Featherweight_OCL/Featherweight_OCL/examples/Employee_Model/Design/Design_OCL.thy

138 lines
9.0 KiB
Plaintext

(*****************************************************************************
* Featherweight-OCL --- A Formal Semantics for UML-OCL Version OCL 2.5
* for the OMG Standard.
* http://www.brucker.ch/projects/hol-testgen/
*
* Design_OCL.thy --- OCL Contracts and an Example.
* This file is part of HOL-TestGen.
*
* Copyright (c) 2012-2015 Université Paris-Saclay, Univ. Paris-Sud, France
* 2013-2015 IRT SystemX, France
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************)
theory
Design_OCL
imports
Design_UML
begin
text \<open>\label{ex:employee-design:ocl}\<close>
section\<open>OCL Part: Invariant\<close>
text\<open>These recursive predicates can be defined conservatively
by greatest fix-point
constructions---automatically. See~\cite{brucker.ea:hol-ocl-book:2006,brucker:interactive:2007}
for details. For the purpose of this example, we state them as axioms
here.
\begin{ocl}
context Person
inv label : self .boss <> null implies (self .salary \<le> ((self .boss) .salary))
\end{ocl}
\<close>
definition Person_label\<^sub>i\<^sub>n\<^sub>v :: "Person \<Rightarrow> Boolean"
where "Person_label\<^sub>i\<^sub>n\<^sub>v (self) \<equiv>
(self .boss <> null implies (self .salary \<le>\<^sub>i\<^sub>n\<^sub>t ((self .boss) .salary)))"
definition Person_label\<^sub>i\<^sub>n\<^sub>v\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e :: "Person \<Rightarrow> Boolean"
where "Person_label\<^sub>i\<^sub>n\<^sub>v\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e (self) \<equiv>
(self .boss@pre <> null implies (self .salary@pre \<le>\<^sub>i\<^sub>n\<^sub>t ((self .boss@pre) .salary@pre)))"
definition Person_label\<^sub>g\<^sub>l\<^sub>o\<^sub>b\<^sub>a\<^sub>l\<^sub>i\<^sub>n\<^sub>v :: "Boolean"
where "Person_label\<^sub>g\<^sub>l\<^sub>o\<^sub>b\<^sub>a\<^sub>l\<^sub>i\<^sub>n\<^sub>v \<equiv> (Person .allInstances()->forAll\<^sub>S\<^sub>e\<^sub>t(x | Person_label\<^sub>i\<^sub>n\<^sub>v (x)) and
(Person .allInstances@pre()->forAll\<^sub>S\<^sub>e\<^sub>t(x | Person_label\<^sub>i\<^sub>n\<^sub>v\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e (x))))"
lemma "\<tau> \<Turnstile> \<delta> (X .boss) \<Longrightarrow> \<tau> \<Turnstile> Person .allInstances()->includes\<^sub>S\<^sub>e\<^sub>t(X .boss) \<and>
\<tau> \<Turnstile> Person .allInstances()->includes\<^sub>S\<^sub>e\<^sub>t(X) "
oops
(* To be generated generically ... hard, but crucial lemma that should hold.
It means that X and it successor are object representation that actually
occur in the state. *)
lemma REC_pre : "\<tau> \<Turnstile> Person_label\<^sub>g\<^sub>l\<^sub>o\<^sub>b\<^sub>a\<^sub>l\<^sub>i\<^sub>n\<^sub>v
\<Longrightarrow> \<tau> \<Turnstile> Person .allInstances()->includes\<^sub>S\<^sub>e\<^sub>t(X) \<comment> \<open>\<open>X\<close> represented object in state\<close>
\<Longrightarrow> \<exists> REC. \<tau> \<Turnstile> REC(X) \<triangleq> (Person_label\<^sub>i\<^sub>n\<^sub>v (X) and (X .boss <> null implies REC(X .boss)))"
oops (* Attempt to allegiate the burden of he following axiomatizations: could be
a witness for a constant specification ...*)
text\<open>This allows to state a predicate:\<close>
axiomatization inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l :: "Person \<Rightarrow> Boolean"
where inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l_def:
"(\<tau> \<Turnstile> Person .allInstances()->includes\<^sub>S\<^sub>e\<^sub>t(self)) \<Longrightarrow>
(\<tau> \<Turnstile> (inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l(self) \<triangleq> (self .boss <> null implies
(self .salary \<le>\<^sub>i\<^sub>n\<^sub>t ((self .boss) .salary)) and
inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l(self .boss))))"
axiomatization inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e :: "Person \<Rightarrow> Boolean"
where inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e_def:
"(\<tau> \<Turnstile> Person .allInstances@pre()->includes\<^sub>S\<^sub>e\<^sub>t(self)) \<Longrightarrow>
(\<tau> \<Turnstile> (inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e(self) \<triangleq> (self .boss@pre <> null implies
(self .salary@pre \<le>\<^sub>i\<^sub>n\<^sub>t ((self .boss@pre) .salary@pre)) and
inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e(self .boss@pre))))"
lemma inv_1 :
"(\<tau> \<Turnstile> Person .allInstances()->includes\<^sub>S\<^sub>e\<^sub>t(self)) \<Longrightarrow>
(\<tau> \<Turnstile> inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l(self) = ((\<tau> \<Turnstile> (self .boss \<doteq> null)) \<or>
( \<tau> \<Turnstile> (self .boss <> null) \<and>
\<tau> \<Turnstile> ((self .salary) \<le>\<^sub>i\<^sub>n\<^sub>t (self .boss .salary)) \<and>
\<tau> \<Turnstile> (inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l(self .boss))))) "
oops (* Let's hope that this holds ... *)
lemma inv_2 :
"(\<tau> \<Turnstile> Person .allInstances@pre()->includes\<^sub>S\<^sub>e\<^sub>t(self)) \<Longrightarrow>
(\<tau> \<Turnstile> inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e(self)) = ((\<tau> \<Turnstile> (self .boss@pre \<doteq> null)) \<or>
(\<tau> \<Turnstile> (self .boss@pre <> null) \<and>
(\<tau> \<Turnstile> (self .boss@pre .salary@pre \<le>\<^sub>i\<^sub>n\<^sub>t self .salary@pre)) \<and>
(\<tau> \<Turnstile> (inv\<^sub>P\<^sub>e\<^sub>r\<^sub>s\<^sub>o\<^sub>n\<^sub>_\<^sub>l\<^sub>a\<^sub>b\<^sub>e\<^sub>l\<^sub>A\<^sub>T\<^sub>p\<^sub>r\<^sub>e(self .boss@pre)))))"
oops (* Let's hope that this holds ... *)
text\<open>A very first attempt to characterize the axiomatization by an inductive
definition - this can not be the last word since too weak (should be equality!)\<close>
coinductive inv :: "Person \<Rightarrow> (\<AA>)st \<Rightarrow> bool" where
"(\<tau> \<Turnstile> (\<delta> self)) \<Longrightarrow> ((\<tau> \<Turnstile> (self .boss \<doteq> null)) \<or>
(\<tau> \<Turnstile> (self .boss <> null) \<and> (\<tau> \<Turnstile> (self .boss .salary \<le>\<^sub>i\<^sub>n\<^sub>t self .salary)) \<and>
( (inv(self .boss))\<tau> )))
\<Longrightarrow> ( inv self \<tau>)"
section\<open>OCL Part: The Contract of a Recursive Query\<close>
text\<open>This part is analogous to the Analysis Model and skipped here.\<close>
end