=new}]
else []
end
(* tryDelete: Try to delete n terminals.
Return single-element [success] or nil.
Do not delete unshiftable terminals. *)
fun tryDelete n ((stack,lexPair as (TOKEN(term,(_,l,r)),_)),qPos) =
let fun del(0,accum,left,right,lexPair) =
tryChange{lex=lexPair,stack=stack,
pos=qPos,leftPos=left,rightPos=right,
orig=rev accum, new=[]}
| del(n,accum,left,right,(tok as TOKEN(term,(_,_,r)),lexer)) =
if noShift term then []
else del(n-1,tok::accum,left,r,Stream.get lexer)
in del(n,[],l,r,lexPair)
end
(* tryInsert: try to insert tokens before the current terminal;
return a list of the successes *)
fun tryInsert((stack,lexPair as (TOKEN(_,(_,l,_)),_)),queuePos) =
catList terms (fn t =>
tryChange{lex=lexPair,stack=stack,
pos=queuePos,orig=[],new=[tokAt(t,l)],
leftPos=l,rightPos=l})
(* trySubst: try to substitute tokens for the current terminal;
return a list of the successes *)
fun trySubst ((stack,lexPair as (orig as TOKEN (term,(_,l,r)),lexer)),
queuePos) =
if noShift term then []
else
catList terms (fn t =>
tryChange{lex=Stream.get lexer,stack=stack,
pos=queuePos,
leftPos=l,rightPos=r,orig=[orig],
new=[tokAt(t,r)]})
(* do_delete(toks,lexPair) tries to delete tokens "toks" from "lexPair".
If it succeeds, returns SOME(toks',l,r,lp), where
toks' is the actual tokens (with positions and values) deleted,
(l,r) are the (leftmost,rightmost) position of toks',
lp is what remains of the stream after deletion
*)
fun do_delete(nil,lp as (TOKEN(_,(_,l,_)),_)) = SOME(nil,l,l,lp)
| do_delete([t],(tok as TOKEN(t',(_,l,r)),lp')) =
if eqT (t, t')
then SOME([tok],l,r,Stream.get lp')
else NONE
| do_delete(t::rest,(tok as TOKEN(t',(_,l,r)),lp')) =
if eqT (t,t')
then case do_delete(rest,Stream.get lp')
of SOME(deleted,l',r',lp'') =>
SOME(tok::deleted,l,r',lp'')
| NONE => NONE
else NONE
fun tryPreferred((stack,lexPair),queuePos) =
catList preferred_change (fn (delete,insert) =>
if List.exists noShift delete then [] (* should give warning at
parser-generation time *)
else case do_delete(delete,lexPair)
of SOME(deleted,l,r,lp) =>
tryChange{lex=lp,stack=stack,pos=queuePos,
leftPos=l,rightPos=r,orig=deleted,
new=map (fn t=>(tokAt(t,r))) insert}
| NONE => [])
val changes = catList numStateList tryPreferred @
catList numStateList tryInsert @
catList numStateList trySubst @
catList numStateList (tryDelete 1) @
catList numStateList (tryDelete 2) @
catList numStateList (tryDelete 3)
val findMaxDist = fn l =>
List.foldr (fn (CHANGE {distance,...},high) => Int.max(distance,high)) 0 l
(* maxDist: max distance past error taken that we could parse *)
val maxDist = findMaxDist changes
(* remove changes which did not parse maxDist tokens past the error token *)
val changes = catList changes
(fn(c as CHANGE{distance,...}) =>
if distance=maxDist then [c] else [])
in case changes
of (l as change :: _) =>
let fun print_msg (CHANGE {new,orig,leftPos,rightPos,...}) =
let val s =
case (orig,new)
of (_::_,[]) => "deleting " ^ (showTerms orig)
| ([],_::_) => "inserting " ^ (showTerms new)
| _ => "replacing " ^ (showTerms orig) ^
" with " ^ (showTerms new)
in error ("syntax error: " ^ s,leftPos,rightPos)
end
val _ =
(if length l > 1 andalso DEBUG2 then
(print "multiple fixes possible; could fix it by:\n";
app print_msg l;
print "chosen correction:\n")
else ();
print_msg change)
(* findNth: find nth queue entry from the error
entry. Returns the Nth queue entry and the portion of
the queue from the beginning to the nth-1 entry. The
error entry is at the end of the queue.
Examples:
queue = a b c d e
findNth 0 = (e,a b c d)
findNth 1 = (d,a b c)
*)
val findNth = fn n =>
let fun f (h::t,0) = (h,rev t)
| f (h::t,n) = f(t,n-1)
| f (nil,_) = let exception FindNth
in raise FindNth
end
in f (rev stateList,n)
end
val CHANGE {pos,orig,new,...} = change
val (last,queueFront) = findNth pos
val (stack,lexPair) = last
val lp1 = List.foldl(fn (_,(_,r)) => Stream.get r) lexPair orig
val lp2 = List.foldr(fn(t,r)=>(t,Stream.cons r)) lp1 new
val restQueue =
Fifo.put((stack,lp2),
List.foldl Fifo.put Fifo.empty queueFront)
val (lexPair,stack,queue,_,_) =
distanceParse(lp2,stack,restQueue,pos)
in (lexPair,stack,queue)
end
| nil => (error("syntax error found at " ^ (showTerminal term),
leftPos,leftPos); raise ParseError)
end
val parse = fn {arg,table,lexer,saction,void,lookahead,
ec=ec as {showTerminal,...} : ('_a,'_b) ecRecord} =>
let val distance = 15 (* defer distance tokens *)
val minAdvance = 1 (* must parse at least 1 token past error *)
val maxAdvance = Int.max(lookahead,0)(* max distance for parse check *)
val lexPair = Stream.get lexer
val (TOKEN (_,(_,leftPos,_)),_) = lexPair
val startStack = [(initialState table,(void,leftPos,leftPos))]
val startQueue = Fifo.put((startStack,lexPair),Fifo.empty)
val distanceParse = distanceParse(table,showTerminal,saction,arg)
val fixError = mkFixError(ec,distanceParse,minAdvance,maxAdvance)
val ssParse = ssParse(table,showTerminal,saction,fixError,arg)
fun loop (lexPair,stack,queue,_,SOME ACCEPT) =
ssParse(lexPair,stack,queue)
| loop (lexPair,stack,queue,0,_) = ssParse(lexPair,stack,queue)
| loop (lexPair,stack,queue,distance,SOME ERROR) =
let val (lexPair,stack,queue) = fixError(lexPair,stack,queue)
in loop (distanceParse(lexPair,stack,queue,distance))
end
| loop _ = let exception ParseInternal
in raise ParseInternal
end
in loop (distanceParse(lexPair,startStack,startQueue,distance))
end
end;