(*********************************************************************************** * Copyright (c) 2016-2018 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * SPDX-License-Identifier: BSD-2-Clause ***********************************************************************************) section\Element\ text\In this theory, we introduce the types for the Element class.\ theory ElementClass imports "NodeClass" "ShadowRootPointer" begin text\The type @{type "DOMString"} is a type synonym for @{type "string"}, define in \autoref{sec:Core_DOM_Basic_Datatypes}.\ type_synonym attr_key = DOMString type_synonym attr_value = DOMString type_synonym attrs = "(attr_key, attr_value) fmap" type_synonym tag_name = DOMString record ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr) RElement = RNode + nothing :: unit tag_name :: tag_name child_nodes :: "('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr list" attrs :: attrs shadow_root_opt :: "'shadow_root_ptr shadow_root_ptr option" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element) Element = "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_scheme" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element) Element" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element) Node = "(('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) Node" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Node, 'Element) Node" type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) Object = "('Object, ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) Object" register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) Object" type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) heap = "('document_ptr document_ptr + 'shadow_root_ptr shadow_root_ptr + 'object_ptr, 'element_ptr element_ptr + 'character_data_ptr character_data_ptr + 'node_ptr, 'Object, ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Element option) RElement_ext + 'Node) heap" register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr, 'Object, 'Node, 'Element) heap" type_synonym heap\<^sub>f\<^sub>i\<^sub>n\<^sub>a\<^sub>l = "(unit, unit, unit, unit, unit, unit, unit, unit, unit) heap" definition element_ptr_kinds :: "(_) heap \ (_) element_ptr fset" where "element_ptr_kinds heap = the |`| (cast\<^sub>n\<^sub>o\<^sub>d\<^sub>e\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r |`| (ffilter is_element_ptr_kind (node_ptr_kinds heap)))" lemma element_ptr_kinds_simp [simp]: "element_ptr_kinds (Heap (fmupd (cast element_ptr) element (the_heap h))) = {|element_ptr|} |\| element_ptr_kinds h" apply(auto simp add: element_ptr_kinds_def)[1] by force definition element_ptrs :: "(_) heap \ (_) element_ptr fset" where "element_ptrs heap = ffilter is_element_ptr (element_ptr_kinds heap)" definition cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) Node \ (_) Element option" where "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = (case RNode.more node of Inl element \ Some (RNode.extend (RNode.truncate node) element) | _ \ None)" adhoc_overloading cast cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t abbreviation cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) Object \ (_) Element option" where "cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t obj \ (case cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e obj of Some node \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node | None \ None)" adhoc_overloading cast cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t definition cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Element \ (_) Node" where "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = RNode.extend (RNode.truncate element) (Inl (RNode.more element))" adhoc_overloading cast cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e abbreviation cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) Element \ (_) Object" where "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t (cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr)" adhoc_overloading cast cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t consts is_element_kind :: 'a definition is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e :: "(_) Node \ bool" where "is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr \ cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr \ None" adhoc_overloading is_element_kind is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e lemmas is_element_kind_def = is_element_kind\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def abbreviation is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t :: "(_) Object \ bool" where "is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr \ cast\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr \ None" adhoc_overloading is_element_kind is_element_kind\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t lemma element_ptr_kinds_commutes [simp]: "cast element_ptr |\| node_ptr_kinds h \ element_ptr |\| element_ptr_kinds h" apply(auto simp add: node_ptr_kinds_def element_ptr_kinds_def)[1] by (metis (no_types, lifting) element_ptr_casts_commute2 ffmember_filter fimage_eqI fset.map_comp is_element_ptr_kind_none node_ptr_casts_commute3 node_ptr_kinds_commutes node_ptr_kinds_def option.sel option.simps(3)) definition get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) element_ptr \ (_) heap \ (_) Element option" where "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h = Option.bind (get\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast element_ptr) h) cast" adhoc_overloading get get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t locale l_type_wf_def\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_type_wf :: "(_) heap \ bool" where "a_type_wf h = (NodeClass.type_wf h \ (\element_ptr \ fset (element_ptr_kinds h). get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h \ None))" end global_interpretation l_type_wf_def\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines type_wf = a_type_wf . lemmas type_wf_defs = a_type_wf_def locale l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_type_wf type_wf for type_wf :: "((_) heap \ bool)" + assumes type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t: "type_wf h \ ElementClass.type_wf h" sublocale l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t \ l_type_wf\<^sub>N\<^sub>o\<^sub>d\<^sub>e apply(unfold_locales) using NodeClass.a_type_wf_def by (meson ElementClass.a_type_wf_def l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) locale l_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas = l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin sublocale l_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_lemmas by unfold_locales lemma get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_type_wf: assumes "type_wf h" shows "element_ptr |\| element_ptr_kinds h \ get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h \ None" using l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_axioms assms apply(simp add: type_wf_defs get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def l_type_wf\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) by (metis NodeClass.get\<^sub>N\<^sub>o\<^sub>d\<^sub>e_type_wf bind_eq_None_conv element_ptr_kinds_commutes notin_fset option.distinct(1)) end global_interpretation l_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_lemmas type_wf by unfold_locales definition put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) element_ptr \ (_) Element \ (_) heap \ (_) heap" where "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element = put\<^sub>N\<^sub>o\<^sub>d\<^sub>e (cast element_ptr) (cast element)" adhoc_overloading put put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t lemma put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h = h'" shows "element_ptr |\| element_ptr_kinds h'" using assms unfolding put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def element_ptr_kinds_def by (metis element_ptr_kinds_commutes element_ptr_kinds_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_ptr_in_heap) lemma put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs: assumes "put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h = h'" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast element_ptr|}" using assms by (simp add: put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_put_ptrs) lemma cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_inject [simp]: "cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e x = cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e y \ x = y" apply(simp add: cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def) by (metis (full_types) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_none [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = None \ \ (\element. cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = node)" apply(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits)[1] by (metis (full_types) RNode.select_convs(2) RNode.surjective old.unit.exhaust) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_some [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t node = Some element \ cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element = node" by(auto simp add: cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def RObject.extend_def RNode.extend_def split: sum.splits) lemma cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_inv [simp]: "cast\<^sub>N\<^sub>o\<^sub>d\<^sub>e\<^sub>2\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (cast\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>2\<^sub>N\<^sub>o\<^sub>d\<^sub>e element) = Some element" by simp lemma get_elment_ptr_simp1 [simp]: "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h) = Some element" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma get_elment_ptr_simp2 [simp]: "element_ptr \ element_ptr' \ get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr' element h) = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr h" by(auto simp add: get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) abbreviation "create_element_obj tag_name_arg child_nodes_arg attrs_arg shadow_root_opt_arg \ \ RObject.nothing = (), RNode.nothing = (), RElement.nothing = (), tag_name = tag_name_arg, Element.child_nodes = child_nodes_arg, attrs = attrs_arg, shadow_root_opt = shadow_root_opt_arg, \ = None \" definition new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t :: "(_) heap \ ((_) element_ptr \ (_) heap)" where "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (let new_element_ptr = element_ptr.Ref (Suc (fMax (finsert 0 (element_ptr.the_ref |`| (element_ptrs h))))) in (new_element_ptr, put new_element_ptr (create_element_obj '''' [] fmempty None) h))" lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "new_element_ptr |\| element_ptr_kinds h'" using assms unfolding new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def using put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_in_heap by blast lemma new_element_ptr_new: "element_ptr.Ref (Suc (fMax (finsert 0 (element_ptr.the_ref |`| element_ptrs h)))) |\| element_ptrs h" by (metis Suc_n_not_le_n element_ptr.sel(1) fMax_ge fimage_finsert finsertI1 finsertI2 set_finsert) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_ptr_not_in_heap: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "new_element_ptr |\| element_ptr_kinds h" using assms unfolding new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def by (metis Pair_inject element_ptrs_def ffmember_filter new_element_ptr_new is_element_ptr_ref) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_new_ptr: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "object_ptr_kinds h' = object_ptr_kinds h |\| {|cast new_element_ptr|}" using assms by (metis Pair_inject new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_put_ptrs) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_is_element_ptr: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" shows "is_element_ptr new_element_ptr" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ cast new_element_ptr" shows "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h = get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def put\<^sub>N\<^sub>o\<^sub>d\<^sub>e_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>N\<^sub>o\<^sub>d\<^sub>e [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ cast new_element_ptr" shows "get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h = get\<^sub>N\<^sub>o\<^sub>d\<^sub>e ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def) lemma new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t [simp]: assumes "new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t h = (new_element_ptr, h')" assumes "ptr \ new_element_ptr" shows "get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h = get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t ptr h'" using assms by(auto simp add: new\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t_def Let_def) locale l_known_ptr\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t begin definition a_known_ptr :: "(_) object_ptr \ bool" where "a_known_ptr ptr = (known_ptr ptr \ is_element_ptr ptr)" lemma known_ptr_not_element_ptr: "\is_element_ptr ptr \ a_known_ptr ptr \ known_ptr ptr" by(simp add: a_known_ptr_def) end global_interpretation l_known_ptr\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t defines known_ptr = a_known_ptr . lemmas known_ptr_defs = a_known_ptr_def locale l_known_ptrs\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr \ bool" begin definition a_known_ptrs :: "(_) heap \ bool" where "a_known_ptrs h = (\ptr \ fset (object_ptr_kinds h). known_ptr ptr)" lemma known_ptrs_known_ptr: "ptr |\| object_ptr_kinds h \ a_known_ptrs h \ known_ptr ptr" apply(simp add: a_known_ptrs_def) using notin_fset by fastforce lemma known_ptrs_preserved: "object_ptr_kinds h = object_ptr_kinds h' \ a_known_ptrs h = a_known_ptrs h'" by(auto simp add: a_known_ptrs_def) lemma known_ptrs_subset: "object_ptr_kinds h' |\| object_ptr_kinds h \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def less_eq_fset.rep_eq subsetD) lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\| {|new_ptr|} \ known_ptr new_ptr \ a_known_ptrs h \ a_known_ptrs h'" by(simp add: a_known_ptrs_def) end global_interpretation l_known_ptrs\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t known_ptr defines known_ptrs = a_known_ptrs . lemmas known_ptrs_defs = a_known_ptrs_def lemma known_ptrs_is_l_known_ptrs: "l_known_ptrs known_ptr known_ptrs" using known_ptrs_known_ptr known_ptrs_preserved known_ptrs_subset known_ptrs_new_ptr l_known_ptrs_def by blast end