Extended_Finite_State_Machi.../Extended_Finite_State_Machi.../code-targets/Code_Target_FSet.thy

165 lines
5.4 KiB
Plaintext

section\<open>Finite Sets\<close>
text\<open>Here we define the operations on the \texttt{fset} datatype in terms of lists rather than sets.
This allows the Scala implementation to skip a case match each time, which makes for cleaner and
slightly faster code.\<close>
theory Code_Target_FSet
imports "Extended_Finite_State_Machines.FSet_Utils"
begin
code_datatype fset_of_list
declare FSet.fset_of_list.rep_eq [code]
lemma fprod_code [code]:
"fprod (fset_of_list xs) (fset_of_list ys) = fset_of_list (remdups [(x, y). x \<leftarrow> xs, y \<leftarrow> ys])"
apply (simp add: fprod_def fset_of_list_def fset_both_sides Abs_fset_inverse)
by auto
lemma fminus_fset_filter [code]:
"fset_of_list A - xs = fset_of_list (remdups (filter (\<lambda>x. x |\<notin>| xs) A))"
by auto
lemma sup_fset_fold [code]:
"(fset_of_list f1) |\<union>| (fset_of_list f2) = fset_of_list (remdups (f1@f2))"
by simp
lemma bot_fset [code]: "{||} = fset_of_list []"
by simp
lemma finsert [code]:
"finsert a (fset_of_list as) = fset_of_list (List.insert a as)"
by (simp add: List.insert_def finsert_absorb fset_of_list_elem)
lemma ffilter_filter [code]:
"ffilter f (fset_of_list as) = fset_of_list (List.filter f (remdups as))"
by simp
lemma fimage_map [code]:
"fimage f (fset_of_list as) = fset_of_list (List.map f (remdups as))"
by simp
lemma ffUnion_fold [code]:
"ffUnion (fset_of_list as) = fold (|\<union>|) as {||}"
by (simp add: fold_union_ffUnion)
lemma fmember [code]: "a |\<in>| (fset_of_list as) = List.member as a"
by (simp add: fset_of_list_elem member_def)
lemma fthe_elem [code]: "fthe_elem (fset_of_list [x]) = x"
by simp
lemma size [code]: "size (fset_of_list as) = length (remdups as)"
proof(induct as)
case Nil
then show ?case
by simp
next
case (Cons a as)
then show ?case
by (simp add: fset_of_list.rep_eq insert_absorb)
qed
lemma fMax_fold [code]: "fMax (fset_of_list (a#as)) = fold max as a"
by (metis Max.set_eq_fold fMax.F.rep_eq fset_of_list.rep_eq)
lemma fMin_fold [code]: "fMin (fset_of_list (h#t)) = fold min t h"
apply (simp add: fset_of_list_def)
by (metis Min.set_eq_fold fMin_Min fset_of_list.abs_eq list.simps(15))
lemma fremove_code [code]:
"fremove a (fset_of_list A) = fset_of_list (filter (\<lambda>x. x \<noteq> a) A)"
apply (simp add: fremove_def minus_fset_def ffilter_def fset_both_sides Abs_fset_inverse fset_of_list.rep_eq)
by auto
lemma fsubseteq [code]:
"(fset_of_list l) |\<subseteq>| A = List.list_all (\<lambda>x. x |\<in>| A) l"
by (induct l, auto)
lemma fsum_fold [code]: "fSum (fset_of_list l) = fold (+) (remdups l) 0"
proof(induct l)
case Nil
then show ?case
by (simp add: fsum.F.rep_eq fSum_def)
next
case (Cons a l)
then show ?case
apply simp
apply standard
apply (simp add: finsert_absorb fset_of_list_elem)
by (simp add: add.commute fold_plus_sum_list_rev fset_of_list.rep_eq fsum.F.rep_eq fSum_def)
qed
lemma code_fset_eq [code]:
"HOL.equal X (fset_of_list Y) \<longleftrightarrow> size X = length (remdups Y) \<and> (\<forall>x |\<in>| X. List.member Y x)"
apply (simp only: HOL.equal_class.equal_eq fset_eq_alt)
apply (simp only: size)
using fmember by fastforce
lemma code_fsubset [code]:
"s |\<subset>| s' = (s |\<subseteq>| s' \<and> size s < size s')"
apply standard
apply (simp only: size_fsubset)
by auto
lemma code_fset [code]: "fset (fset_of_list l) = fold insert l {}"
using fset_of_list.rep_eq union_set_fold by fastforce
lemma code_fBall [code]: "fBall (fset_of_list l) f = list_all f l"
by (simp add: Ball_set fBall.rep_eq fset_of_list.rep_eq)
lemma code_fBex [code]: "fBex (fset_of_list l) f = list_ex f l"
by (meson Bex_set fBexE fset_of_list_elem rev_fBexI)
definition "nativeSort = sort"
code_printing constant nativeSort \<rightharpoonup> (Scala) "_.sortWith((Orderings.less))"
lemma [code]: "sorted_list_of_fset (fset_of_list l) = nativeSort (remdups l)"
by (simp add: nativeSort_def sorted_list_of_fset_sort)
lemma [code]: "sorted_list_of_set (set l) = nativeSort (remdups l)"
by (simp add: nativeSort_def sorted_list_of_set_sort_remdups)
lemma [code]: "fMin (fset_of_list (h#t)) = hd (nativeSort (h#t))"
by (metis fMin_Min hd_sort_Min list.distinct(1) nativeSort_def)
lemma sorted_Max_Cons:
"l \<noteq> [] \<Longrightarrow>
sorted (a#l) \<Longrightarrow>
Max (set (a#l)) = Max (set l)"
using eq_iff by fastforce
lemma sorted_Max:
"l \<noteq> [] \<Longrightarrow>
sorted l \<Longrightarrow>
Max (set l) = hd (rev l)"
proof(induct l)
case Nil
then show ?case by simp
next
case (Cons a l)
then show ?case
by (metis sorted_Max_Cons Max_singleton hd_rev last.simps list.set(1) list.simps(15) sorted_simps(2))
qed
lemma [code]: "fMax (fset_of_list (h#t)) = last (nativeSort (h#t))"
by (metis Max.set_eq_fold fMax_fold hd_rev list.simps(3) nativeSort_def set_empty2 set_sort sorted_Max sorted_sort)
definition "list_max l = fold max l"
code_printing constant list_max \<rightharpoonup> (Scala) "_.par.fold((_))(Orderings.max)"
lemma [code]: "fMax (fset_of_list (h#t)) = list_max t h"
by (metis fMax_fold list_max_def)
definition "list_min l = fold min l"
code_printing constant list_min \<rightharpoonup> (Scala) "_.par.fold((_))(Orderings.min)"
lemma [code]: "fMin (fset_of_list (h#t)) = list_min t h"
by (metis fMin_fold list_min_def)
lemma fis_singleton_code [code]: "fis_singleton s = (size s = 1)"
apply (simp add: fis_singleton_def is_singleton_def)
by (simp add: card_Suc_eq)
end