Featherweight_OCL/OCL_lib.thy

3172 lines
177 KiB
Plaintext

(*****************************************************************************
* Featherweight-OCL --- A Formal Semantics for UML-OCL Version OCL 2.4
* for the OMG Standard.
* http://www.brucker.ch/projects/hol-testgen/
*
* OCL_lib.thy --- Library definitions.
* This file is part of HOL-TestGen.
*
* Copyright (c) 2012-2013 Université Paris-Sud, France
* 2013 IRT SystemX, France
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************)
chapter{* Formalization II: Library Definitions *}
theory OCL_lib
imports OCL_core
begin
text {*
The structure of this chapter roughly follows the structure of Chapter
10 of the OCL standard~\cite{omg:ocl:2012}, which introduces the OCL
Library.
*}
section{* Basic Types: Void and Integer *}
subsection{* The Construction of the Void Type *}
type_synonym ('\<AA>)Void = "('\<AA>,unit option) val"
(* For technical reasons, the type does not contain to the null-class yet. *)
text {* This \emph{minimal} OCL type contains only two elements:
@{term "invalid"} and @{term "null"}.
@{term "Void"} could initially be defined as @{typ "unit option option"},
however the cardinal of this type is more than two, so it would have the cost to consider
@{text "Some None"} and @{text "Some (Some ())"} seemingly everywhere.*}
subsection{* The Construction of the Integer Type *}
text{* Since @{term "Integer"} is again a basic type, we define its semantic domain
as the valuations over @{typ "int option option"}. *}
type_synonym ('\<AA>)Integer = "('\<AA>,int option option) val"
text{* Although the remaining part of this library reasons about
integers abstractly, we provide here as example some convenient shortcuts. *}
definition OclInt0 ::"('\<AA>)Integer" ("\<zero>")
where "\<zero> = (\<lambda> _ . \<lfloor>\<lfloor>0::int\<rfloor>\<rfloor>)"
definition OclInt1 ::"('\<AA>)Integer" ("\<one>")
where "\<one> = (\<lambda> _ . \<lfloor>\<lfloor>1::int\<rfloor>\<rfloor>)"
definition OclInt2 ::"('\<AA>)Integer" ("\<two>")
where "\<two> = (\<lambda> _ . \<lfloor>\<lfloor>2::int\<rfloor>\<rfloor>)"
definition OclInt3 ::"('\<AA>)Integer" ("\<three>")
where "\<three> = (\<lambda> _ . \<lfloor>\<lfloor>3::int\<rfloor>\<rfloor>)"
definition OclInt4 ::"('\<AA>)Integer" ("\<four>")
where "\<four> = (\<lambda> _ . \<lfloor>\<lfloor>4::int\<rfloor>\<rfloor>)"
definition OclInt5 ::"('\<AA>)Integer" ("\<five>")
where "\<five> = (\<lambda> _ . \<lfloor>\<lfloor>5::int\<rfloor>\<rfloor>)"
definition OclInt6 ::"('\<AA>)Integer" ("\<six>")
where "\<six> = (\<lambda> _ . \<lfloor>\<lfloor>6::int\<rfloor>\<rfloor>)"
definition OclInt7 ::"('\<AA>)Integer" ("\<seven>")
where "\<seven> = (\<lambda> _ . \<lfloor>\<lfloor>7::int\<rfloor>\<rfloor>)"
definition OclInt8 ::"('\<AA>)Integer" ("\<eight>")
where "\<eight> = (\<lambda> _ . \<lfloor>\<lfloor>8::int\<rfloor>\<rfloor>)"
definition OclInt9 ::"('\<AA>)Integer" ("\<nine>")
where "\<nine> = (\<lambda> _ . \<lfloor>\<lfloor>9::int\<rfloor>\<rfloor>)"
definition OclInt10 ::"('\<AA>)Integer" ("\<one>\<zero>")
where "\<one>\<zero> = (\<lambda> _ . \<lfloor>\<lfloor>10::int\<rfloor>\<rfloor>)"
subsection{* Validity and Definedness Properties *}
lemma "\<delta>(null::('\<AA>)Integer) = false" by simp
lemma "\<upsilon>(null::('\<AA>)Integer) = true" by simp
lemma [simp,code_unfold]: "\<delta> (\<lambda>_. \<lfloor>\<lfloor>n\<rfloor>\<rfloor>) = true"
by(simp add:defined_def true_def
bot_fun_def bot_option_def null_fun_def null_option_def)
lemma [simp,code_unfold]: "\<upsilon> (\<lambda>_. \<lfloor>\<lfloor>n\<rfloor>\<rfloor>) = true"
by(simp add:valid_def true_def
bot_fun_def bot_option_def)
(* ecclectic proofs to make examples executable *)
lemma [simp,code_unfold]: "\<delta> \<zero> = true" by(simp add:OclInt0_def)
lemma [simp,code_unfold]: "\<upsilon> \<zero> = true" by(simp add:OclInt0_def)
lemma [simp,code_unfold]: "\<delta> \<one> = true" by(simp add:OclInt1_def)
lemma [simp,code_unfold]: "\<upsilon> \<one> = true" by(simp add:OclInt1_def)
lemma [simp,code_unfold]: "\<delta> \<two> = true" by(simp add:OclInt2_def)
lemma [simp,code_unfold]: "\<upsilon> \<two> = true" by(simp add:OclInt2_def)
lemma [simp,code_unfold]: "\<delta> \<six> = true" by(simp add:OclInt6_def)
lemma [simp,code_unfold]: "\<upsilon> \<six> = true" by(simp add:OclInt6_def)
lemma [simp,code_unfold]: "\<delta> \<eight> = true" by(simp add:OclInt8_def)
lemma [simp,code_unfold]: "\<upsilon> \<eight> = true" by(simp add:OclInt8_def)
lemma [simp,code_unfold]: "\<delta> \<nine> = true" by(simp add:OclInt9_def)
lemma [simp,code_unfold]: "\<upsilon> \<nine> = true" by(simp add:OclInt9_def)
subsection{* Arithmetical Operations on Integer *}
subsubsection{* Definition *}
text{* Here is a common case of a built-in operation on built-in types.
Note that the arguments must be both defined (non-null, non-bot). *}
text{* Note that we can not follow the lexis of the OCL Standard for Isabelle
technical reasons; these operators are heavily overloaded in the HOL library
that a further overloading would lead to heavy technical buzz in this
document.
*}
definition OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r ::"('\<AA>)Integer \<Rightarrow> ('\<AA>)Integer \<Rightarrow> ('\<AA>)Integer" (infix "`+" 40)
where "x `+ y \<equiv> \<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<delta> y) \<tau> = true \<tau>
then \<lfloor>\<lfloor>\<lceil>\<lceil>x \<tau>\<rceil>\<rceil> + \<lceil>\<lceil>y \<tau>\<rceil>\<rceil>\<rfloor>\<rfloor>
else invalid \<tau> "
definition OclLess\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r ::"('\<AA>)Integer \<Rightarrow> ('\<AA>)Integer \<Rightarrow> ('\<AA>)Boolean" (infix "`<" 40)
where "x `< y \<equiv> \<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<delta> y) \<tau> = true \<tau>
then \<lfloor>\<lfloor>\<lceil>\<lceil>x \<tau>\<rceil>\<rceil> < \<lceil>\<lceil>y \<tau>\<rceil>\<rceil>\<rfloor>\<rfloor>
else invalid \<tau> "
definition OclLe\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r ::"('\<AA>)Integer \<Rightarrow> ('\<AA>)Integer \<Rightarrow> ('\<AA>)Boolean" (infix "`\<le>" 40)
where "x `\<le> y \<equiv> \<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<delta> y) \<tau> = true \<tau>
then \<lfloor>\<lfloor>\<lceil>\<lceil>x \<tau>\<rceil>\<rceil> \<le> \<lceil>\<lceil>y \<tau>\<rceil>\<rceil>\<rfloor>\<rfloor>
else invalid \<tau> "
subsubsection{* Basic Properties *}
lemma OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_commute: "(X `+ Y) = (Y `+ X)"
by(rule ext,auto simp:true_def false_def OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def invalid_def
split: option.split option.split_asm
bool.split bool.split_asm)
subsubsection{* Execution with Invalid or Null or Zero as Argument *}
lemma OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict1[simp,code_unfold] : "(x `+ invalid) = invalid"
by(rule ext, simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def true_def false_def)
lemma OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict2[simp,code_unfold] : "(invalid `+ x) = invalid"
by(rule ext, simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def true_def false_def)
lemma [simp,code_unfold] : "(x `+ null) = invalid"
by(rule ext, simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def true_def false_def)
lemma [simp,code_unfold] : "(null `+ x) = invalid"
by(rule ext, simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def true_def false_def)
lemma OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_zero1[simp,code_unfold] :
"(x `+ \<zero>) = (if \<upsilon> x and not (\<delta> x) then invalid else x endif)"
proof (rule ext, rename_tac \<tau>, case_tac "(\<upsilon> x and not (\<delta> x)) \<tau> = true \<tau>")
fix \<tau> show "(\<upsilon> x and not (\<delta> x)) \<tau> = true \<tau> \<Longrightarrow>
(x `+ \<zero>) \<tau> = (if \<upsilon> x and not (\<delta> x) then invalid else x endif) \<tau>"
apply(subst OclIf_true', simp add: OclValid_def)
by (metis OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def OclNot_defargs OclValid_def foundation5 foundation9)
apply_end assumption
next fix \<tau>
have A: "\<And>\<tau>. (\<tau> \<Turnstile> not (\<upsilon> x and not (\<delta> x))) = (x \<tau> = invalid \<tau> \<or> \<tau> \<Turnstile> \<delta> x)"
by (metis OclNot_not OclOr_def defined5 defined6 defined_not_I foundation11 foundation18'
foundation6 foundation7 foundation9 invalid_def)
have B: "\<tau> \<Turnstile> \<delta> x \<Longrightarrow> \<lfloor>\<lfloor>\<lceil>\<lceil>x \<tau>\<rceil>\<rceil>\<rfloor>\<rfloor> = x \<tau>"
apply(cases "x \<tau>", metis bot_option_def foundation17)
apply(rename_tac x', case_tac x', metis bot_option_def foundation16 null_option_def)
by(simp)
show "\<tau> \<Turnstile> not (\<upsilon> x and not (\<delta> x)) \<Longrightarrow>
(x `+ \<zero>) \<tau> = (if \<upsilon> x and not (\<delta> x) then invalid else x endif) \<tau>"
apply(subst OclIf_false', simp, simp add: A, auto simp: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def OclInt0_def)
(* *)
apply (metis OclValid_def foundation19 foundation20)
apply(simp add: B)
by(simp add: OclValid_def)
apply_end(metis OclValid_def defined5 defined6 defined_and_I defined_not_I foundation9)
qed
lemma OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_zero2[simp,code_unfold] :
"(\<zero> `+ x) = (if \<upsilon> x and not (\<delta> x) then invalid else x endif)"
by(subst OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_commute, simp)
subsubsection{* Context Passing *}
lemma cp_OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r:"(X `+ Y) \<tau> = ((\<lambda> _. X \<tau>) `+ (\<lambda> _. Y \<tau>)) \<tau>"
by(simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def cp_defined[symmetric])
lemma cp_OclLess\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r:"(X `< Y) \<tau> = ((\<lambda> _. X \<tau>) `< (\<lambda> _. Y \<tau>)) \<tau>"
by(simp add: OclLess\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def cp_defined[symmetric])
lemma cp_OclLe\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r:"(X `\<le> Y) \<tau> = ((\<lambda> _. X \<tau>) `\<le> (\<lambda> _. Y \<tau>)) \<tau>"
by(simp add: OclLe\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def cp_defined[symmetric])
subsubsection{* Test Statements *}
text{* Here follows a list of code-examples, that explain the meanings
of the above definitions by compilation to code and execution to @{term "True"}.*}
value " \<tau> \<Turnstile> ( \<nine> `\<le> \<one>\<zero> )"
value " \<tau> \<Turnstile> (( \<four> `+ \<four> ) `\<le> \<one>\<zero> )"
value "\<not>(\<tau> \<Turnstile> (( \<four> `+ ( \<four> `+ \<four> )) `< \<one>\<zero> ))"
value " \<tau> \<Turnstile> not (\<upsilon> (null `+ \<one>)) "
section{* Fundamental Predicates on Basic Types: Strict Equality *}
subsection{* Definition *}
text{* The last basic operation belonging to the fundamental infrastructure
of a value-type in OCL is the weak equality, which is defined similar
to the @{typ "('\<AA>)Boolean"}-case as strict extension of the strong equality:*}
defs (overloaded) StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[code_unfold] :
"(x::('\<AA>)Integer) \<doteq> y \<equiv> \<lambda> \<tau>. if (\<upsilon> x) \<tau> = true \<tau> \<and> (\<upsilon> y) \<tau> = true \<tau>
then (x \<triangleq> y) \<tau>
else invalid \<tau>"
value "\<tau> \<Turnstile> \<one> <> \<two>"
value "\<tau> \<Turnstile> \<two> <> \<one>"
value "\<tau> \<Turnstile> \<two> \<doteq> \<two>"
subsection{* Logic and Algebraic Layer on Basic Types *}
subsubsection{* Validity and Definedness Properties (I) *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>((x::('\<AA>)Boolean) \<doteq> y)) = ((\<tau> \<Turnstile>(\<upsilon> x)) \<and> (\<tau> \<Turnstile>(\<upsilon> y)))"
by(auto simp: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def null_fun_def bot_fun_def null_option_def bot_option_def
split: bool.split_asm HOL.split_if_asm option.split)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>((x::('\<AA>)Integer) \<doteq> y)) = ((\<tau> \<Turnstile>(\<upsilon> x)) \<and> (\<tau> \<Turnstile>(\<upsilon> y)))"
by(auto simp: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def null_fun_def bot_fun_def null_option_def bot_option_def
split: bool.split_asm HOL.split_if_asm option.split)
subsubsection{* Validity and Definedness Properties (II) *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_defargs:
"\<tau> \<Turnstile> ((x::('\<AA>)Boolean) \<doteq> y) \<Longrightarrow> (\<tau> \<Turnstile> (\<upsilon> x)) \<and> (\<tau> \<Turnstile>(\<upsilon> y))"
by(simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclValid_def true_def invalid_def
bot_option_def
split: bool.split_asm HOL.split_if_asm)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_defargs:
"\<tau> \<Turnstile> ((x::('\<AA>)Integer) \<doteq> y) \<Longrightarrow> (\<tau> \<Turnstile> (\<upsilon> x)) \<and> (\<tau> \<Turnstile> (\<upsilon> y))"
by(simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r OclValid_def true_def invalid_def valid_def bot_option_def
split: bool.split_asm HOL.split_if_asm)
subsubsection{* Validity and Definedness Properties (III) Miscellaneous *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict'' : "\<delta> ((x::('\<AA>)Boolean) \<doteq> y) = (\<upsilon>(x) and \<upsilon>(y))"
by(auto intro!: transform2_rev defined_and_I simp:foundation10 StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_defined_args_valid)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict'' : "\<delta> ((x::('\<AA>)Integer) \<doteq> y) = (\<upsilon>(x) and \<upsilon>(y))"
by(auto intro!: transform2_rev defined_and_I simp:foundation10 StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_defined_args_valid)
(* Probably not very useful *)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict :
assumes A: "\<upsilon> (x::('\<AA>)Integer) = true"
and B: "\<upsilon> y = true"
shows "\<upsilon> (x \<doteq> y) = true"
apply(insert A B)
apply(rule ext, simp add: StrongEq_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r true_def valid_def defined_def
bot_fun_def bot_option_def)
done
(* Probably not very useful *)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict' :
assumes A: "\<upsilon> (((x::('\<AA>)Integer)) \<doteq> y) = true"
shows "\<upsilon> x = true \<and> \<upsilon> y = true"
apply(insert A, rule conjI)
apply(rule ext, rename_tac \<tau>, drule_tac x=\<tau> in fun_cong)
prefer 2
apply(rule ext, rename_tac \<tau>, drule_tac x=\<tau> in fun_cong)
apply(simp_all add: StrongEq_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r
false_def true_def valid_def defined_def)
apply(case_tac "y \<tau>", auto)
apply(simp_all add: true_def invalid_def bot_fun_def)
done
subsubsection{* Reflexivity *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_refl[simp,code_unfold] :
"((x::('\<AA>)Boolean) \<doteq> x) = (if (\<upsilon> x) then true else invalid endif)"
by(rule ext, simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclIf_def)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_refl[simp,code_unfold] :
"((x::('\<AA>)Integer) \<doteq> x) = (if (\<upsilon> x) then true else invalid endif)"
by(rule ext, simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r OclIf_def)
subsubsection{* Execution with Invalid or Null as Argument *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict1[simp,code_unfold] : "((x::('\<AA>)Boolean) \<doteq> invalid) = invalid"
by(rule ext, simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n true_def false_def)
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict2[simp,code_unfold] : "(invalid \<doteq> (x::('\<AA>)Boolean)) = invalid"
by(rule ext, simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n true_def false_def)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict1[simp,code_unfold] : "((x::('\<AA>)Integer) \<doteq> invalid) = invalid"
by(rule ext, simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r true_def false_def)
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict2[simp,code_unfold] : "(invalid \<doteq> (x::('\<AA>)Integer)) = invalid"
by(rule ext, simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r true_def false_def)
lemma integer_non_null [simp]: "((\<lambda>_. \<lfloor>\<lfloor>n\<rfloor>\<rfloor>) \<doteq> (null::('\<AA>)Integer)) = false"
by(rule ext,auto simp: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r valid_def
bot_fun_def bot_option_def null_fun_def null_option_def StrongEq_def)
lemma null_non_integer [simp]: "((null::('\<AA>)Integer) \<doteq> (\<lambda>_. \<lfloor>\<lfloor>n\<rfloor>\<rfloor>)) = false"
by(rule ext,auto simp: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r valid_def
bot_fun_def bot_option_def null_fun_def null_option_def StrongEq_def)
lemma OclInt0_non_null [simp,code_unfold]: "(\<zero> \<doteq> null) = false" by(simp add: OclInt0_def)
lemma null_non_OclInt0 [simp,code_unfold]: "(null \<doteq> \<zero>) = false" by(simp add: OclInt0_def)
lemma OclInt1_non_null [simp,code_unfold]: "(\<one> \<doteq> null) = false" by(simp add: OclInt1_def)
lemma null_non_OclInt1 [simp,code_unfold]: "(null \<doteq> \<one>) = false" by(simp add: OclInt1_def)
lemma OclInt2_non_null [simp,code_unfold]: "(\<two> \<doteq> null) = false" by(simp add: OclInt2_def)
lemma null_non_OclInt2 [simp,code_unfold]: "(null \<doteq> \<two>) = false" by(simp add: OclInt2_def)
lemma OclInt6_non_null [simp,code_unfold]: "(\<six> \<doteq> null) = false" by(simp add: OclInt6_def)
lemma null_non_OclInt6 [simp,code_unfold]: "(null \<doteq> \<six>) = false" by(simp add: OclInt6_def)
lemma OclInt8_non_null [simp,code_unfold]: "(\<eight> \<doteq> null) = false" by(simp add: OclInt8_def)
lemma null_non_OclInt8 [simp,code_unfold]: "(null \<doteq> \<eight>) = false" by(simp add: OclInt8_def)
lemma OclInt9_non_null [simp,code_unfold]: "(\<nine> \<doteq> null) = false" by(simp add: OclInt9_def)
lemma null_non_OclInt9 [simp,code_unfold]: "(null \<doteq> \<nine>) = false" by(simp add: OclInt9_def)
(* plus all the others ...*)
subsubsection{* Const *}
lemma [simp,code_unfold]: "const(\<zero>)" by(simp add: const_ss OclInt0_def)
lemma [simp,code_unfold]: "const(\<one>)" by(simp add: const_ss OclInt1_def)
lemma [simp,code_unfold]: "const(\<two>)" by(simp add: const_ss OclInt2_def)
lemma [simp,code_unfold]: "const(\<six>)" by(simp add: const_ss OclInt6_def)
lemma [simp,code_unfold]: "const(\<eight>)" by(simp add: const_ss OclInt8_def)
lemma [simp,code_unfold]: "const(\<nine>)" by(simp add: const_ss OclInt9_def)
subsubsection{* Behavior vs StrongEq *}
lemma StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_vs_StrongEq:
"\<tau> \<Turnstile>(\<upsilon> x) \<Longrightarrow> \<tau> \<Turnstile>(\<upsilon> y) \<Longrightarrow> (\<tau> \<Turnstile> (((x::('\<AA>)Boolean) \<doteq> y) \<triangleq> (x \<triangleq> y)))"
apply(simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclValid_def)
apply(subst cp_StrongEq[of _ "(x \<triangleq> y)"])
by simp
lemma StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_vs_StrongEq:
"\<tau> \<Turnstile>(\<upsilon> x) \<Longrightarrow> \<tau> \<Turnstile>(\<upsilon> y) \<Longrightarrow> (\<tau> \<Turnstile> (((x::('\<AA>)Integer) \<doteq> y) \<triangleq> (x \<triangleq> y)))"
apply(simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r OclValid_def)
apply(subst cp_StrongEq[of _ "(x \<triangleq> y)"])
by simp
subsubsection{* Context Passing *}
lemma cp_StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n:
"((X::('\<AA>)Boolean) \<doteq> Y) \<tau> = ((\<lambda> _. X \<tau>) \<doteq> (\<lambda> _. Y \<tau>)) \<tau>"
by(auto simp: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n StrongEq_def defined_def valid_def cp_defined[symmetric])
lemma cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r:
"((X::('\<AA>)Integer) \<doteq> Y) \<tau> = ((\<lambda> _. X \<tau>) \<doteq> (\<lambda> _. Y \<tau>)) \<tau>"
by(auto simp: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def valid_def cp_defined[symmetric])
lemmas cp_intro'[intro!,simp,code_unfold] =
cp_intro'
cp_StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n[THEN allI[THEN allI[THEN allI[THEN cpI2]], of "StrictRefEq"]]
cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[THEN allI[THEN allI[THEN allI[THEN cpI2]], of "StrictRefEq"]]
cp_OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r"]]
cp_OclLess\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclLess\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r"]]
cp_OclLe\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclLe\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r"]]
subsection{* Test Statements on Basic Types. *}
text{* Here follows a list of code-examples, that explain the meanings
of the above definitions by compilation to code and execution to @{term "True"}.*}
text{* Elementary computations on Booleans *}
value "\<tau> \<Turnstile> \<upsilon>(true)"
value "\<tau> \<Turnstile> \<delta>(false)"
value "\<not>(\<tau> \<Turnstile> \<delta>(null))"
value "\<not>(\<tau> \<Turnstile> \<delta>(invalid))"
value "\<tau> \<Turnstile> \<upsilon>((null::('\<AA>)Boolean))"
value "\<not>(\<tau> \<Turnstile> \<upsilon>(invalid))"
value "\<tau> \<Turnstile> (true and true)"
value "\<tau> \<Turnstile> (true and true \<triangleq> true)"
value "\<tau> \<Turnstile> ((null or null) \<triangleq> null)"
value "\<tau> \<Turnstile> ((null or null) \<doteq> null)"
value "\<tau> \<Turnstile> ((true \<triangleq> false) \<triangleq> false)"
value "\<tau> \<Turnstile> ((invalid \<triangleq> false) \<triangleq> false)"
value "\<tau> \<Turnstile> ((invalid \<doteq> false) \<triangleq> invalid)"
text{* Elementary computations on Integer *}
value " \<tau> \<Turnstile> \<upsilon> \<four>"
value " \<tau> \<Turnstile> \<delta> \<four>"
value " \<tau> \<Turnstile> \<upsilon> (null::('\<AA>)Integer)"
value " \<tau> \<Turnstile> (invalid \<triangleq> invalid)"
value " \<tau> \<Turnstile> (null \<triangleq> null)"
value " \<tau> \<Turnstile> (\<four> \<triangleq> \<four>)"
value "\<not>(\<tau> \<Turnstile> (\<nine> \<triangleq> \<one>\<zero>))"
value "\<not>(\<tau> \<Turnstile> (invalid \<triangleq> \<one>\<zero>))"
value "\<not>(\<tau> \<Turnstile> (null \<triangleq> \<one>\<zero>))"
value "\<not>(\<tau> \<Turnstile> (invalid \<doteq> (invalid::('\<AA>)Integer)))" (* Without typeconstraint not executable.*)
value "\<not>(\<tau> \<Turnstile> \<upsilon> (invalid \<doteq> (invalid::('\<AA>)Integer)))" (* Without typeconstraint not executable.*)
value "\<not>(\<tau> \<Turnstile> (invalid <> (invalid::('\<AA>)Integer)))" (* Without typeconstraint not executable.*)
value "\<not>(\<tau> \<Turnstile> \<upsilon> (invalid <> (invalid::('\<AA>)Integer)))" (* Without typeconstraint not executable.*)
value " \<tau> \<Turnstile> (null \<doteq> (null::('\<AA>)Integer) )" (* Without typeconstraint not executable.*)
value " \<tau> \<Turnstile> (null \<doteq> (null::('\<AA>)Integer) )" (* Without typeconstraint not executable.*)
value " \<tau> \<Turnstile> (\<four> \<doteq> \<four>)"
value "\<not>(\<tau> \<Turnstile> (\<four> <> \<four>))"
value "\<not>(\<tau> \<Turnstile> (\<four> \<doteq> \<one>\<zero>))"
value " \<tau> \<Turnstile> (\<four> <> \<one>\<zero>)"
value "\<not>(\<tau> \<Turnstile> (\<zero> `< null))"
value "\<not>(\<tau> \<Turnstile> (\<delta> (\<zero> `< null)))"
section{* Complex Types: The Set-Collection Type (I) Core *}
subsection{* The Construction of the Set Type *}
no_notation None ("\<bottom>")
notation bot ("\<bottom>")
text{* For the semantic construction of the collection types, we have two goals:
\begin{enumerate}
\item we want the types to be \emph{fully abstract}, \ie, the type should not
contain junk-elements that are not representable by OCL expressions, and
\item we want a possibility to nest collection types (so, we want the
potential to talking about @{text "Set(Set(Sequences(Pairs(X,Y))))"}).
\end{enumerate}
The former principle rules out the option to define @{text "'\<alpha> Set"} just by
@{text "('\<AA>, ('\<alpha> option option) set) val"}. This would allow sets to contain
junk elements such as @{text "{\<bottom>}"} which we need to identify with undefinedness
itself. Abandoning fully abstractness of rules would later on produce all sorts
of problems when quantifying over the elements of a type.
However, if we build an own type, then it must conform to our abstract interface
in order to have nested types: arguments of type-constructors must conform to our
abstract interface, and the result type too.
*}
text{* The core of an own type construction is done via a type
definition which provides the raw-type @{text "'\<alpha> Set_0"}. It
is shown that this type ``fits'' indeed into the abstract type
interface discussed in the previous section. *}
typedef '\<alpha> Set_0 ="{X::('\<alpha>\<Colon>null) set option option.
X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by (rule_tac x="bot" in exI, simp)
instantiation Set_0 :: (null)bot
begin
definition bot_Set_0_def: "(bot::('a::null) Set_0) \<equiv> Abs_Set_0 None"
instance proof show "\<exists>x\<Colon>'a Set_0. x \<noteq> bot"
apply(rule_tac x="Abs_Set_0 \<lfloor>None\<rfloor>" in exI)
apply(simp add:bot_Set_0_def)
apply(subst Abs_Set_0_inject)
apply(simp_all add: bot_Set_0_def
null_option_def bot_option_def)
done
qed
end
instantiation Set_0 :: (null)null
begin
definition null_Set_0_def: "(null::('a::null) Set_0) \<equiv> Abs_Set_0 \<lfloor> None \<rfloor>"
instance proof show "(null::('a::null) Set_0) \<noteq> bot"
apply(simp add:null_Set_0_def bot_Set_0_def)
apply(subst Abs_Set_0_inject)
apply(simp_all add: bot_Set_0_def
null_option_def bot_option_def)
done
qed
end
text{* ... and lifting this type to the format of a valuation gives us:*}
type_synonym ('\<AA>,'\<alpha>) Set = "('\<AA>, '\<alpha> Set_0) val"
subsection{* Validity and Definedness Properties *}
text{* Every element in a defined set is valid. *}
lemma Set_inv_lemma: "\<tau> \<Turnstile> (\<delta> X) \<Longrightarrow> \<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. x \<noteq> bot"
apply(insert Rep_Set_0 [of "X \<tau>"], simp)
apply(auto simp: OclValid_def defined_def false_def true_def cp_def
bot_fun_def bot_Set_0_def null_Set_0_def null_fun_def
split:split_if_asm)
apply(erule contrapos_pp [of "Rep_Set_0 (X \<tau>) = bot"])
apply(subst Abs_Set_0_inject[symmetric], rule Rep_Set_0, simp)
apply(simp add: Rep_Set_0_inverse bot_Set_0_def bot_option_def)
apply(erule contrapos_pp [of "Rep_Set_0 (X \<tau>) = null"])
apply(subst Abs_Set_0_inject[symmetric], rule Rep_Set_0, simp)
apply(simp add: Rep_Set_0_inverse null_option_def)
by (simp add: bot_option_def)
lemma Set_inv_lemma' :
assumes x_def : "\<tau> \<Turnstile> \<delta> X"
and e_mem : "e \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
shows "\<tau> \<Turnstile> \<upsilon> (\<lambda>_. e)"
apply(rule Set_inv_lemma[OF x_def, THEN ballE[where x = e]])
apply(simp add: foundation18')
by(simp add: e_mem)
lemma abs_rep_simp' :
assumes S_all_def : "\<tau> \<Turnstile> \<delta> S"
shows "Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> = S \<tau>"
proof -
have discr_eq_false_true : "\<And>\<tau>. (false \<tau> = true \<tau>) = False" by(simp add: false_def true_def)
show ?thesis
apply(insert S_all_def, simp add: OclValid_def defined_def)
apply(rule mp[OF Abs_Set_0_induct[where P = "\<lambda>S. (if S = \<bottom> \<tau> \<or> S = null \<tau>
then false \<tau> else true \<tau>) = true \<tau> \<longrightarrow>
Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 S\<rceil>\<rceil>\<rfloor>\<rfloor> = S"]],
rename_tac S')
apply(simp add: Abs_Set_0_inverse discr_eq_false_true)
apply(case_tac S') apply(simp add: bot_fun_def bot_Set_0_def)+
apply(rename_tac S'', case_tac S'') apply(simp add: null_fun_def null_Set_0_def)+
done
qed
lemma S_lift' :
assumes S_all_def : "(\<tau> :: '\<AA> st) \<Turnstile> \<delta> S"
shows "\<exists>S'. (\<lambda>a (_::'\<AA> st). a) ` \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> = (\<lambda>a (_::'\<AA> st). \<lfloor>a\<rfloor>) ` S'"
apply(rule_tac x = "(\<lambda>a. \<lceil>a\<rceil>) ` \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>" in exI)
apply(simp only: image_comp)
apply(simp add: comp_def)
apply(rule image_cong, fast)
(* *)
apply(drule Set_inv_lemma'[OF S_all_def])
by(case_tac x, (simp add: bot_option_def foundation18')+)
lemma invalid_set_OclNot_defined [simp,code_unfold]:"\<delta>(invalid::('\<AA>,'\<alpha>::null) Set) = false" by simp
lemma null_set_OclNot_defined [simp,code_unfold]:"\<delta>(null::('\<AA>,'\<alpha>::null) Set) = false"
by(simp add: defined_def null_fun_def)
lemma invalid_set_valid [simp,code_unfold]:"\<upsilon>(invalid::('\<AA>,'\<alpha>::null) Set) = false"
by simp
lemma null_set_valid [simp,code_unfold]:"\<upsilon>(null::('\<AA>,'\<alpha>::null) Set) = true"
apply(simp add: valid_def null_fun_def bot_fun_def bot_Set_0_def null_Set_0_def)
apply(subst Abs_Set_0_inject,simp_all add: null_option_def bot_option_def)
done
text{* ... which means that we can have a type @{text "('\<AA>,('\<AA>,('\<AA>) Integer) Set) Set"}
corresponding exactly to Set(Set(Integer)) in OCL notation. Note that the parameter
@{text "'\<AA>"} still refers to the object universe; making the OCL semantics entirely parametric
in the object universe makes it possible to study (and prove) its properties
independently from a concrete class diagram. *}
subsection{* Constants on Sets *}
definition mtSet::"('\<AA>,'\<alpha>::null) Set" ("Set{}")
where "Set{} \<equiv> (\<lambda> \<tau>. Abs_Set_0 \<lfloor>\<lfloor>{}::'\<alpha> set\<rfloor>\<rfloor> )"
lemma mtSet_defined[simp,code_unfold]:"\<delta>(Set{}) = true"
apply(rule ext, auto simp: mtSet_def defined_def null_Set_0_def
bot_Set_0_def bot_fun_def null_fun_def)
by(simp_all add: Abs_Set_0_inject bot_option_def null_Set_0_def null_option_def)
lemma mtSet_valid[simp,code_unfold]:"\<upsilon>(Set{}) = true"
apply(rule ext,auto simp: mtSet_def valid_def null_Set_0_def
bot_Set_0_def bot_fun_def null_fun_def)
by(simp_all add: Abs_Set_0_inject bot_option_def null_Set_0_def null_option_def)
lemma mtSet_rep_set: "\<lceil>\<lceil>Rep_Set_0 (Set{} \<tau>)\<rceil>\<rceil> = {}"
apply(simp add: mtSet_def, subst Abs_Set_0_inverse)
by(simp add: bot_option_def)+
lemma [simp,code_unfold]: "const Set{}"
by(simp add: const_def mtSet_def)
text{* Note that the collection types in OCL allow for null to be included;
however, there is the null-collection into which inclusion yields invalid. *}
section{* Complex Types: The Set-Collection Type (II) Library *}
text{* This part provides a collection of operators for the Set type. *}
subsection{* Computational Operations on Set *}
subsubsection{* Definition *}
definition OclIncluding :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) val] \<Rightarrow> ('\<AA>,'\<alpha>) Set"
where "OclIncluding x y = (\<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<upsilon> y) \<tau> = true \<tau>
then Abs_Set_0 \<lfloor>\<lfloor> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil> \<union> {y \<tau>} \<rfloor>\<rfloor>
else \<bottom> )"
notation OclIncluding ("_->including'(_')")
syntax
"_OclFinset" :: "args => ('\<AA>,'a::null) Set" ("Set{(_)}")
translations
"Set{x, xs}" == "CONST OclIncluding (Set{xs}) x"
"Set{x}" == "CONST OclIncluding (Set{}) x "
definition OclExcluding :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) val] \<Rightarrow> ('\<AA>,'\<alpha>) Set"
where "OclExcluding x y = (\<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<upsilon> y) \<tau> = true \<tau>
then Abs_Set_0 \<lfloor>\<lfloor> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil> - {y \<tau>} \<rfloor>\<rfloor>
else \<bottom> )"
notation OclExcluding ("_->excluding'(_')")
definition OclIncludes :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) val] \<Rightarrow> '\<AA> Boolean"
where "OclIncludes x y = (\<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> (\<upsilon> y) \<tau> = true \<tau>
then \<lfloor>\<lfloor>(y \<tau>) \<in> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil> \<rfloor>\<rfloor>
else \<bottom> )"
notation OclIncludes ("_->includes'(_')" (*[66,65]65*))
definition OclExcludes :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) val] \<Rightarrow> '\<AA> Boolean"
where "OclExcludes x y = (not(OclIncludes x y))"
notation OclExcludes ("_->excludes'(_')" (*[66,65]65*))
text{* The case of the size definition is somewhat special, we admit
explicitly in Featherweight OCL the possibility of infinite sets. For
the size definition, this requires an extra condition that assures
that the cardinality of the set is actually a defined integer. *}
definition OclSize :: "('\<AA>,'\<alpha>::null)Set \<Rightarrow> '\<AA> Integer"
where "OclSize x = (\<lambda> \<tau>. if (\<delta> x) \<tau> = true \<tau> \<and> finite(\<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil>)
then \<lfloor>\<lfloor> int(card \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil>) \<rfloor>\<rfloor>
else \<bottom> )"
notation (* standard ascii syntax *)
OclSize ("_->size'(')" (*[66]*))
text{* The following definition follows the requirement of the
standard to treat null as neutral element of sets. It is
a well-documented exception from the general strictness
rule and the rule that the distinguished argument self should
be non-null. *}
definition OclIsEmpty :: "('\<AA>,'\<alpha>::null) Set \<Rightarrow> '\<AA> Boolean"
where "OclIsEmpty x = ((\<upsilon> x and not (\<delta> x)) or ((OclSize x) \<doteq> \<zero>))"
notation OclIsEmpty ("_->isEmpty'(')" (*[66]*))
definition OclNotEmpty :: "('\<AA>,'\<alpha>::null) Set \<Rightarrow> '\<AA> Boolean"
where "OclNotEmpty x = not(OclIsEmpty x)"
notation OclNotEmpty ("_->notEmpty'(')" (*[66]*))
(* Slight breach of naming convention in order to avoid naming conflict on constant.*)
definition OclANY :: "[('\<AA>,'\<alpha>::null) Set] \<Rightarrow> ('\<AA>,'\<alpha>) val"
where "OclANY x = (\<lambda> \<tau>. if (\<upsilon> x) \<tau> = true \<tau>
then if (\<delta> x and OclNotEmpty x) \<tau> = true \<tau>
then SOME y. y \<in> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil>
else null \<tau>
else \<bottom> )"
notation OclANY ("_->any'(')")
(* actually, this definition covers only: X->any(true) of the standard, which foresees
a (totally correct) high-level definition
source->any(iterator | body) =
source->select(iterator | body)->asSequence()->first(). Since we don't have sequences,
we have to go for a direct---restricted---definition. *)
text{* The definition of OclForall mimics the one of @{term "OclAnd"}:
OclForall is not a strict operation. *}
definition OclForall :: "[('\<AA>,'\<alpha>::null)Set,('\<AA>,'\<alpha>)val\<Rightarrow>('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean"
where "OclForall S P = (\<lambda> \<tau>. if (\<delta> S) \<tau> = true \<tau>
then if (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. P(\<lambda> _. x) \<tau> = false \<tau>)
then false \<tau>
else if (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. P(\<lambda> _. x) \<tau> = \<bottom> \<tau>)
then \<bottom> \<tau>
else if (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. P(\<lambda> _. x) \<tau> = null \<tau>)
then null \<tau>
else true \<tau>
else \<bottom>)"
syntax
"_OclForall" :: "[('\<AA>,'\<alpha>::null) Set,id,('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean" ("(_)->forAll'(_|_')")
translations
"X->forAll(x | P)" == "CONST OclForall X (%x. P)"
text{* Like OclForall, OclExists is also not strict. *}
definition OclExists :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>)val\<Rightarrow>('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean"
where "OclExists S P = not(OclForall S (\<lambda> X. not (P X)))"
syntax
"_OclExist" :: "[('\<AA>,'\<alpha>::null) Set,id,('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean" ("(_)->exists'(_|_')")
translations
"X->exists(x | P)" == "CONST OclExists X (%x. P)"
definition OclIterate :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<beta>::null)val,
('\<AA>,'\<alpha>)val\<Rightarrow>('\<AA>,'\<beta>)val\<Rightarrow>('\<AA>,'\<beta>)val] \<Rightarrow> ('\<AA>,'\<beta>)val"
where "OclIterate S A F = (\<lambda> \<tau>. if (\<delta> S) \<tau> = true \<tau> \<and> (\<upsilon> A) \<tau> = true \<tau> \<and> finite\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>
then (Finite_Set.fold (F) (A) ((\<lambda>a \<tau>. a) ` \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>))\<tau>
else \<bottom>)"
syntax
"_OclIterate" :: "[('\<AA>,'\<alpha>::null) Set, idt, idt, '\<alpha>, '\<beta>] => ('\<AA>,'\<gamma>)val"
("_ ->iterate'(_;_=_ | _')" (*[71,100,70]50*))
translations
"X->iterate(a; x = A | P)" == "CONST OclIterate X A (%a. (% x. P))"
definition OclSelect :: "[('\<AA>,'\<alpha>::null)Set,('\<AA>,'\<alpha>)val\<Rightarrow>('\<AA>)Boolean] \<Rightarrow> ('\<AA>,'\<alpha>)Set"
where "OclSelect S P = (\<lambda>\<tau>. if (\<delta> S) \<tau> = true \<tau>
then if (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. P(\<lambda> _. x) \<tau> = \<bottom> \<tau>)
then \<bottom>
else Abs_Set_0 \<lfloor>\<lfloor>{x\<in>\<lceil>\<lceil> Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> \<noteq> false \<tau>}\<rfloor>\<rfloor>
else \<bottom>)"
syntax
"_OclSelect" :: "[('\<AA>,'\<alpha>::null) Set,id,('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean" ("(_)->select'(_|_')")
translations
"X->select(x | P)" == "CONST OclSelect X (% x. P)"
definition OclReject :: "[('\<AA>,'\<alpha>::null)Set,('\<AA>,'\<alpha>)val\<Rightarrow>('\<AA>)Boolean] \<Rightarrow> ('\<AA>,'\<alpha>::null)Set"
where "OclReject S P = OclSelect S (not o P)"
syntax
"_OclReject" :: "[('\<AA>,'\<alpha>::null) Set,id,('\<AA>)Boolean] \<Rightarrow> '\<AA> Boolean" ("(_)->reject'(_|_')")
translations
"X->reject(x | P)" == "CONST OclReject X (% x. P)"
subsubsection{* Definition (futur operators) *}
consts (* abstract set collection operations *)
OclCount :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) Set] \<Rightarrow> '\<AA> Integer"
OclSum :: " ('\<AA>,'\<alpha>::null) Set \<Rightarrow> '\<AA> Integer"
OclIncludesAll :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) Set] \<Rightarrow> '\<AA> Boolean"
OclExcludesAll :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) Set] \<Rightarrow> '\<AA> Boolean"
OclComplement :: " ('\<AA>,'\<alpha>::null) Set \<Rightarrow> ('\<AA>,'\<alpha>) Set"
OclUnion :: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) Set] \<Rightarrow> ('\<AA>,'\<alpha>) Set"
OclIntersection:: "[('\<AA>,'\<alpha>::null) Set,('\<AA>,'\<alpha>) Set] \<Rightarrow> ('\<AA>,'\<alpha>) Set"
notation
OclCount ("_->count'(_')" (*[66,65]65*))
notation
OclSum ("_->sum'(')" (*[66]*))
notation
OclIncludesAll ("_->includesAll'(_')" (*[66,65]65*))
notation
OclExcludesAll ("_->excludesAll'(_')" (*[66,65]65*))
notation
OclComplement ("_->complement'(')")
notation
OclUnion ("_->union'(_')" (*[66,65]65*))
notation
OclIntersection("_->intersection'(_')" (*[71,70]70*))
subsection{* Validity and Definedness Properties *}
subsubsection{* OclIncluding *}
lemma OclIncluding_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>(X->including(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have A : "\<bottom> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}" by(simp add: bot_option_def)
have B : "\<lfloor>\<bottom>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(simp add: null_option_def bot_option_def)
have C : "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow>
\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(frule Set_inv_lemma, simp add: foundation18 invalid_def)
have D: "(\<tau> \<Turnstile> \<delta>(X->including(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclIncluding_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have E: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<delta>(X->including(x)))"
apply(subst OclIncluding_def, subst OclValid_def, subst defined_def)
apply(auto simp: OclValid_def null_Set_0_def bot_Set_0_def null_fun_def bot_fun_def)
apply(frule Abs_Set_0_inject[OF C A, simplified OclValid_def, THEN iffD1],
simp_all add: bot_option_def)
apply(frule Abs_Set_0_inject[OF C B, simplified OclValid_def, THEN iffD1],
simp_all add: bot_option_def)
done
show ?thesis by(auto dest:D intro:E)
qed
lemma OclIncluding_valid_args_valid:
"(\<tau> \<Turnstile> \<upsilon>(X->including(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have D: "(\<tau> \<Turnstile> \<upsilon>(X->including(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclIncluding_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have E: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<upsilon>(X->including(x)))"
by(simp add: foundation20 OclIncluding_defined_args_valid)
show ?thesis by(auto dest:D intro:E)
qed
lemma OclIncluding_defined_args_valid'[simp,code_unfold]:
"\<delta>(X->including(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclIncluding_defined_args_valid foundation10 defined_and_I)
lemma OclIncluding_valid_args_valid''[simp,code_unfold]:
"\<upsilon>(X->including(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclIncluding_valid_args_valid foundation10 defined_and_I)
subsubsection{* OclExcluding *}
lemma OclExcluding_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>(X->excluding(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have A : "\<bottom> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}" by(simp add: bot_option_def)
have B : "\<lfloor>\<bottom>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(simp add: null_option_def bot_option_def)
have C : "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow>
\<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {x \<tau>}\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(frule Set_inv_lemma, simp add: foundation18 invalid_def)
have D: "(\<tau> \<Turnstile> \<delta>(X->excluding(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclExcluding_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have E: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<delta>(X->excluding(x)))"
apply(subst OclExcluding_def, subst OclValid_def, subst defined_def)
apply(auto simp: OclValid_def null_Set_0_def bot_Set_0_def null_fun_def bot_fun_def)
apply(frule Abs_Set_0_inject[OF C A, simplified OclValid_def, THEN iffD1],
simp_all add: bot_option_def)
apply(frule Abs_Set_0_inject[OF C B, simplified OclValid_def, THEN iffD1],
simp_all add: bot_option_def)
done
show ?thesis by(auto dest:D intro:E)
qed
lemma OclExcluding_valid_args_valid:
"(\<tau> \<Turnstile> \<upsilon>(X->excluding(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have D: "(\<tau> \<Turnstile> \<upsilon>(X->excluding(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclExcluding_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have E: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<upsilon>(X->excluding(x)))"
by(simp add: foundation20 OclExcluding_defined_args_valid)
show ?thesis by(auto dest:D intro:E)
qed
lemma OclExcluding_valid_args_valid'[simp,code_unfold]:
"\<delta>(X->excluding(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclExcluding_defined_args_valid foundation10 defined_and_I)
lemma OclExcluding_valid_args_valid''[simp,code_unfold]:
"\<upsilon>(X->excluding(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclExcluding_valid_args_valid foundation10 defined_and_I)
subsubsection{* OclIncludes *}
lemma OclIncludes_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>(X->includes(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have A: "(\<tau> \<Turnstile> \<delta>(X->includes(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclIncludes_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have B: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<delta>(X->includes(x)))"
by(auto simp: OclIncludes_def OclValid_def true_def false_def StrongEq_def
defined_def invalid_def valid_def bot_fun_def null_fun_def
bot_option_def null_option_def
split: bool.split_asm HOL.split_if_asm option.split)
show ?thesis by(auto dest:A intro:B)
qed
lemma OclIncludes_valid_args_valid:
"(\<tau> \<Turnstile> \<upsilon>(X->includes(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
proof -
have A: "(\<tau> \<Turnstile> \<upsilon>(X->includes(x))) \<Longrightarrow> ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by(auto simp: OclIncludes_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have B: "(\<tau> \<Turnstile>(\<delta> X)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow> (\<tau> \<Turnstile> \<upsilon>(X->includes(x)))"
by(auto simp: OclIncludes_def OclValid_def true_def false_def StrongEq_def
defined_def invalid_def valid_def bot_fun_def null_fun_def
bot_option_def null_option_def
split: bool.split_asm HOL.split_if_asm option.split)
show ?thesis by(auto dest:A intro:B)
qed
lemma OclIncludes_valid_args_valid'[simp,code_unfold]:
"\<delta>(X->includes(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclIncludes_defined_args_valid foundation10 defined_and_I)
lemma OclIncludes_valid_args_valid''[simp,code_unfold]:
"\<upsilon>(X->includes(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclIncludes_valid_args_valid foundation10 defined_and_I)
subsubsection{* OclExcludes *}
lemma OclExcludes_defined_args_valid:
"(\<tau> \<Turnstile> \<delta>(X->excludes(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by (metis (hide_lams, no_types)
OclExcludes_def OclAnd_idem OclOr_def OclOr_idem defined_not_I OclIncludes_defined_args_valid)
lemma OclExcludes_valid_args_valid:
"(\<tau> \<Turnstile> \<upsilon>(X->excludes(x))) = ((\<tau> \<Turnstile>(\<delta> X)) \<and> (\<tau> \<Turnstile>(\<upsilon> x)))"
by (metis (hide_lams, no_types)
OclExcludes_def OclAnd_idem OclOr_def OclOr_idem valid_not_I OclIncludes_valid_args_valid)
lemma OclExcludes_valid_args_valid'[simp,code_unfold]:
"\<delta>(X->excludes(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclExcludes_defined_args_valid foundation10 defined_and_I)
lemma OclExcludes_valid_args_valid''[simp,code_unfold]:
"\<upsilon>(X->excludes(x)) = ((\<delta> X) and (\<upsilon> x))"
by(auto intro!: transform2_rev simp:OclExcludes_valid_args_valid foundation10 defined_and_I)
subsubsection{* OclSize *}
lemma OclSize_defined_args_valid: "\<tau> \<Turnstile> \<delta> (X->size()) \<Longrightarrow> \<tau> \<Turnstile> \<delta> X"
by(auto simp: OclSize_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
lemma OclSize_infinite:
assumes non_finite:"\<tau> \<Turnstile> not(\<delta>(S->size()))"
shows "(\<tau> \<Turnstile> not(\<delta>(S))) \<or> \<not> finite \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>"
apply(insert non_finite, simp)
apply(rule impI)
apply(simp add: OclSize_def OclValid_def defined_def)
apply(case_tac "finite \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>",
simp_all add:null_fun_def null_option_def bot_fun_def bot_option_def)
done
lemma "\<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<not> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> \<not> \<tau> \<Turnstile> \<delta> (X->size())"
by(simp add: OclSize_def OclValid_def defined_def bot_fun_def false_def true_def)
lemma size_defined:
assumes X_finite: "\<And>\<tau>. finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
shows "\<delta> (X->size()) = \<delta> X"
apply(rule ext, simp add: cp_defined[of "X->size()"] OclSize_def)
apply(simp add: defined_def bot_option_def bot_fun_def null_option_def null_fun_def X_finite)
done
lemma size_defined':
assumes X_finite: "finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
shows "(\<tau> \<Turnstile> \<delta> (X->size())) = (\<tau> \<Turnstile> \<delta> X)"
apply(simp add: cp_defined[of "X->size()"] OclSize_def OclValid_def)
apply(simp add: defined_def bot_option_def bot_fun_def null_option_def null_fun_def X_finite)
done
subsubsection{* OclIsEmpty *}
lemma OclIsEmpty_defined_args_valid:"\<tau> \<Turnstile> \<delta> (X->isEmpty()) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> X"
apply(auto simp: OclIsEmpty_def OclValid_def defined_def valid_def false_def true_def
bot_fun_def null_fun_def OclAnd_def OclOr_def OclNot_def
split: split_if_asm)
apply(case_tac "(X->size() \<doteq> \<zero>) \<tau>", simp add: bot_option_def, simp, rename_tac x)
apply(case_tac x, simp add: null_option_def bot_option_def, simp)
apply(simp add: OclSize_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r valid_def)
by (metis (hide_lams, no_types)
OCL_core.bot_fun_def OclValid_def defined_def foundation2 invalid_def)
lemma "\<tau> \<Turnstile> \<delta> (null->isEmpty())"
by(auto simp: OclIsEmpty_def OclValid_def defined_def valid_def false_def true_def
bot_fun_def null_fun_def OclAnd_def OclOr_def OclNot_def null_is_valid
split: split_if_asm)
lemma OclIsEmpty_infinite: "\<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<not> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> \<not> \<tau> \<Turnstile> \<delta> (X->isEmpty())"
apply(auto simp: OclIsEmpty_def OclValid_def defined_def valid_def false_def true_def
bot_fun_def null_fun_def OclAnd_def OclOr_def OclNot_def
split: split_if_asm)
apply(case_tac "(X->size() \<doteq> \<zero>) \<tau>", simp add: bot_option_def, simp, rename_tac x)
apply(case_tac x, simp add: null_option_def bot_option_def, simp)
by(simp add: OclSize_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r valid_def bot_fun_def false_def true_def invalid_def)
subsubsection{* OclNotEmpty *}
lemma OclNotEmpty_defined_args_valid:"\<tau> \<Turnstile> \<delta> (X->notEmpty()) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> X"
by (metis (hide_lams, no_types) OclNotEmpty_def OclNot_defargs OclNot_not foundation6 foundation9
OclIsEmpty_defined_args_valid)
lemma "\<tau> \<Turnstile> \<delta> (null->notEmpty())"
by (metis (hide_lams, no_types) OclNotEmpty_def OclAnd_false1 OclAnd_idem OclIsEmpty_def
OclNot3 OclNot4 OclOr_def defined2 defined4 transform1 valid2)
lemma OclNotEmpty_infinite: "\<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<not> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> \<not> \<tau> \<Turnstile> \<delta> (X->notEmpty())"
apply(simp add: OclNotEmpty_def)
apply(drule OclIsEmpty_infinite, simp)
by (metis OclNot_defargs OclNot_not foundation6 foundation9)
lemma OclNotEmpty_has_elt : "\<tau> \<Turnstile> \<delta> X \<Longrightarrow>
\<tau> \<Turnstile> X->notEmpty() \<Longrightarrow>
\<exists>e. e \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
apply(simp add: OclNotEmpty_def OclIsEmpty_def deMorgan1 deMorgan2, drule foundation5)
apply(subst (asm) (2) OclNot_def,
simp add: OclValid_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def
split: split_if_asm)
prefer 2
apply(simp add: invalid_def bot_option_def true_def)
apply(simp add: OclSize_def valid_def split: split_if_asm,
simp_all add: false_def true_def bot_option_def bot_fun_def OclInt0_def)
by (metis equals0I)
subsubsection{* OclANY *}
lemma OclANY_defined_args_valid: "\<tau> \<Turnstile> \<delta> (X->any()) \<Longrightarrow> \<tau> \<Turnstile> \<delta> X"
by(auto simp: OclANY_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def OclAnd_def
split: bool.split_asm HOL.split_if_asm option.split)
lemma "\<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> X->isEmpty() \<Longrightarrow> \<not> \<tau> \<Turnstile> \<delta> (X->any())"
apply(simp add: OclANY_def OclValid_def)
apply(subst cp_defined, subst cp_OclAnd, simp add: OclNotEmpty_def, subst (1 2) cp_OclNot,
simp add: cp_OclNot[symmetric] cp_OclAnd[symmetric] cp_defined[symmetric],
simp add: false_def true_def)
by(drule foundation20[simplified OclValid_def true_def], simp)
lemma OclANY_valid_args_valid:
"(\<tau> \<Turnstile> \<upsilon>(X->any())) = (\<tau> \<Turnstile> \<upsilon> X)"
proof -
have A: "(\<tau> \<Turnstile> \<upsilon>(X->any())) \<Longrightarrow> ((\<tau> \<Turnstile>(\<upsilon> X)))"
by(auto simp: OclANY_def OclValid_def true_def valid_def false_def StrongEq_def
defined_def invalid_def bot_fun_def null_fun_def
split: bool.split_asm HOL.split_if_asm option.split)
have B: "(\<tau> \<Turnstile>(\<upsilon> X)) \<Longrightarrow> (\<tau> \<Turnstile> \<upsilon>(X->any()))"
apply(auto simp: OclANY_def OclValid_def true_def false_def StrongEq_def
defined_def invalid_def valid_def bot_fun_def null_fun_def
bot_option_def null_option_def null_is_valid
OclAnd_def
split: bool.split_asm HOL.split_if_asm option.split)
apply(frule Set_inv_lemma[OF foundation16[THEN iffD2], OF conjI], simp)
apply(subgoal_tac "(\<delta> X) \<tau> = true \<tau>")
prefer 2
apply (metis (hide_lams, no_types) OclValid_def foundation16)
apply(simp add: true_def,
drule OclNotEmpty_has_elt[simplified OclValid_def true_def], simp)
by(erule exE,
insert someI2[where Q = "\<lambda>x. x \<noteq> \<bottom>" and P = "\<lambda>y. y \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"],
simp)
show ?thesis by(auto dest:A intro:B)
qed
lemma OclANY_valid_args_valid''[simp,code_unfold]:
"\<upsilon>(X->any()) = (\<upsilon> X)"
by(auto intro!: OclANY_valid_args_valid transform2_rev)
(* and higher order ones : forall, exists, iterate, select, reject... *)
subsection{* Execution with Invalid or Null or Infinite Set as Argument *}
subsubsection{* OclIncluding *}
lemma OclIncluding_invalid[simp,code_unfold]:"(invalid->including(x)) = invalid"
by(simp add: bot_fun_def OclIncluding_def invalid_def defined_def valid_def false_def true_def)
lemma OclIncluding_invalid_args[simp,code_unfold]:"(X->including(invalid)) = invalid"
by(simp add: OclIncluding_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
lemma OclIncluding_null[simp,code_unfold]:"(null->including(x)) = invalid"
by(simp add: OclIncluding_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
subsubsection{* OclExcluding *}
lemma OclExcluding_invalid[simp,code_unfold]:"(invalid->excluding(x)) = invalid"
by(simp add: bot_fun_def OclExcluding_def invalid_def defined_def valid_def false_def true_def)
lemma OclExcluding_invalid_args[simp,code_unfold]:"(X->excluding(invalid)) = invalid"
by(simp add: OclExcluding_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
lemma OclExcluding_null[simp,code_unfold]:"(null->excluding(x)) = invalid"
by(simp add: OclExcluding_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
subsubsection{* OclIncludes *}
lemma OclIncludes_invalid[simp,code_unfold]:"(invalid->includes(x)) = invalid"
by(simp add: bot_fun_def OclIncludes_def invalid_def defined_def valid_def false_def true_def)
lemma OclIncludes_invalid_args[simp,code_unfold]:"(X->includes(invalid)) = invalid"
by(simp add: OclIncludes_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
lemma OclIncludes_null[simp,code_unfold]:"(null->includes(x)) = invalid"
by(simp add: OclIncludes_def invalid_def bot_fun_def defined_def valid_def false_def true_def)
subsubsection{* OclExcludes *}
lemma OclExcludes_invalid[simp,code_unfold]:"(invalid->excludes(x)) = invalid"
by(simp add: OclExcludes_def OclNot_def, simp add: invalid_def bot_option_def)
lemma OclExcludes_invalid_args[simp,code_unfold]:"(X->excludes(invalid)) = invalid"
by(simp add: OclExcludes_def OclNot_def, simp add: invalid_def bot_option_def)
lemma OclExcludes_null[simp,code_unfold]:"(null->excludes(x)) = invalid"
by(simp add: OclExcludes_def OclNot_def, simp add: invalid_def bot_option_def)
subsubsection{* OclSize *}
lemma OclSize_invalid[simp,code_unfold]:"(invalid->size()) = invalid"
by(simp add: bot_fun_def OclSize_def invalid_def defined_def valid_def false_def true_def)
lemma OclSize_null[simp,code_unfold]:"(null->size()) = invalid"
by(rule ext,
simp add: bot_fun_def null_fun_def null_is_valid OclSize_def
invalid_def defined_def valid_def false_def true_def)
subsubsection{* OclIsEmpty *}
lemma OclIsEmpty_invalid[simp,code_unfold]:"(invalid->isEmpty()) = invalid"
by(simp add: OclIsEmpty_def)
lemma OclIsEmpty_null[simp,code_unfold]:"(null->isEmpty()) = true"
by(simp add: OclIsEmpty_def)
subsubsection{* OclNotEmpty *}
lemma OclNotEmpty_invalid[simp,code_unfold]:"(invalid->notEmpty()) = invalid"
by(simp add: OclNotEmpty_def)
lemma OclNotEmpty_null[simp,code_unfold]:"(null->notEmpty()) = false"
by(simp add: OclNotEmpty_def)
subsubsection{* OclANY *}
lemma OclANY_invalid[simp,code_unfold]:"(invalid->any()) = invalid"
by(simp add: bot_fun_def OclANY_def invalid_def defined_def valid_def false_def true_def)
lemma OclANY_null[simp,code_unfold]:"(null->any()) = null"
by(simp add: OclANY_def false_def true_def)
subsubsection{* OclForall *}
lemma OclForall_invalid[simp,code_unfold]:"invalid->forAll(a| P a) = invalid"
by(simp add: bot_fun_def invalid_def OclForall_def defined_def valid_def false_def true_def)
lemma OclForall_null[simp,code_unfold]:"null->forAll(a | P a) = invalid"
by(simp add: bot_fun_def invalid_def OclForall_def defined_def valid_def false_def true_def)
subsubsection{* OclExists *}
lemma OclExists_invalid[simp,code_unfold]:"invalid->exists(a| P a) = invalid"
by(simp add: OclExists_def)
lemma OclExists_null[simp,code_unfold]:"null->exists(a | P a) = invalid"
by(simp add: OclExists_def)
subsubsection{* OclIterate *}
lemma OclIterate_invalid[simp,code_unfold]:"invalid->iterate(a; x = A | P a x) = invalid"
by(simp add: bot_fun_def invalid_def OclIterate_def defined_def valid_def false_def true_def)
lemma OclIterate_null[simp,code_unfold]:"null->iterate(a; x = A | P a x) = invalid"
by(simp add: bot_fun_def invalid_def OclIterate_def defined_def valid_def false_def true_def)
lemma OclIterate_invalid_args[simp,code_unfold]:"S->iterate(a; x = invalid | P a x) = invalid"
by(simp add: bot_fun_def invalid_def OclIterate_def defined_def valid_def false_def true_def)
text{* An open question is this ... *}
lemma (*OclIterate_null_args[simp,code_unfold]:*) "S->iterate(a; x = null | P a x) = invalid"
oops
(* In the definition above, this does not hold in general.
And I believe, this is how it should be ... *)
lemma OclIterate_infinite:
assumes non_finite: "\<tau> \<Turnstile> not(\<delta>(S->size()))"
shows "(OclIterate S A F) \<tau> = invalid \<tau>"
apply(insert non_finite [THEN OclSize_infinite])
apply(subst (asm) foundation9, simp)
by(metis OclIterate_def OclValid_def invalid_def)
subsubsection{* OclSelect *}
lemma OclSelect_invalid[simp,code_unfold]:"invalid->select(a | P a) = invalid"
by(simp add: bot_fun_def invalid_def OclSelect_def defined_def valid_def false_def true_def)
lemma OclSelect_null[simp,code_unfold]:"null->select(a | P a) = invalid"
by(simp add: bot_fun_def invalid_def OclSelect_def defined_def valid_def false_def true_def)
subsubsection{* OclReject *}
lemma OclReject_invalid[simp,code_unfold]:"invalid->reject(a | P a) = invalid"
by(simp add: OclReject_def)
lemma OclReject_null[simp,code_unfold]:"null->reject(a | P a) = invalid"
by(simp add: OclReject_def)
subsection{* Context Passing *}
lemma cp_OclIncluding:
"(X->including(x)) \<tau> = ((\<lambda> _. X \<tau>)->including(\<lambda> _. x \<tau>)) \<tau>"
by(auto simp: OclIncluding_def StrongEq_def invalid_def
cp_defined[symmetric] cp_valid[symmetric])
lemma cp_OclExcluding:
"(X->excluding(x)) \<tau> = ((\<lambda> _. X \<tau>)->excluding(\<lambda> _. x \<tau>)) \<tau>"
by(auto simp: OclExcluding_def StrongEq_def invalid_def
cp_defined[symmetric] cp_valid[symmetric])
lemma cp_OclIncludes:
"(X->includes(x)) \<tau> = ((\<lambda> _. X \<tau>)->includes(\<lambda> _. x \<tau>)) \<tau>"
by(auto simp: OclIncludes_def StrongEq_def invalid_def
cp_defined[symmetric] cp_valid[symmetric])
lemma cp_OclIncludes1:
"(X->includes(x)) \<tau> = (X->includes(\<lambda> _. x \<tau>)) \<tau>"
by(auto simp: OclIncludes_def StrongEq_def invalid_def
cp_defined[symmetric] cp_valid[symmetric])
lemma cp_OclExcludes:
"(X->excludes(x)) \<tau> = ((\<lambda> _. X \<tau>)->excludes(\<lambda> _. x \<tau>)) \<tau>"
by(simp add: OclExcludes_def OclNot_def, subst cp_OclIncludes, simp)
lemma cp_OclSize: "X->size() \<tau> = ((\<lambda>_. X \<tau>)->size()) \<tau>"
by(simp add: OclSize_def cp_defined[symmetric])
lemma cp_OclIsEmpty: "X->isEmpty() \<tau> = ((\<lambda>_. X \<tau>)->isEmpty()) \<tau>"
apply(simp only: OclIsEmpty_def)
apply(subst (2) cp_OclOr,
subst cp_OclAnd,
subst cp_OclNot,
subst cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r)
by(simp add: cp_defined[symmetric] cp_valid[symmetric] cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[symmetric]
cp_OclSize[symmetric] cp_OclNot[symmetric] cp_OclAnd[symmetric] cp_OclOr[symmetric])
lemma cp_OclNotEmpty: "X->notEmpty() \<tau> = ((\<lambda>_. X \<tau>)->notEmpty()) \<tau>"
apply(simp only: OclNotEmpty_def)
apply(subst (2) cp_OclNot)
by(simp add: cp_OclNot[symmetric] cp_OclIsEmpty[symmetric])
lemma cp_OclANY: "X->any() \<tau> = ((\<lambda>_. X \<tau>)->any()) \<tau>"
apply(simp only: OclANY_def)
apply(subst (2) cp_OclAnd)
by(simp only: cp_OclAnd[symmetric] cp_defined[symmetric] cp_valid[symmetric]
cp_OclNotEmpty[symmetric])
lemma cp_OclForall:
"(S->forAll(x | P x)) \<tau> = ((\<lambda> _. S \<tau>)->forAll(x | P (\<lambda> _. x \<tau>))) \<tau>"
by(simp add: OclForall_def cp_defined[symmetric])
(* first-order version !*)
lemma cp_OclForall1 [simp,intro!]:
"cp S \<Longrightarrow> cp (\<lambda>X. ((S X)->forAll(x | P x)))"
apply(simp add: cp_def)
apply(erule exE, rule exI, intro allI)
apply(erule_tac x=X in allE)
by(subst cp_OclForall, simp)
lemma (*cp_OclForall2 [simp,intro!]:*)
"cp (\<lambda>X St x. P (\<lambda>\<tau>. x) X St) \<Longrightarrow> cp S \<Longrightarrow> cp (\<lambda>X. (S X)->forAll(x|P x X)) "
apply(simp only: cp_def)
oops
lemma (*cp_OclForall:*)
"cp S \<Longrightarrow>
(\<And> x. cp(P x)) \<Longrightarrow>
cp(\<lambda>X. ((S X)->forAll(x | P x X)))"
oops
(*
lemma cp_OclForall2 [simp,intro!]:
"\<lbrakk> cp (\<lambda> X St.(\<lambda>x. P (\<lambda>\<tau>. x) X St));
cp (S :: (('a,'c)VAL \<Rightarrow> ('a,('b::bot))Set)) \<rbrakk>
\<Longrightarrow> cp(\<lambda>X. \<MathOclForAll> Y \<in> S X \<bullet> P (Y\<Colon>'a \<Rightarrow> 'b) X) "
apply(simp only: cp_def OclForAll_def)
apply(erule exE)+
apply(rule exI, rule allI, rule allI)
apply (simp only:)
apply(rule_tac t = "(\<lambda>x. P (\<lambda>\<tau>. x) X \<tau> )" and
s = "f (X \<tau> ) \<tau> " in subst)
prefer 2
ML{* Unify.search_bound:=1000; *}
apply(rule refl)
ML{* Unify.search_bound:=20; *}
(* Miracle ! This works. Definitively a unification problem !!! *)
apply simp
done (* temporary solution. *)
(* TODO: improve !!! *)
*)
lemma cp_OclExists:
"(S->exists(x | P x)) \<tau> = ((\<lambda> _. S \<tau>)->exists(x | P (\<lambda> _. x \<tau>))) \<tau>"
by(simp add: OclExists_def OclNot_def, subst cp_OclForall, simp)
(* first-order version !*)
lemma cp_OclExists1 [simp,intro!]:
"cp S \<Longrightarrow> cp (\<lambda>X. ((S X)->exists(x | P x)))"
apply(simp add: cp_def)
apply(erule exE, rule exI, intro allI)
apply(erule_tac x=X in allE)
by(subst cp_OclExists,simp)
lemma cp_OclIterate: "(X->iterate(a; x = A | P a x)) \<tau> =
((\<lambda> _. X \<tau>)->iterate(a; x = A | P a x)) \<tau>"
by(simp add: OclIterate_def cp_defined[symmetric])
lemma cp_OclSelect: "(X->select(a | P a)) \<tau> =
((\<lambda> _. X \<tau>)->select(a | P a)) \<tau>"
by(simp add: OclSelect_def cp_defined[symmetric])
lemma cp_OclReject: "(X->reject(a | P a)) \<tau> =
((\<lambda> _. X \<tau>)->reject(a | P a)) \<tau>"
by(simp add: OclReject_def, subst cp_OclSelect, simp)
lemmas cp_intro''[intro!,simp,code_unfold] =
cp_intro'
cp_OclIncluding [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclIncluding"]]
cp_OclExcluding [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclExcluding"]]
cp_OclIncludes [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclIncludes"]]
cp_OclExcludes [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "OclExcludes"]]
cp_OclSize [THEN allI[THEN allI[THEN cpI1], of "OclSize"]]
cp_OclIsEmpty [THEN allI[THEN allI[THEN cpI1], of "OclIsEmpty"]]
cp_OclNotEmpty [THEN allI[THEN allI[THEN cpI1], of "OclNotEmpty"]]
cp_OclANY [THEN allI[THEN allI[THEN cpI1], of "OclANY"]]
subsection{* Const *}
lemma const_OclIncluding[simp,code_unfold] :
assumes const_x : "const x"
and const_S : "const S"
shows "const (S->including(x))"
proof -
have A:"\<And>\<tau> \<tau>'. \<not> (\<tau> \<Turnstile> \<upsilon> x) \<Longrightarrow> (S->including(x) \<tau>) = (S->including(x) \<tau>')"
apply(simp add: foundation18)
apply(erule const_subst[OF const_x const_invalid],simp_all)
by(rule const_charn[OF const_invalid])
have B: "\<And> \<tau> \<tau>'. \<not> (\<tau> \<Turnstile> \<delta> S) \<Longrightarrow> (S->including(x) \<tau>) = (S->including(x) \<tau>')"
apply(simp add: foundation16', elim disjE)
apply(erule const_subst[OF const_S const_invalid],simp_all)
apply(rule const_charn[OF const_invalid])
apply(erule const_subst[OF const_S const_null],simp_all)
by(rule const_charn[OF const_invalid])
show ?thesis
apply(simp only: const_def,intro allI, rename_tac \<tau> \<tau>')
apply(case_tac "\<not> (\<tau> \<Turnstile> \<upsilon> x)", simp add: A)
apply(case_tac "\<not> (\<tau> \<Turnstile> \<delta> S)", simp_all add: B)
apply(frule_tac \<tau>'1= \<tau>' in const_OclValid2[OF const_x, THEN iffD1])
apply(frule_tac \<tau>'1= \<tau>' in const_OclValid1[OF const_S, THEN iffD1])
apply(simp add: OclIncluding_def OclValid_def)
apply(subst const_charn[OF const_x])
apply(subst const_charn[OF const_S])
by simp
qed
section{* Fundamental Predicates on Set: Strict Equality *}
subsection{* Definition *}
text{* After the part of foundational operations on sets, we detail here equality on sets.
Strong equality is inherited from the OCL core, but we have to consider
the case of the strict equality. We decide to overload strict equality in the
same way we do for other value's in OCL:*}
defs (overloaded) StrictRefEq\<^sub>S\<^sub>e\<^sub>t :
"(x::('\<AA>,'\<alpha>::null)Set) \<doteq> y \<equiv> \<lambda> \<tau>. if (\<upsilon> x) \<tau> = true \<tau> \<and> (\<upsilon> y) \<tau> = true \<tau>
then (x \<triangleq> y)\<tau>
else invalid \<tau>"
text{* One might object here that for the case of objects, this is an empty definition.
The answer is no, we will restrain later on states and objects such that any object
has its oid stored inside the object (so the ref, under which an object can be referenced
in the store will represented in the object itself). For such well-formed stores that satisfy
this invariant (the WFF-invariant), the referential equality and the
strong equality---and therefore the strict equality on sets in the sense above---coincides.*}
subsection{* Logic and Algebraic Layer on Set *}
subsubsection{* Reflexivity *}
text{* To become operational, we derive: *}
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_refl[simp,code_unfold]:
"((x::('\<AA>,'\<alpha>::null)Set) \<doteq> x) = (if (\<upsilon> x) then true else invalid endif)"
by(rule ext, simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t OclIf_def)
subsubsection{* Symmetry *}
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_sym:
"((x::('\<AA>,'\<alpha>::null)Set) \<doteq> y) = (y \<doteq> x)"
by(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t, subst StrongEq_sym, rule ext, simp)
subsubsection{* Execution with Invalid or Null as Argument *}
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict1[simp,code_unfold]: "((x::('\<AA>,'\<alpha>::null)Set) \<doteq> invalid)= invalid"
by(simp add:StrictRefEq\<^sub>S\<^sub>e\<^sub>t false_def true_def)
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict2[simp,code_unfold]: "(invalid \<doteq> (y::('\<AA>,'\<alpha>::null)Set))= invalid"
by(simp add:StrictRefEq\<^sub>S\<^sub>e\<^sub>t false_def true_def)
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strictEq_valid_args_valid:
"(\<tau> \<Turnstile> \<delta> ((x::('\<AA>,'\<alpha>::null)Set) \<doteq> y)) = ((\<tau> \<Turnstile> (\<upsilon> x)) \<and> (\<tau> \<Turnstile> \<upsilon> y))"
proof -
have A: "\<tau> \<Turnstile> \<delta> (x \<doteq> y) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<and> \<tau> \<Turnstile> \<upsilon> y"
apply(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t valid_def OclValid_def defined_def)
apply(simp add: invalid_def bot_fun_def split: split_if_asm)
done
have B: "(\<tau> \<Turnstile> \<upsilon> x) \<and> (\<tau> \<Turnstile> \<upsilon> y) \<Longrightarrow> \<tau> \<Turnstile> \<delta> (x \<doteq> y)"
apply(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t, elim conjE)
apply(drule foundation13[THEN iffD2],drule foundation13[THEN iffD2])
apply(rule cp_validity[THEN iffD2])
apply(subst cp_defined, simp add: foundation22)
apply(simp add: cp_defined[symmetric] cp_validity[symmetric])
done
show ?thesis by(auto intro!: A B)
qed
subsubsection{* Behavior vs StrongEq *}
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_vs_StrongEq:
"\<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> (\<tau> \<Turnstile> (((x::('\<AA>,'\<alpha>::null)Set) \<doteq> y) \<triangleq> (x \<triangleq> y)))"
apply(drule foundation13[THEN iffD2],drule foundation13[THEN iffD2])
by(simp add:StrictRefEq\<^sub>S\<^sub>e\<^sub>t foundation22)
subsubsection{* Context Passing *}
lemma cp_StrictRefEq\<^sub>S\<^sub>e\<^sub>t:"((X::('\<AA>,'\<alpha>::null)Set) \<doteq> Y) \<tau> = ((\<lambda>_. X \<tau>) \<doteq> (\<lambda>_. Y \<tau>)) \<tau>"
by(simp add:StrictRefEq\<^sub>S\<^sub>e\<^sub>t cp_StrongEq[symmetric] cp_valid[symmetric])
subsubsection{* Const *}
lemma const_StrictRefEq\<^sub>S\<^sub>e\<^sub>t :
assumes "const (X :: (_,_::null) Set)"
assumes "const X'"
shows "const (X \<doteq> X')"
apply(simp only: const_def, intro allI)
proof -
fix \<tau>1 \<tau>2 show "(X \<doteq> X') \<tau>1 = (X \<doteq> X') \<tau>2"
apply(simp only: StrictRefEq\<^sub>S\<^sub>e\<^sub>t)
by(simp add: const_valid[OF assms(1), simplified const_def, THEN spec, THEN spec, of \<tau>1 \<tau>2]
const_valid[OF assms(2), simplified const_def, THEN spec, THEN spec, of \<tau>1 \<tau>2]
const_true[simplified const_def, THEN spec, THEN spec, of \<tau>1 \<tau>2]
const_invalid[simplified const_def, THEN spec, THEN spec, of \<tau>1 \<tau>2]
const_StrongEq[OF assms, simplified const_def, THEN spec, THEN spec])
qed
section{* Execution on Set's Operators (with mtSet and recursive case as arguments) *}
subsection{* OclIncluding *}
lemma OclIncluding_finite_rep_set :
assumes X_def : "\<tau> \<Turnstile> \<delta> X"
and x_val : "\<tau> \<Turnstile> \<upsilon> x"
shows "finite \<lceil>\<lceil>Rep_Set_0 (X->including(x) \<tau>)\<rceil>\<rceil> = finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
proof -
have C : "\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert X_def x_val, frule Set_inv_lemma, simp add: foundation18 invalid_def)
show "?thesis"
by(insert X_def x_val,
auto simp: OclIncluding_def Abs_Set_0_inverse[OF C]
dest: foundation13[THEN iffD2, THEN foundation22[THEN iffD1]])
qed
lemma OclIncluding_rep_set:
assumes S_def: "\<tau> \<Turnstile> \<delta> S"
shows "\<lceil>\<lceil>Rep_Set_0 (S->including(\<lambda>_. \<lfloor>\<lfloor>x\<rfloor>\<rfloor>) \<tau>)\<rceil>\<rceil> = insert \<lfloor>\<lfloor>x\<rfloor>\<rfloor> \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>"
apply(simp add: OclIncluding_def S_def[simplified OclValid_def])
apply(subst Abs_Set_0_inverse, simp add: bot_option_def null_option_def)
apply(insert Set_inv_lemma[OF S_def], metis bot_option_def not_Some_eq)
by(simp)
lemma OclIncluding_notempty_rep_set:
assumes X_def: "\<tau> \<Turnstile> \<delta> X"
and a_val: "\<tau> \<Turnstile> \<upsilon> a"
shows "\<lceil>\<lceil>Rep_Set_0 (X->including(a) \<tau>)\<rceil>\<rceil> \<noteq> {}"
apply(simp add: OclIncluding_def X_def[simplified OclValid_def] a_val[simplified OclValid_def])
apply(subst Abs_Set_0_inverse, simp add: bot_option_def null_option_def)
apply(insert Set_inv_lemma[OF X_def], metis a_val foundation18')
by(simp)
lemma OclIncluding_includes:
assumes "\<tau> \<Turnstile> X->includes(x)"
shows "X->including(x) \<tau> = X \<tau>"
proof -
have includes_def: "\<tau> \<Turnstile> X->includes(x) \<Longrightarrow> \<tau> \<Turnstile> \<delta> X"
by (metis OCL_core.bot_fun_def OclIncludes_def OclValid_def defined3 foundation16)
have includes_val: "\<tau> \<Turnstile> X->includes(x) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x"
by (metis (hide_lams, no_types) foundation6
OclIncludes_valid_args_valid' OclIncluding_valid_args_valid OclIncluding_valid_args_valid'')
show ?thesis
apply(insert includes_def[OF assms] includes_val[OF assms] assms,
simp add: OclIncluding_def OclIncludes_def OclValid_def true_def)
apply(drule insert_absorb, simp, subst abs_rep_simp')
by(simp_all add: OclValid_def true_def)
qed
subsection{* OclExcluding *}
lemma OclExcluding_charn0[simp]:
assumes val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
shows "\<tau> \<Turnstile> ((Set{}->excluding(x)) \<triangleq> Set{})"
proof -
have A : "\<lfloor>None\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(simp add: null_option_def bot_option_def)
have B : "\<lfloor>\<lfloor>{}\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}" by(simp add: mtSet_def)
show ?thesis using val_x
apply(auto simp: OclValid_def OclIncludes_def OclNot_def false_def true_def StrongEq_def
OclExcluding_def mtSet_def defined_def bot_fun_def null_fun_def null_Set_0_def)
apply(auto simp: mtSet_def OCL_lib.Set_0.Abs_Set_0_inverse
OCL_lib.Set_0.Abs_Set_0_inject[OF B A])
done
qed
lemma OclExcluding_charn0_exec[simp,code_unfold]:
"(Set{}->excluding(x)) = (if (\<upsilon> x) then Set{} else invalid endif)"
proof -
have A: "\<And> \<tau>. (Set{}->excluding(invalid)) \<tau> = (if (\<upsilon> invalid) then Set{} else invalid endif) \<tau>"
by simp
have B: "\<And> \<tau> x. \<tau> \<Turnstile> (\<upsilon> x) \<Longrightarrow>
(Set{}->excluding(x)) \<tau> = (if (\<upsilon> x) then Set{} else invalid endif) \<tau>"
by(simp add: OclExcluding_charn0[THEN foundation22[THEN iffD1]])
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(case_tac "\<tau> \<Turnstile> (\<upsilon> x)")
apply(simp add: B)
apply(simp add: foundation18)
apply(subst cp_OclExcluding, simp)
apply(simp add: cp_OclIf[symmetric] cp_OclExcluding[symmetric] cp_valid[symmetric] A)
done
qed
lemma OclExcluding_charn1:
assumes def_X:"\<tau> \<Turnstile> (\<delta> X)"
and val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
and val_y:"\<tau> \<Turnstile> (\<upsilon> y)"
and neq :"\<tau> \<Turnstile> not(x \<triangleq> y)"
shows "\<tau> \<Turnstile> ((X->including(x))->excluding(y)) \<triangleq> ((X->excluding(y))->including(x))"
proof -
have C : "\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert def_X val_x, frule Set_inv_lemma, simp add: foundation18 invalid_def)
have D : "\<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>}\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert def_X val_x, frule Set_inv_lemma, simp add: foundation18 invalid_def)
have E : "x \<tau> \<noteq> y \<tau>"
by(insert neq,
auto simp: OclValid_def bot_fun_def OclIncluding_def OclIncludes_def
false_def true_def defined_def valid_def bot_Set_0_def
null_fun_def null_Set_0_def StrongEq_def OclNot_def)
have G1 : "Abs_Set_0 \<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<noteq> Abs_Set_0 None"
by(insert C, simp add: Abs_Set_0_inject bot_option_def null_option_def)
have G2 : "Abs_Set_0 \<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<noteq> Abs_Set_0 \<lfloor>None\<rfloor>"
by(insert C, simp add: Abs_Set_0_inject bot_option_def null_option_def)
have G : "(\<delta> (\<lambda>_. Abs_Set_0 \<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
by(auto simp: OclValid_def false_def true_def defined_def
bot_fun_def bot_Set_0_def null_fun_def null_Set_0_def G1 G2)
have H1 : "Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>}\<rfloor>\<rfloor> \<noteq> Abs_Set_0 None"
by(insert D, simp add: Abs_Set_0_inject bot_option_def null_option_def)
have H2 : "Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>}\<rfloor>\<rfloor> \<noteq> Abs_Set_0 \<lfloor>None\<rfloor>"
by(insert D, simp add: Abs_Set_0_inject bot_option_def null_option_def)
have H : "(\<delta> (\<lambda>_. Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>}\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
by(auto simp: OclValid_def false_def true_def defined_def
bot_fun_def bot_Set_0_def null_fun_def null_Set_0_def H1 H2)
have Z : "insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>} = insert (x \<tau>) (\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>})"
by(auto simp: E)
show ?thesis
apply(insert def_X[THEN foundation13[THEN iffD2]] val_x[THEN foundation13[THEN iffD2]]
val_y[THEN foundation13[THEN iffD2]])
apply(simp add: foundation22 OclIncluding_def OclExcluding_def def_X[THEN foundation17])
apply(subst cp_defined, simp)+
apply(simp add: G H Abs_Set_0_inverse[OF C] Abs_Set_0_inverse[OF D] Z)
done
qed
lemma OclExcluding_charn2:
assumes def_X:"\<tau> \<Turnstile> (\<delta> X)"
and val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
shows "\<tau> \<Turnstile> (((X->including(x))->excluding(x)) \<triangleq> (X->excluding(x)))"
proof -
have C : "\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert def_X val_x, frule Set_inv_lemma, simp add: foundation18 invalid_def)
have G1 : "Abs_Set_0 \<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<noteq> Abs_Set_0 None"
by(insert C, simp add: Abs_Set_0_inject bot_option_def null_option_def)
have G2 : "Abs_Set_0 \<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<noteq> Abs_Set_0 \<lfloor>None\<rfloor>"
by(insert C, simp add: Abs_Set_0_inject bot_option_def null_option_def)
show ?thesis
apply(insert def_X[THEN foundation17] val_x[THEN foundation19])
apply(auto simp: OclValid_def bot_fun_def OclIncluding_def OclIncludes_def false_def true_def
invalid_def defined_def valid_def bot_Set_0_def null_fun_def null_Set_0_def
StrongEq_def)
apply(subst cp_OclExcluding)
apply(auto simp:OclExcluding_def)
apply(simp add: Abs_Set_0_inverse[OF C])
apply(simp_all add: false_def true_def defined_def valid_def
null_fun_def bot_fun_def null_Set_0_def bot_Set_0_def
split: bool.split_asm HOL.split_if_asm option.split)
apply(auto simp: G1 G2)
done
qed
text{* One would like a generic theorem of the form:
\begin{isar}[mathescape]
lemma OclExcluding_charn_exec:
"(X->including(x::('$\mathfrak{A}$,'a::null)val)->excluding(y)) =
(if \<delta> X then if x \<doteq> y
then X->excluding(y)
else X->excluding(y)->including(x)
endif
else invalid endif)"
\end{isar}
Unfortunately, this does not hold in general, since referential equality is
an overloaded concept and has to be defined for each type individually.
Consequently, it is only valid for concrete type instances for Boolean,
Integer, and Sets thereof...
*}
text{* The computational law \emph{OclExcluding-charn-exec} becomes generic since it
uses strict equality which in itself is generic. It is possible to prove
the following generic theorem and instantiate it later (using properties
that link the polymorphic logical strong equality with the concrete instance
of strict quality).*}
lemma OclExcluding_charn_exec:
assumes strict1: "(x \<doteq> invalid) = invalid"
and strict2: "(invalid \<doteq> y) = invalid"
and StrictRefEq_valid_args_valid: "\<And> (x::('\<AA>,'a::null)val) y \<tau>.
(\<tau> \<Turnstile> \<delta> (x \<doteq> y)) = ((\<tau> \<Turnstile> (\<upsilon> x)) \<and> (\<tau> \<Turnstile> \<upsilon> y))"
and cp_StrictRefEq: "\<And> (X::('\<AA>,'a::null)val) Y \<tau>. (X \<doteq> Y) \<tau> = ((\<lambda>_. X \<tau>) \<doteq> (\<lambda>_. Y \<tau>)) \<tau>"
and StrictRefEq_vs_StrongEq: "\<And> (x::('\<AA>,'a::null)val) y \<tau>.
\<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> (\<tau> \<Turnstile> ((x \<doteq> y) \<triangleq> (x \<triangleq> y)))"
shows "(X->including(x::('\<AA>,'a::null)val)->excluding(y)) =
(if \<delta> X then if x \<doteq> y
then X->excluding(y)
else X->excluding(y)->including(x)
endif
else invalid endif)"
proof -
(* Lifting theorems, largely analogous OclIncludes_execute_generic,
with the same problems wrt. strict equality. *)
have A1: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev, simp,simp)
have B1: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> null) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev, simp,simp)
have A2: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> invalid) \<Longrightarrow> X->including(x)->excluding(y) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev, simp,simp)
have B2: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> null) \<Longrightarrow> X->including(x)->excluding(y) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev, simp,simp)
note [simp] = cp_StrictRefEq [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "StrictRefEq"]]
have C: "\<And>\<tau>. \<tau> \<Turnstile> (x \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->excluding(y)) \<tau> =
(if x \<doteq> y then X->excluding(y) else X->excluding(y)->including(x) endif) \<tau>"
apply(rule foundation22[THEN iffD1])
apply(erule StrongEq_L_subst2_rev,simp,simp)
by(simp add: strict2)
have D: "\<And>\<tau>. \<tau> \<Turnstile> (y \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->excluding(y)) \<tau> =
(if x \<doteq> y then X->excluding(y) else X->excluding(y)->including(x) endif) \<tau>"
apply(rule foundation22[THEN iffD1])
apply(erule StrongEq_L_subst2_rev,simp,simp)
by (simp add: strict1)
have E: "\<And>\<tau>. \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
(if x \<doteq> y then X->excluding(y) else X->excluding(y)->including(x) endif) \<tau> =
(if x \<triangleq> y then X->excluding(y) else X->excluding(y)->including(x) endif) \<tau>"
apply(subst cp_OclIf)
apply(subst StrictRefEq_vs_StrongEq[THEN foundation22[THEN iffD1]])
by(simp_all add: cp_OclIf[symmetric])
have F: "\<And>\<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> (x \<triangleq> y) \<Longrightarrow>
(X->including(x)->excluding(y) \<tau>) = (X->excluding(y) \<tau>)"
apply(drule StrongEq_L_sym)
apply(rule foundation22[THEN iffD1])
apply(erule StrongEq_L_subst2_rev,simp)
by(simp add: OclExcluding_charn2)
show ?thesis
apply(rule ext, rename_tac "\<tau>")
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<delta> X))", simp add:def_split_local,elim disjE A1 B1 A2 B2)
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<upsilon> x))",
simp add:foundation18 foundation22[symmetric],
drule StrongEq_L_sym)
apply(simp add: foundation22 C)
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<upsilon> y))",
simp add:foundation18 foundation22[symmetric],
drule StrongEq_L_sym, simp add: foundation22 D, simp)
apply(subst E,simp_all)
apply(case_tac "\<tau> \<Turnstile> not (x \<triangleq> y)")
apply(simp add: OclExcluding_charn1[simplified foundation22]
OclExcluding_charn2[simplified foundation22])
apply(simp add: foundation9 F)
done
qed
(* Hack to work around OF-Bug *)
schematic_lemma OclExcluding_charn_exec\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[simp,code_unfold]: "?X"
by(rule OclExcluding_charn_exec[OF StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict1 StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict2
StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_defined_args_valid
cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_vs_StrongEq], simp_all)
schematic_lemma OclExcluding_charn_exec\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n[simp,code_unfold]: "?X"
by(rule OclExcluding_charn_exec[OF StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict1 StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict2
StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_defined_args_valid
cp_StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_vs_StrongEq], simp_all)
schematic_lemma OclExcluding_charn_exec\<^sub>S\<^sub>e\<^sub>t[simp,code_unfold]: "?X"
by(rule OclExcluding_charn_exec[OF StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict1 StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict2
StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strictEq_valid_args_valid
cp_StrictRefEq\<^sub>S\<^sub>e\<^sub>t StrictRefEq\<^sub>S\<^sub>e\<^sub>t_vs_StrongEq], simp_all)
lemma OclExcluding_finite_rep_set :
assumes X_def : "\<tau> \<Turnstile> \<delta> X"
and x_val : "\<tau> \<Turnstile> \<upsilon> x"
shows "finite \<lceil>\<lceil>Rep_Set_0 (X->excluding(x) \<tau>)\<rceil>\<rceil> = finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
proof -
have C : "\<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {x \<tau>}\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
apply(insert X_def x_val, frule Set_inv_lemma)
apply(simp add: foundation18 invalid_def)
done
show "?thesis"
by(insert X_def x_val,
auto simp: OclExcluding_def Abs_Set_0_inverse[OF C]
dest: foundation13[THEN iffD2, THEN foundation22[THEN iffD1]])
qed
lemma OclExcluding_rep_set:
assumes S_def: "\<tau> \<Turnstile> \<delta> S"
shows "\<lceil>\<lceil>Rep_Set_0 (S->excluding(\<lambda>_. \<lfloor>\<lfloor>x\<rfloor>\<rfloor>) \<tau>)\<rceil>\<rceil> = \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> - {\<lfloor>\<lfloor>x\<rfloor>\<rfloor>}"
apply(simp add: OclExcluding_def S_def[simplified OclValid_def])
apply(subst Abs_Set_0_inverse, simp add: bot_option_def null_option_def)
apply(insert Set_inv_lemma[OF S_def], metis Diff_iff bot_option_def not_None_eq)
by(simp)
subsection{* OclIncludes *}
lemma OclIncludes_charn0[simp]:
assumes val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
shows "\<tau> \<Turnstile> not(Set{}->includes(x))"
using val_x
apply(auto simp: OclValid_def OclIncludes_def OclNot_def false_def true_def)
apply(auto simp: mtSet_def OCL_lib.Set_0.Abs_Set_0_inverse)
done
lemma OclIncludes_charn0'[simp,code_unfold]:
"Set{}->includes(x) = (if \<upsilon> x then false else invalid endif)"
proof -
have A: "\<And> \<tau>. (Set{}->includes(invalid)) \<tau> = (if (\<upsilon> invalid) then false else invalid endif) \<tau>"
by simp
have B: "\<And> \<tau> x. \<tau> \<Turnstile> (\<upsilon> x) \<Longrightarrow> (Set{}->includes(x)) \<tau> = (if \<upsilon> x then false else invalid endif) \<tau>"
apply(frule OclIncludes_charn0, simp add: OclValid_def)
apply(rule foundation21[THEN fun_cong, simplified StrongEq_def,simplified,
THEN iffD1, of _ _ "false"])
by simp
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(case_tac "\<tau> \<Turnstile> (\<upsilon> x)")
apply(simp_all add: B foundation18)
apply(subst cp_OclIncludes, simp add: cp_OclIncludes[symmetric] A)
done
qed
lemma OclIncludes_charn1:
assumes def_X:"\<tau> \<Turnstile> (\<delta> X)"
assumes val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
shows "\<tau> \<Turnstile> (X->including(x)->includes(x))"
proof -
have C : "\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert def_X val_x, frule Set_inv_lemma, simp add: foundation18 invalid_def)
show ?thesis
apply(subst OclIncludes_def, simp add: foundation10[simplified OclValid_def] OclValid_def
def_X[simplified OclValid_def] val_x[simplified OclValid_def])
apply(simp add: OclIncluding_def def_X[simplified OclValid_def] val_x[simplified OclValid_def]
Abs_Set_0_inverse[OF C] true_def)
done
qed
lemma OclIncludes_charn2:
assumes def_X:"\<tau> \<Turnstile> (\<delta> X)"
and val_x:"\<tau> \<Turnstile> (\<upsilon> x)"
and val_y:"\<tau> \<Turnstile> (\<upsilon> y)"
and neq :"\<tau> \<Turnstile> not(x \<triangleq> y)"
shows "\<tau> \<Turnstile> (X->including(x)->includes(y)) \<triangleq> (X->includes(y))"
proof -
have C : "\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(insert def_X val_x, frule Set_inv_lemma, simp add: foundation18 invalid_def)
show ?thesis
apply(subst OclIncludes_def,
simp add: def_X[simplified OclValid_def] val_x[simplified OclValid_def]
val_y[simplified OclValid_def] foundation10[simplified OclValid_def]
OclValid_def StrongEq_def)
apply(simp add: OclIncluding_def OclIncludes_def def_X[simplified OclValid_def]
val_x[simplified OclValid_def] val_y[simplified OclValid_def]
Abs_Set_0_inverse[OF C] true_def)
by(metis foundation22 foundation6 foundation9 neq)
qed
text{* Here is again a generic theorem similar as above. *}
lemma OclIncludes_execute_generic:
assumes strict1: "(x \<doteq> invalid) = invalid"
and strict2: "(invalid \<doteq> y) = invalid"
and cp_StrictRefEq: "\<And> (X::('\<AA>,'a::null)val) Y \<tau>. (X \<doteq> Y) \<tau> = ((\<lambda>_. X \<tau>) \<doteq> (\<lambda>_. Y \<tau>)) \<tau>"
and StrictRefEq_vs_StrongEq: "\<And> (x::('\<AA>,'a::null)val) y \<tau>.
\<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> (\<tau> \<Turnstile> ((x \<doteq> y) \<triangleq> (x \<triangleq> y)))"
shows
"(X->including(x::('\<AA>,'a::null)val)->includes(y)) =
(if \<delta> X then if x \<doteq> y then true else X->includes(y) endif else invalid endif)"
proof -
have A: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev,simp,simp)
have B: "\<And>\<tau>. \<tau> \<Turnstile> (X \<triangleq> null) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> = invalid \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev,simp,simp)
note [simp] = cp_StrictRefEq [THEN allI[THEN allI[THEN allI[THEN cpI2]], of "StrictRefEq"]]
have C: "\<And>\<tau>. \<tau> \<Turnstile> (x \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> =
(if x \<doteq> y then true else X->includes(y) endif) \<tau>"
apply(rule foundation22[THEN iffD1])
apply(erule StrongEq_L_subst2_rev,simp,simp)
by (simp add: strict2)
have D:"\<And>\<tau>. \<tau> \<Turnstile> (y \<triangleq> invalid) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> =
(if x \<doteq> y then true else X->includes(y) endif) \<tau>"
apply(rule foundation22[THEN iffD1])
apply(erule StrongEq_L_subst2_rev,simp,simp)
by (simp add: strict1)
have E: "\<And>\<tau>. \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
(if x \<doteq> y then true else X->includes(y) endif) \<tau> =
(if x \<triangleq> y then true else X->includes(y) endif) \<tau>"
apply(subst cp_OclIf)
apply(subst StrictRefEq_vs_StrongEq[THEN foundation22[THEN iffD1]])
by(simp_all add: cp_OclIf[symmetric])
have F: "\<And>\<tau>. \<tau> \<Turnstile> (x \<triangleq> y) \<Longrightarrow>
(X->including(x)->includes(y)) \<tau> = (X->including(x)->includes(x)) \<tau>"
apply(rule foundation22[THEN iffD1])
by(erule StrongEq_L_subst2_rev,simp, simp)
show ?thesis
apply(rule ext, rename_tac "\<tau>")
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<delta> X))", simp add:def_split_local,elim disjE A B)
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<upsilon> x))",
simp add:foundation18 foundation22[symmetric],
drule StrongEq_L_sym)
apply(simp add: foundation22 C)
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<upsilon> y))",
simp add:foundation18 foundation22[symmetric],
drule StrongEq_L_sym, simp add: foundation22 D, simp)
apply(subst E,simp_all)
apply(case_tac "\<tau> \<Turnstile> not(x \<triangleq> y)")
apply(simp add: OclIncludes_charn2[simplified foundation22])
apply(simp add: foundation9 F
OclIncludes_charn1[THEN foundation13[THEN iffD2],
THEN foundation22[THEN iffD1]])
done
qed
(* Hack to work around OF-Bug *)
schematic_lemma OclIncludes_execute\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[simp,code_unfold]: "?X"
by(rule OclIncludes_execute_generic[OF StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict1 StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict2
cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r
StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_vs_StrongEq], simp_all)
schematic_lemma OclIncludes_execute\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n[simp,code_unfold]: "?X"
by(rule OclIncludes_execute_generic[OF StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict1 StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_strict2
cp_StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n
StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n_vs_StrongEq], simp_all)
schematic_lemma OclIncludes_execute\<^sub>S\<^sub>e\<^sub>t[simp,code_unfold]: "?X"
by(rule OclIncludes_execute_generic[OF StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict1 StrictRefEq\<^sub>S\<^sub>e\<^sub>t_strict2
cp_StrictRefEq\<^sub>S\<^sub>e\<^sub>t
StrictRefEq\<^sub>S\<^sub>e\<^sub>t_vs_StrongEq], simp_all)
lemma OclIncludes_including_generic :
assumes OclIncludes_execute_generic [simp] : "\<And>X x y.
(X->including(x::('\<AA>,'a::null)val)->includes(y)) =
(if \<delta> X then if x \<doteq> y then true else X->includes(y) endif else invalid endif)"
and StrictRefEq_strict'' : "\<And>x y. \<delta> ((x::('\<AA>,'a::null)val) \<doteq> y) = (\<upsilon>(x) and \<upsilon>(y))"
and a_val : "\<tau> \<Turnstile> \<upsilon> a"
and x_val : "\<tau> \<Turnstile> \<upsilon> x"
and S_incl : "\<tau> \<Turnstile> (S)->includes((x::('\<AA>,'a::null)val))"
shows "\<tau> \<Turnstile> S->including((a::('\<AA>,'a::null)val))->includes(x)"
proof -
have discr_eq_bot1_true : "\<And>\<tau>. (\<bottom> \<tau> = true \<tau>) = False"
by (metis OCL_core.bot_fun_def foundation1 foundation18' valid3)
have discr_eq_bot2_true : "\<And>\<tau>. (\<bottom> = true \<tau>) = False"
by (metis bot_fun_def discr_eq_bot1_true)
have discr_neq_invalid_true : "\<And>\<tau>. (invalid \<tau> \<noteq> true \<tau>) = True"
by (metis discr_eq_bot2_true invalid_def)
have discr_eq_invalid_true : "\<And>\<tau>. (invalid \<tau> = true \<tau>) = False"
by (metis bot_option_def invalid_def option.simps(2) true_def)
show ?thesis
apply(simp)
apply(subgoal_tac "\<tau> \<Turnstile> \<delta> S")
prefer 2
apply(insert S_incl[simplified OclIncludes_def], simp add: OclValid_def)
apply(metis discr_eq_bot2_true)
apply(simp add: cp_OclIf[of "\<delta> S"] OclValid_def OclIf_def x_val[simplified OclValid_def]
discr_neq_invalid_true discr_eq_invalid_true)
by (metis OclValid_def S_incl StrictRefEq_strict'' a_val foundation10 foundation6 x_val)
qed
lemmas OclIncludes_including\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r =
OclIncludes_including_generic[OF OclIncludes_execute\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict'']
subsection{* OclExcludes *}
subsection{* OclSize *}
lemma [simp,code_unfold]: "Set{} ->size() = \<zero>"
apply(rule ext)
apply(simp add: defined_def mtSet_def OclSize_def
bot_Set_0_def bot_fun_def
null_Set_0_def null_fun_def)
apply(subst Abs_Set_0_inject, simp_all add: bot_option_def null_option_def) +
by(simp add: Abs_Set_0_inverse bot_option_def null_option_def OclInt0_def)
lemma OclSize_including_exec[simp,code_unfold]:
"((X ->including(x)) ->size()) = (if \<delta> X and \<upsilon> x then
X ->size() `+ if X ->includes(x) then \<zero> else \<one> endif
else
invalid
endif)"
proof -
have valid_inject_true : "\<And>\<tau> P. (\<upsilon> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<upsilon> P) \<tau> = false \<tau>"
apply(simp add: valid_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac "P \<tau> = \<bottom>", simp_all add: true_def)
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
show ?thesis
apply(rule ext, rename_tac \<tau>)
proof -
fix \<tau>
have includes_notin: "\<not> \<tau> \<Turnstile> X->includes(x) \<Longrightarrow> (\<delta> X) \<tau> = true \<tau> \<and> (\<upsilon> x) \<tau> = true \<tau> \<Longrightarrow>
x \<tau> \<notin> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
by(simp add: OclIncludes_def OclValid_def true_def)
have includes_def: "\<tau> \<Turnstile> X->includes(x) \<Longrightarrow> \<tau> \<Turnstile> \<delta> X"
by (metis OCL_core.bot_fun_def OclIncludes_def OclValid_def defined3 foundation16)
have includes_val: "\<tau> \<Turnstile> X->includes(x) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x"
by (metis (hide_lams, no_types) foundation6
OclIncludes_valid_args_valid' OclIncluding_valid_args_valid OclIncluding_valid_args_valid'')
have ins_in_Set_0: "\<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow>
\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = \<bottom> \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> \<bottom>)}"
apply(simp add: bot_option_def null_option_def)
by (metis (hide_lams, no_types) Set_inv_lemma foundation18' foundation5)
show "X->including(x)->size() \<tau> = (if \<delta> X and \<upsilon> x
then X->size() `+ if X->includes(x) then \<zero> else \<one> endif
else invalid endif) \<tau>"
apply(case_tac "\<tau> \<Turnstile> \<delta> X and \<upsilon> x", simp)
apply(subst cp_OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r)
apply(case_tac "\<tau> \<Turnstile> X->includes(x)", simp add: cp_OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r[symmetric])
apply(case_tac "\<tau> \<Turnstile> ((\<upsilon> (X->size())) and not (\<delta> (X->size())))", simp)
apply(drule foundation5[where P = "\<upsilon> X->size()"], erule conjE)
apply(drule OclSize_infinite)
apply(frule includes_def, drule includes_val, simp)
apply(subst OclSize_def, subst OclIncluding_finite_rep_set, assumption+)
apply (metis (hide_lams, no_types) invalid_def)
apply(subst OclIf_false',
metis (hide_lams, no_types) defined5 defined6 defined_and_I defined_not_I
foundation1 foundation9)
apply(subst cp_OclSize, simp add: OclIncluding_includes cp_OclSize[symmetric])
(* *)
apply(subst OclIf_false', subst foundation9,
metis (hide_lams, no_types) OclIncludes_valid_args_valid', simp, simp add: OclSize_def)
apply(drule foundation5)
apply(subst (1 2) OclIncluding_finite_rep_set, fast+)
apply(subst (1 2) cp_OclAnd, subst (1 2) cp_OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r, simp)
apply(rule conjI)
apply(simp add: OclIncluding_def)
apply(subst Abs_Set_0_inverse[OF ins_in_Set_0], fast+)
apply(subst (asm) (2 3) OclValid_def, simp add: OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_def OclInt1_def)
apply(rule impI)
apply(drule Finite_Set.card.insert[where x = "x \<tau>"])
apply(rule includes_notin, simp, simp)
apply (metis Suc_eq_plus1 int_1 of_nat_add)
apply(subst (1 2) OclAdd\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict2[simplified invalid_def], simp)
apply(subst OclIncluding_finite_rep_set, fast+, simp add: OclValid_def)
(* *)
apply(subst OclIf_false', metis (hide_lams, no_types) defined6 foundation1 foundation9
OclExcluding_valid_args_valid'')
by (metis cp_OclSize foundation18' OclIncluding_valid_args_valid'' invalid_def OclSize_invalid)
qed
qed
subsection{* OclIsEmpty *}
lemma [simp,code_unfold]: "Set{}->isEmpty() = true"
by(simp add: OclIsEmpty_def)
lemma OclIsEmpty_including [simp]:
assumes X_def: "\<tau> \<Turnstile> \<delta> X"
and X_finite: "finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
and a_val: "\<tau> \<Turnstile> \<upsilon> a"
shows "X->including(a)->isEmpty() \<tau> = false \<tau>"
proof -
have A1 : "\<And>\<tau> X. X \<tau> = true \<tau> \<or> X \<tau> = false \<tau> \<Longrightarrow> (X and not X) \<tau> = false \<tau>"
by (metis (no_types) OclAnd_false1 OclAnd_idem OclImplies_def OclNot3 OclNot_not OclOr_false1
cp_OclAnd cp_OclNot deMorgan1 deMorgan2)
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
have B : "\<And>X \<tau>. \<tau> \<Turnstile> \<upsilon> X \<Longrightarrow> X \<tau> \<noteq> \<zero> \<tau> \<Longrightarrow> (X \<doteq> \<zero>) \<tau> = false \<tau>"
by (metis OclAnd_true2 OclValid_def Sem_def foundation16 foundation22 valid4
StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict' StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r_strict''
StrongEq_sym bool_split invalid_def null_fun_def null_non_OclInt0)
show ?thesis
apply(simp add: OclIsEmpty_def del: OclSize_including_exec)
apply(subst cp_OclOr, subst A1)
apply(metis (hide_lams, no_types) defined_inject_true OclExcluding_valid_args_valid')
apply(simp add: cp_OclOr[symmetric] del: OclSize_including_exec)
apply(rule B,
rule foundation20,
metis (hide_lams, no_types) OclIncluding_defined_args_valid OclIncluding_finite_rep_set
X_def X_finite a_val size_defined')
apply(simp add: OclSize_def OclIncluding_finite_rep_set[OF X_def a_val] X_finite OclInt0_def)
by (metis OclValid_def X_def a_val foundation10 foundation6
OclIncluding_notempty_rep_set[OF X_def a_val])
qed
subsection{* OclNotEmpty *}
lemma [simp,code_unfold]: "Set{}->notEmpty() = false"
by(simp add: OclNotEmpty_def)
lemma OclNotEmpty_including [simp,code_unfold]:
assumes X_def: "\<tau> \<Turnstile> \<delta> X"
and X_finite: "finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
and a_val: "\<tau> \<Turnstile> \<upsilon> a"
shows "X->including(a)->notEmpty() \<tau> = true \<tau>"
apply(simp add: OclNotEmpty_def)
apply(subst cp_OclNot, subst OclIsEmpty_including, simp_all add: assms)
by (metis OclNot4 cp_OclNot)
subsection{* OclANY *}
lemma [simp,code_unfold]: "Set{}->any() = null"
by(rule ext, simp add: OclANY_def, simp add: false_def true_def)
lemma OclANY_singleton_exec[simp,code_unfold]:
"(Set{}->including(a))->any() = a"
apply(rule ext, rename_tac \<tau>, simp add: mtSet_def OclANY_def)
apply(case_tac "\<tau> \<Turnstile> \<upsilon> a")
apply(simp add: OclValid_def mtSet_defined[simplified mtSet_def]
mtSet_valid[simplified mtSet_def] mtSet_rep_set[simplified mtSet_def])
apply(subst (1 2) cp_OclAnd,
subst (1 2) OclNotEmpty_including[where X = "Set{}", simplified mtSet_def])
apply(simp add: mtSet_defined[simplified mtSet_def])
apply(metis (hide_lams, no_types) finite.emptyI mtSet_def mtSet_rep_set)
apply(simp add: OclValid_def)
apply(simp add: OclIncluding_def)
apply(rule conjI)
apply(subst (1 2) Abs_Set_0_inverse, simp add: bot_option_def null_option_def)
apply(simp, metis OclValid_def foundation18')
apply(simp)
apply(simp add: mtSet_defined[simplified mtSet_def])
(* *)
apply(subgoal_tac "a \<tau> = \<bottom>")
prefer 2
apply(simp add: OclValid_def valid_def bot_fun_def split: split_if_asm)
apply(simp)
apply(subst (1 2 3 4) cp_OclAnd,
simp add: mtSet_defined[simplified mtSet_def] valid_def bot_fun_def)
by(simp add: cp_OclAnd[symmetric], rule impI, simp add: false_def true_def)
subsection{* OclForall *}
lemma OclForall_mtSet_exec[simp,code_unfold] :
"((Set{})->forAll(z| P(z))) = true"
apply(simp add: OclForall_def)
apply(subst mtSet_def)+
apply(subst Abs_Set_0_inverse, simp_all add: true_def)+
done
lemma OclForall_including_exec[simp,code_unfold] :
assumes cp0 : "cp P"
shows "((S->including(x))->forAll(z | P(z))) = (if \<delta> S and \<upsilon> x
then P x and (S->forAll(z | P(z)))
else invalid
endif)"
proof -
have cp: "\<And>\<tau>. P x \<tau> = P (\<lambda>_. x \<tau>) \<tau>"
by(insert cp0, auto simp: cp_def)
have insert_in_Set_0 : "\<And>\<tau>. (\<tau> \<Turnstile>(\<delta> S)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> x)) \<Longrightarrow>
\<lfloor>\<lfloor>insert (x \<tau>) \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(frule Set_inv_lemma, simp add: foundation18 invalid_def)
have forall_including_invert : "\<And>\<tau> f. (f x \<tau> = f (\<lambda> _. x \<tau>) \<tau>) \<Longrightarrow>
\<tau> \<Turnstile> (\<delta> S and \<upsilon> x) \<Longrightarrow>
(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (S->including(x) \<tau>)\<rceil>\<rceil>. f (\<lambda>_. x) \<tau>) =
(f x \<tau> \<and> (\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. f (\<lambda>_. x) \<tau>))"
apply(drule foundation5, simp add: OclIncluding_def)
apply(subst Abs_Set_0_inverse)
apply(rule insert_in_Set_0, fast+)
by(simp add: OclValid_def)
have exists_including_invert : "\<And>\<tau> f. (f x \<tau> = f (\<lambda> _. x \<tau>) \<tau>) \<Longrightarrow>
\<tau> \<Turnstile> (\<delta> S and \<upsilon> x) \<Longrightarrow>
(\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S->including(x) \<tau>)\<rceil>\<rceil>. f (\<lambda>_. x) \<tau>) =
(f x \<tau> \<or> (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>. f (\<lambda>_. x) \<tau>))"
apply(subst arg_cong[where f = "\<lambda>x. \<not>x",
OF forall_including_invert[where f = "\<lambda>x \<tau>. \<not> (f x \<tau>)"],
simplified])
by simp_all
have cp_eq : "\<And>\<tau> v. (P x \<tau> = v) = (P (\<lambda>_. x \<tau>) \<tau> = v)" by(subst cp, simp)
have cp_OclNot_eq : "\<And>\<tau> v. (P x \<tau> \<noteq> v) = (P (\<lambda>_. x \<tau>) \<tau> \<noteq> v)" by(subst cp, simp)
have foundation10': "\<And>\<tau> x y. (\<tau> \<Turnstile> x) \<and> (\<tau> \<Turnstile> y) \<Longrightarrow> \<tau> \<Turnstile> (x and y)"
apply(erule conjE, subst foundation10)
by((rule foundation6)?, simp)+
have contradict_Rep_Set_0: "\<And>\<tau> S f.
\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 S\<rceil>\<rceil>. f (\<lambda>_. x) \<tau> \<Longrightarrow>
(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 S\<rceil>\<rceil>. \<not> (f (\<lambda>_. x) \<tau>)) = False"
by(case_tac "(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 S\<rceil>\<rceil>. \<not> (f (\<lambda>_. x) \<tau>)) = True", simp_all)
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(simp add: OclIf_def)
apply(simp add: cp_defined[of "\<delta> S and \<upsilon> x"] cp_defined[THEN sym])
apply(intro conjI impI)
apply(subgoal_tac "\<tau> \<Turnstile> \<delta> S")
prefer 2
apply(drule foundation5[simplified OclValid_def], erule conjE)+ apply(simp add: OclValid_def)
apply(subst OclForall_def)
apply(simp add: cp_OclAnd[THEN sym] OclValid_def
foundation10'[where x = "\<delta> S" and y = "\<upsilon> x", simplified OclValid_def])
apply(subgoal_tac "\<tau> \<Turnstile> (\<delta> S and \<upsilon> x)")
prefer 2
apply(simp add: OclValid_def)
(* false *)
(* false YES *)
apply(case_tac "\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S->including(x) \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> = false \<tau>", simp_all)
apply(subst contradict_Rep_Set_0[where f1 = "\<lambda> x \<tau>. P x \<tau> = false \<tau>"], simp)+
apply(simp add: exists_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> = false \<tau>", OF cp_eq])
apply(simp add: cp_OclAnd[of "P x"])
apply(erule disjE)
apply(simp only: cp_OclAnd[symmetric], simp)
apply(subgoal_tac "OclForall S P \<tau> = false \<tau>")
apply(simp only: cp_OclAnd[symmetric], simp)
apply(simp add: OclForall_def)
(* false NO *)
apply(simp add: forall_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> \<noteq> false \<tau>", OF cp_OclNot_eq],
erule conjE)
(* bot *)
(* bot YES *)
apply(case_tac "\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S->including(x) \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> = bot \<tau>", simp_all)
apply(subst contradict_Rep_Set_0[where f1 = "\<lambda> x \<tau>. P x \<tau> = bot \<tau>"], simp)+
apply(simp add: exists_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> = bot \<tau>", OF cp_eq])
apply(simp add: cp_OclAnd[of "P x"])
apply(erule disjE)
apply(subgoal_tac "OclForall S P \<tau> \<noteq> false \<tau>")
apply(simp only: cp_OclAnd[symmetric], simp)
apply(simp add: OclForall_def true_def false_def
null_fun_def null_option_def bot_fun_def bot_option_def)
apply(subgoal_tac "OclForall S P \<tau> = bot \<tau>")
apply(simp only: cp_OclAnd[symmetric], simp)
apply(simp add: OclForall_def true_def false_def
null_fun_def null_option_def bot_fun_def bot_option_def)
(* bot NO *)
apply(simp add: forall_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> \<noteq> bot \<tau>", OF cp_OclNot_eq],
erule conjE)
(* null *)
(* null YES *)
apply(case_tac "\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (S->including(x) \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> = null \<tau>", simp_all)
apply(subst contradict_Rep_Set_0[where f1 = "\<lambda> x \<tau>. P x \<tau> = null \<tau>"], simp)+
apply(simp add: exists_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> = null \<tau>", OF cp_eq])
apply(simp add: cp_OclAnd[of "P x"])
apply(erule disjE)
apply(subgoal_tac "OclForall S P \<tau> \<noteq> false \<tau> \<and> OclForall S P \<tau> \<noteq> bot \<tau>")
apply(simp only: cp_OclAnd[symmetric], simp)
apply(simp add: OclForall_def true_def false_def
null_fun_def null_option_def bot_fun_def bot_option_def)
apply(subgoal_tac "OclForall S P \<tau> = null \<tau>")
apply(simp only: cp_OclAnd[symmetric], simp)
apply(simp add: OclForall_def true_def false_def
null_fun_def null_option_def bot_fun_def bot_option_def)
(* null NO *)
apply(simp add: forall_including_invert[where f = "\<lambda> x \<tau>. P x \<tau> \<noteq> null \<tau>", OF cp_OclNot_eq],
erule conjE)
(* true *)
apply(simp add: cp_OclAnd[of "P x"] OclForall_def)
apply(subgoal_tac "P x \<tau> = true \<tau>", simp)
apply(metis bot_fun_def bool_split foundation18' foundation2 valid1)
(* invalid *)
by(metis OclForall_def OclIncluding_defined_args_valid' invalid_def)
qed
subsection{* OclExists *}
lemma OclExists_mtSet_exec[simp,code_unfold] :
"((Set{})->exists(z | P(z))) = false"
by(simp add: OclExists_def)
lemma OclExists_including_exec[simp,code_unfold] :
assumes cp: "cp P"
shows "((S->including(x))->exists(z | P(z))) = (if \<delta> S and \<upsilon> x
then P x or (S->exists(z | P(z)))
else invalid
endif)"
by(simp add: OclExists_def OclOr_def OclForall_including_exec cp OclNot_inject)
subsection{* OclIterate *}
lemma OclIterate_empty[simp,code_unfold]: "((Set{})->iterate(a; x = A | P a x)) = A"
proof -
have C : "\<And> \<tau>. (\<delta> (\<lambda>\<tau>. Abs_Set_0 \<lfloor>\<lfloor>{}\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
by (metis (no_types) defined_def mtSet_def mtSet_defined null_fun_def)
show ?thesis
apply(simp add: OclIterate_def mtSet_def Abs_Set_0_inverse valid_def C)
apply(rule ext, rename_tac \<tau>)
apply(case_tac "A \<tau> = \<bottom> \<tau>", simp_all, simp add:true_def false_def bot_fun_def)
apply(simp add: Abs_Set_0_inverse)
done
qed
text{* In particular, this does hold for A = null. *}
lemma OclIterate_including:
assumes S_finite: "\<tau> \<Turnstile> \<delta>(S->size())"
and F_valid_arg: "(\<upsilon> A) \<tau> = (\<upsilon> (F a A)) \<tau>"
and F_commute: "comp_fun_commute F"
and F_cp: "\<And> x y \<tau>. F x y \<tau> = F (\<lambda> _. x \<tau>) y \<tau>"
shows "((S->including(a))->iterate(a; x = A | F a x)) \<tau> =
((S->excluding(a))->iterate(a; x = F a A | F a x)) \<tau>"
proof -
have insert_in_Set_0 : "\<And>\<tau>. (\<tau> \<Turnstile>(\<delta> S)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> a)) \<Longrightarrow>
\<lfloor>\<lfloor>insert (a \<tau>) \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(frule Set_inv_lemma, simp add: foundation18 invalid_def)
have insert_defined : "\<And>\<tau>. (\<tau> \<Turnstile>(\<delta> S)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> a)) \<Longrightarrow>
(\<delta> (\<lambda>_. Abs_Set_0 \<lfloor>\<lfloor>insert (a \<tau>) \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
apply(subst defined_def)
apply(simp add: bot_Set_0_def bot_fun_def null_Set_0_def null_fun_def)
by(subst Abs_Set_0_inject,
rule insert_in_Set_0, simp_all add: null_option_def bot_option_def)+
have remove_finite : "finite \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> \<Longrightarrow>
finite ((\<lambda>a \<tau>. a) ` (\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> - {a \<tau>}))"
by(simp)
have remove_in_Set_0 : "\<And>\<tau>. (\<tau> \<Turnstile>(\<delta> S)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> a)) \<Longrightarrow>
\<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> - {a \<tau>}\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)}"
by(frule Set_inv_lemma, simp add: foundation18 invalid_def)
have remove_defined : "\<And>\<tau>. (\<tau> \<Turnstile>(\<delta> S)) \<Longrightarrow> (\<tau> \<Turnstile>(\<upsilon> a)) \<Longrightarrow>
(\<delta> (\<lambda>_. Abs_Set_0 \<lfloor>\<lfloor>\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> - {a \<tau>}\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
apply(subst defined_def)
apply(simp add: bot_Set_0_def bot_fun_def null_Set_0_def null_fun_def)
by(subst Abs_Set_0_inject,
rule remove_in_Set_0, simp_all add: null_option_def bot_option_def)+
have abs_rep: "\<And>x. \<lfloor>\<lfloor>x\<rfloor>\<rfloor> \<in> {X. X = bot \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> bot)} \<Longrightarrow>
\<lceil>\<lceil>Rep_Set_0 (Abs_Set_0 \<lfloor>\<lfloor>x\<rfloor>\<rfloor>)\<rceil>\<rceil> = x"
by(subst Abs_Set_0_inverse, simp_all)
have inject : "inj (\<lambda>a \<tau>. a)"
by(rule inj_fun, simp)
show ?thesis
apply(subst (1 2) cp_OclIterate, subst OclIncluding_def, subst OclExcluding_def)
apply(case_tac "\<not> ((\<delta> S) \<tau> = true \<tau> \<and> (\<upsilon> a) \<tau> = true \<tau>)", simp)
apply(subgoal_tac "OclIterate (\<lambda>_. \<bottom>) A F \<tau> = OclIterate (\<lambda>_. \<bottom>) (F a A) F \<tau>", simp)
apply(rule conjI, blast+)
apply(simp add: OclIterate_def defined_def bot_option_def bot_fun_def false_def true_def)
apply(simp add: OclIterate_def)
apply((subst abs_rep[OF insert_in_Set_0[simplified OclValid_def], of \<tau>], simp_all)+,
(subst abs_rep[OF remove_in_Set_0[simplified OclValid_def], of \<tau>], simp_all)+,
(subst insert_defined, simp_all add: OclValid_def)+,
(subst remove_defined, simp_all add: OclValid_def)+)
apply(case_tac "\<not> ((\<upsilon> A) \<tau> = true \<tau>)", (simp add: F_valid_arg)+)
apply(rule impI,
subst Finite_Set.comp_fun_commute.fold_fun_left_comm[symmetric, OF F_commute],
rule remove_finite, simp)
apply(subst image_set_diff[OF inject], simp)
apply(subgoal_tac "Finite_Set.fold F A (insert (\<lambda>\<tau>'. a \<tau>) ((\<lambda>a \<tau>. a) ` \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>)) \<tau> =
F (\<lambda>\<tau>'. a \<tau>) (Finite_Set.fold F A ((\<lambda>a \<tau>. a) ` \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> - {\<lambda>\<tau>'. a \<tau>})) \<tau>")
apply(subst F_cp, simp)
by(subst Finite_Set.comp_fun_commute.fold_insert_remove[OF F_commute], simp+)
qed
subsection{* OclSelect *}
lemma OclSelect_mtSet_exec[simp,code_unfold]: "OclSelect mtSet P = mtSet"
apply(rule ext, rename_tac \<tau>)
apply(simp add: OclSelect_def mtSet_def defined_def false_def true_def
bot_Set_0_def bot_fun_def null_Set_0_def null_fun_def)
by(( subst (1 2 3 4 5) Abs_Set_0_inverse
| subst Abs_Set_0_inject), (simp add: null_option_def bot_option_def)+)+
definition "OclSelect_body :: _ \<Rightarrow> _ \<Rightarrow> _ \<Rightarrow> ('\<AA>, 'a option option) Set
\<equiv> (\<lambda>P x acc. if P x \<doteq> false then acc else acc->including(x) endif)"
lemma OclSelect_including_exec[simp,code_unfold]:
assumes P_cp : "cp P"
shows "OclSelect (X->including(y)) P = OclSelect_body P y (OclSelect (X->excluding(y)) P)"
(is "_ = ?select")
proof -
have P_cp: "\<And>x \<tau>. P x \<tau> = P (\<lambda>_. x \<tau>) \<tau>"
by(insert P_cp, auto simp: cp_def)
have ex_including : "\<And>f X y \<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
(\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X->including(y) \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>) =
(f (P (\<lambda>_. y \<tau>)) \<tau> \<or> (\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>))"
apply(simp add: OclIncluding_def OclValid_def)
apply(subst Abs_Set_0_inverse, simp, (rule disjI2)+)
apply (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
by(simp)
have al_including : "\<And>f X y \<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X->including(y) \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>) =
(f (P (\<lambda>_. y \<tau>)) \<tau> \<and> (\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>))"
apply(simp add: OclIncluding_def OclValid_def)
apply(subst Abs_Set_0_inverse, simp, (rule disjI2)+)
apply (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
by(simp)
have ex_excluding1 : "\<And>f X y \<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> \<not> (f (P (\<lambda>_. y \<tau>)) \<tau>) \<Longrightarrow>
(\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>) =
(\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X->excluding(y) \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>)"
apply(simp add: OclExcluding_def OclValid_def)
apply(subst Abs_Set_0_inverse, simp, (rule disjI2)+)
apply (metis (no_types) Diff_iff OclValid_def Set_inv_lemma)
by(auto)
have al_excluding1 : "\<And>f X y \<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> f (P (\<lambda>_. y \<tau>)) \<tau> \<Longrightarrow>
(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>) =
(\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X->excluding(y) \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x)) \<tau>)"
apply(simp add: OclExcluding_def OclValid_def)
apply(subst Abs_Set_0_inverse, simp, (rule disjI2)+)
apply (metis (no_types) Diff_iff OclValid_def Set_inv_lemma)
by(auto)
have in_including : "\<And>f X y \<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
{x \<in> \<lceil>\<lceil>Rep_Set_0 (X->including(y) \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x) \<tau>)} =
(let s = {x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. f (P (\<lambda>_. x) \<tau>)} in
if f (P (\<lambda>_. y \<tau>) \<tau>) then insert (y \<tau>) s else s)"
apply(simp add: OclIncluding_def OclValid_def)
apply(subst Abs_Set_0_inverse, simp, (rule disjI2)+)
apply (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
by(simp add: Let_def, auto)
let ?OclSet = "\<lambda>S. \<lfloor>\<lfloor>S\<rfloor>\<rfloor> \<in> {X. X = \<bottom> \<or> X = null \<or> (\<forall>x\<in>\<lceil>\<lceil>X\<rceil>\<rceil>. x \<noteq> \<bottom>)}"
have diff_in_Set_0 : "\<And>\<tau>. (\<delta> X) \<tau> = true \<tau> \<Longrightarrow>
?OclSet (\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> - {y \<tau>})"
apply(simp, (rule disjI2)+)
by (metis (mono_tags) Diff_iff OclValid_def Set_inv_lemma)
have ins_in_Set_0 : "\<And>\<tau>. (\<delta> X) \<tau> = true \<tau> \<Longrightarrow> (\<upsilon> y) \<tau> = true \<tau> \<Longrightarrow>
?OclSet (insert (y \<tau>) {x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> \<noteq> false \<tau>})"
apply(simp, (rule disjI2)+)
by (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
have ins_in_Set_0' : "\<And>\<tau>. (\<delta> X) \<tau> = true \<tau> \<Longrightarrow> (\<upsilon> y) \<tau> = true \<tau> \<Longrightarrow>
?OclSet (insert (y \<tau>) {x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. x \<noteq> y \<tau> \<and> P (\<lambda>_. x) \<tau> \<noteq> false \<tau>})"
apply(simp, (rule disjI2)+)
by (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
have ins_in_Set_0'' : "\<And>\<tau>. (\<delta> X) \<tau> = true \<tau> \<Longrightarrow>
?OclSet {x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> \<noteq> false \<tau>}"
apply(simp, (rule disjI2)+)
by (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
have ins_in_Set_0''' : "\<And>\<tau>. (\<delta> X) \<tau> = true \<tau> \<Longrightarrow>
?OclSet {x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. x \<noteq> y \<tau> \<and> P (\<lambda>_. x) \<tau> \<noteq> false \<tau>}"
apply(simp, (rule disjI2)+)
by (metis (hide_lams, no_types) OclValid_def Set_inv_lemma foundation18')
have if_same : "\<And>a b c d \<tau>. \<tau> \<Turnstile> \<delta> a \<Longrightarrow> b \<tau> = d \<tau> \<Longrightarrow> c \<tau> = d \<tau> \<Longrightarrow>
(if a then b else c endif) \<tau> = d \<tau>"
by(simp add: OclIf_def OclValid_def)
have invert_including : "\<And>P y \<tau>. P \<tau> = \<bottom> \<Longrightarrow> P->including(y) \<tau> = \<bottom>"
by (metis (hide_lams, no_types) foundation17 foundation18' OclIncluding_valid_args_valid)
have exclude_defined : "\<And>\<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow>
(\<delta> (\<lambda>_. Abs_Set_0 \<lfloor>\<lfloor>{x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. x \<noteq> y \<tau> \<and> P (\<lambda>_. x) \<tau> \<noteq> false \<tau>}\<rfloor>\<rfloor>)) \<tau> = true \<tau>"
apply(subst defined_def,
simp add: false_def true_def bot_Set_0_def bot_fun_def null_Set_0_def null_fun_def)
by(subst Abs_Set_0_inject[OF ins_in_Set_0'''[simplified false_def]],
(simp add: OclValid_def bot_option_def null_option_def)+)+
have if_eq : "\<And>x A B \<tau>. \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> (if x \<doteq> false then A else B endif) \<triangleq>
(if x \<triangleq> false then A else B endif)"
apply(simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclValid_def)
apply(subst (2) StrongEq_def)
by(subst cp_OclIf, simp add: cp_OclIf[symmetric] true_def)
have OclSelect_body_bot: "\<And>\<tau>. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> P y \<tau> \<noteq> \<bottom> \<Longrightarrow>
(\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> = \<bottom>) \<Longrightarrow> \<bottom> = ?select \<tau>"
apply(drule ex_excluding1[where X2 = X and y2 = y and f2 = "\<lambda>x \<tau>. x \<tau> = \<bottom>"],
(simp add: P_cp[symmetric])+)
apply(subgoal_tac "\<tau> \<Turnstile> (\<bottom> \<triangleq> ?select)", simp add: OclValid_def StrongEq_def true_def bot_fun_def)
apply(simp add: OclSelect_body_def)
apply(subst StrongEq_L_subst3[OF _ if_eq], simp, metis foundation18')
apply(simp add: OclValid_def, subst StrongEq_def, subst true_def, simp)
apply(subgoal_tac "\<exists>x\<in>\<lceil>\<lceil>Rep_Set_0 (X->excluding(y) \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> = \<bottom> \<tau>")
prefer 2
apply (metis OCL_core.bot_fun_def foundation18')
apply(subst if_same[where d5 = "\<bottom>"])
apply (metis defined7 transform1)
apply(simp add: OclSelect_def bot_option_def bot_fun_def)
apply(subst invert_including)
by(simp add: OclSelect_def bot_option_def bot_fun_def)+
have d_and_v_inject : "\<And>\<tau> X y. (\<delta> X and \<upsilon> y) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> X and \<upsilon> y) \<tau> = false \<tau>"
by (metis bool_split defined5 defined6 defined_and_I foundation16 transform1
invalid_def null_fun_def)
have OclSelect_body_bot': "\<And>\<tau>. (\<delta> X and \<upsilon> y) \<tau> \<noteq> true \<tau> \<Longrightarrow> \<bottom> = ?select \<tau>"
apply(drule d_and_v_inject)
apply(simp add: OclSelect_def OclSelect_body_def)
apply(subst cp_OclIf, subst cp_OclIncluding, simp add: false_def true_def)
apply(subst cp_OclIf[symmetric], subst cp_OclIncluding[symmetric])
by (metis (lifting, no_types) OclIf_def foundation18 foundation18' invert_including)
have conj_split2 : "\<And>a b c \<tau>. ((a \<triangleq> false) \<tau> = false \<tau> \<longrightarrow> b) \<and> ((a \<triangleq> false) \<tau> = true \<tau> \<longrightarrow> c) \<Longrightarrow>
(a \<tau> \<noteq> false \<tau> \<longrightarrow> b) \<and> (a \<tau> = false \<tau> \<longrightarrow> c)"
by (metis OclValid_def defined7 foundation14 foundation22 foundation9)
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
have cp_OclSelect_body : "\<And>\<tau>. ?select \<tau> = OclSelect_body P y (\<lambda>_. OclSelect X->excluding(y) P \<tau>) \<tau>"
apply(simp add: OclSelect_body_def)
by(subst (1 2) cp_OclIf, subst (1 2) cp_OclIncluding, blast)
have OclSelect_body_strict1 : "OclSelect_body P y invalid = invalid"
by(rule ext, simp add: OclSelect_body_def OclIf_def)
have bool_invalid: "\<And>(x::('\<AA>)Boolean) y \<tau>. \<not> (\<tau> \<Turnstile> \<upsilon> x) \<Longrightarrow> \<tau> \<Turnstile> (x \<doteq> y) \<triangleq> invalid"
by(simp add: StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n OclValid_def StrongEq_def true_def)
have conj_comm : "\<And>p q r. (p \<and> q \<and> r) = ((p \<and> q) \<and> r)"
by blast
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(subst OclSelect_def)
apply(case_tac "(\<delta> X->including(y)) \<tau> = true \<tau>", simp)
apply(( subst ex_including
| subst in_including),
metis OclValid_def foundation5,
metis OclValid_def foundation5)+
apply(simp add: Let_def)
apply(subst (4) false_def, subst (4) bot_fun_def, simp add: bot_option_def P_cp[symmetric])
(* *)
apply(case_tac "\<not> (\<tau> \<Turnstile> (\<upsilon> P y))")
apply(subgoal_tac "P y \<tau> \<noteq> false \<tau>")
prefer 2
apply (metis (hide_lams, no_types) foundation1 foundation18' valid4)
apply(simp)
(* *)
apply(subst conj_comm, rule conjI)
apply(drule_tac y11 = false in bool_invalid)
apply(simp only: OclSelect_body_def,
metis OclIf_def OclValid_def defined_def foundation2 foundation22
bot_fun_def invalid_def)
(* *)
apply(drule foundation5[simplified OclValid_def],
subst al_including[simplified OclValid_def],
simp,
simp)
apply(simp add: P_cp[symmetric])
apply (metis OCL_core.bot_fun_def foundation18')
apply(simp add: foundation18' bot_fun_def OclSelect_body_bot OclSelect_body_bot')
(* *)
apply(subst (1 2) al_including, metis OclValid_def foundation5, metis OclValid_def foundation5)
apply(simp add: P_cp[symmetric], subst (4) false_def, subst (4) bot_option_def, simp)
apply(simp add: OclSelect_def OclSelect_body_def StrictRefEq\<^sub>B\<^sub>o\<^sub>o\<^sub>l\<^sub>e\<^sub>a\<^sub>n)
apply(subst (1 2 3 4) cp_OclIf,
subst (1 2 3 4) foundation18'[THEN iffD2, simplified OclValid_def],
simp,
simp only: cp_OclIf[symmetric] refl if_True)
apply(subst (1 2) cp_OclIncluding, rule conj_split2, simp add: cp_OclIf[symmetric])
apply(subst (1 2 3 4 5 6 7 8) cp_OclIf[symmetric], simp)
apply(( subst ex_excluding1[symmetric]
| subst al_excluding1[symmetric] ),
metis OclValid_def foundation5,
metis OclValid_def foundation5,
simp add: P_cp[symmetric] bot_fun_def)+
apply(simp add: bot_fun_def)
apply(subst (1 2) invert_including, simp+)
(* *)
apply(rule conjI, blast)
apply(intro impI conjI)
apply(subst OclExcluding_def)
apply(drule foundation5[simplified OclValid_def], simp)
apply(subst Abs_Set_0_inverse[OF diff_in_Set_0], fast)
apply(simp add: OclIncluding_def cp_valid[symmetric])
apply((erule conjE)+, frule exclude_defined[simplified OclValid_def], simp)
apply(subst Abs_Set_0_inverse[OF ins_in_Set_0'''], simp+)
apply(subst Abs_Set_0_inject[OF ins_in_Set_0 ins_in_Set_0'], fast+)
(* *)
apply(simp add: OclExcluding_def)
apply(simp add: foundation10[simplified OclValid_def])
apply(subst Abs_Set_0_inverse[OF diff_in_Set_0], simp+)
apply(subst Abs_Set_0_inject[OF ins_in_Set_0'' ins_in_Set_0'''], simp+)
apply(subgoal_tac "P (\<lambda>_. y \<tau>) \<tau> = false \<tau>")
prefer 2
apply(subst P_cp[symmetric], metis OclValid_def foundation22)
apply(rule equalityI)
apply(rule subsetI, simp, metis)
apply(rule subsetI, simp)
(* *)
apply(drule defined_inject_true)
apply(subgoal_tac "\<not> (\<tau> \<Turnstile> \<delta> X) \<or> \<not> (\<tau> \<Turnstile> \<upsilon> y)")
prefer 2
apply (metis bot_fun_def OclValid_def foundation18' OclIncluding_defined_args_valid valid_def)
apply(subst cp_OclSelect_body, subst cp_OclSelect, subst OclExcluding_def)
apply(simp add: OclValid_def false_def true_def, rule conjI, blast)
apply(simp add: OclSelect_invalid[simplified invalid_def]
OclSelect_body_strict1[simplified invalid_def])
done
qed
subsection{* OclReject *}
lemma OclReject_mtSet_exec[simp,code_unfold]: "OclReject mtSet P = mtSet"
by(simp add: OclReject_def)
lemma OclReject_including_exec[simp,code_unfold]:
assumes P_cp : "cp P"
shows "OclReject (X->including(y)) P = OclSelect_body (not o P) y (OclReject (X->excluding(y)) P)"
apply(simp add: OclReject_def comp_def, rule OclSelect_including_exec)
by (metis assms cp_intro''(5))
section{* Execution on Set's Operators (higher composition) *}
subsection{* OclIncludes *}
lemma OclIncludes_any[simp,code_unfold]:
"X->includes(X->any()) = (if \<delta> X then
if \<delta> (X->size()) then not(X->isEmpty())
else X->includes(null) endif
else invalid endif)"
proof -
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
have valid_inject_true : "\<And>\<tau> P. (\<upsilon> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<upsilon> P) \<tau> = false \<tau>"
apply(simp add: valid_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac "P \<tau> = \<bottom>", simp_all add: true_def)
have notempty': "\<And>\<tau> X. \<tau> \<Turnstile> \<delta> X \<Longrightarrow> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> not (X->isEmpty()) \<tau> \<noteq> true \<tau> \<Longrightarrow>
X \<tau> = Set{} \<tau>"
apply(case_tac "X \<tau>", rename_tac X', simp add: mtSet_def Abs_Set_0_inject)
apply(erule disjE, metis (hide_lams, no_types) bot_Set_0_def bot_option_def foundation17)
apply(erule disjE, metis (hide_lams, no_types) bot_option_def
null_Set_0_def null_option_def foundation17)
apply(case_tac X', simp, metis (hide_lams, no_types) bot_Set_0_def foundation17)
apply(rename_tac X'', case_tac X'', simp)
apply (metis (hide_lams, no_types) foundation17 null_Set_0_def)
apply(simp add: OclIsEmpty_def OclSize_def)
apply(subst (asm) cp_OclNot, subst (asm) cp_OclOr, subst (asm) cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r,
subst (asm) cp_OclAnd, subst (asm) cp_OclNot)
apply(simp only: OclValid_def foundation20[simplified OclValid_def]
cp_OclNot[symmetric] cp_OclAnd[symmetric] cp_OclOr[symmetric])
apply(simp add: Abs_Set_0_inverse split: split_if_asm)
by(simp add: true_def OclInt0_def OclNot_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def)
have B: "\<And>X \<tau>. \<not> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> (\<delta> (X->size())) \<tau> = false \<tau>"
apply(subst cp_defined)
apply(simp add: OclSize_def)
by (metis OCL_core.bot_fun_def defined_def)
show ?thesis
apply(rule ext, rename_tac \<tau>, simp only: OclIncludes_def OclANY_def)
apply(subst cp_OclIf, subst (2) cp_valid)
apply(case_tac "(\<delta> X) \<tau> = true \<tau>",
simp only: foundation20[simplified OclValid_def] cp_OclIf[symmetric], simp,
subst (1 2) cp_OclAnd, simp add: cp_OclAnd[symmetric])
apply(case_tac "finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>")
apply(frule size_defined'[THEN iffD2, simplified OclValid_def], assumption)
apply(subst (1 2 3 4) cp_OclIf, simp)
apply(subst (1 2 3 4) cp_OclIf[symmetric], simp)
apply(case_tac "(X->notEmpty()) \<tau> = true \<tau>", simp)
apply(frule OclNotEmpty_has_elt[simplified OclValid_def], simp)
apply(simp add: OclNotEmpty_def cp_OclIf[symmetric])
apply(subgoal_tac "(SOME y. y \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>) \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>", simp add: true_def)
apply(metis OclValid_def Set_inv_lemma foundation18' null_option_def true_def)
apply(rule someI_ex, simp)
apply(simp add: OclNotEmpty_def cp_valid[symmetric])
apply(subgoal_tac "\<not> (null \<tau> \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>)", simp)
apply(subst OclIsEmpty_def, simp add: OclSize_def)
apply(subst cp_OclNot, subst cp_OclOr, subst cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r, subst cp_OclAnd,
subst cp_OclNot, simp add: OclValid_def foundation20[simplified OclValid_def]
cp_OclNot[symmetric] cp_OclAnd[symmetric] cp_OclOr[symmetric])
apply(frule notempty'[simplified OclValid_def],
(simp add: mtSet_def Abs_Set_0_inverse OclInt0_def false_def)+)
apply(drule notempty'[simplified OclValid_def], simp, simp)
apply (metis (hide_lams, no_types) empty_iff mtSet_rep_set)
(* *)
apply(frule B)
apply(subst (1 2 3 4) cp_OclIf, simp)
apply(subst (1 2 3 4) cp_OclIf[symmetric], simp)
apply(case_tac "(X->notEmpty()) \<tau> = true \<tau>", simp)
apply(frule OclNotEmpty_has_elt[simplified OclValid_def], simp)
apply(simp add: OclNotEmpty_def OclIsEmpty_def)
apply(subgoal_tac "X->size() \<tau> = \<bottom>")
prefer 2
apply (metis (hide_lams, no_types) OclSize_def)
apply(subst (asm) cp_OclNot, subst (asm) cp_OclOr, subst (asm) cp_StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r,
subst (asm) cp_OclAnd, subst (asm) cp_OclNot)
apply(simp add: OclValid_def foundation20[simplified OclValid_def]
cp_OclNot[symmetric] cp_OclAnd[symmetric] cp_OclOr[symmetric])
apply(simp add: OclNot_def StrongEq_def StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r valid_def false_def true_def
bot_option_def bot_fun_def invalid_def)
apply (metis OCL_core.bot_fun_def null_fun_def null_is_valid valid_def)
by(drule defined_inject_true,
simp add: false_def true_def OclIf_false[simplified false_def] invalid_def)
qed
subsection{* OclSize *}
lemma [simp,code_unfold]: "\<delta> (Set{} ->size()) = true"
by simp
lemma [simp,code_unfold]: "\<delta> ((X ->including(x)) ->size()) = (\<delta>(X->size()) and \<upsilon>(x))"
proof -
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
have valid_inject_true : "\<And>\<tau> P. (\<upsilon> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<upsilon> P) \<tau> = false \<tau>"
apply(simp add: valid_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac "P \<tau> = \<bottom>", simp_all add: true_def)
have OclIncluding_finite_rep_set : "\<And>\<tau>. (\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<Longrightarrow>
finite \<lceil>\<lceil>Rep_Set_0 (X->including(x) \<tau>)\<rceil>\<rceil> = finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
apply(rule OclIncluding_finite_rep_set)
by(metis OclValid_def foundation5)+
have card_including_exec : "\<And>\<tau>. (\<delta> (\<lambda>_. \<lfloor>\<lfloor>int (card \<lceil>\<lceil>Rep_Set_0 (X->including(x) \<tau>)\<rceil>\<rceil>)\<rfloor>\<rfloor>)) \<tau> =
(\<delta> (\<lambda>_. \<lfloor>\<lfloor>int (card \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>)\<rfloor>\<rfloor>)) \<tau>"
by(simp add: defined_def bot_fun_def bot_option_def null_fun_def null_option_def)
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(case_tac "(\<delta> (X->including(x)->size())) \<tau> = true \<tau>", simp del: OclSize_including_exec)
apply(subst cp_OclAnd, subst cp_defined, simp only: cp_defined[of "X->including(x)->size()"],
simp add: OclSize_def)
apply(case_tac "((\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<and> finite \<lceil>\<lceil>Rep_Set_0 (X->including(x) \<tau>)\<rceil>\<rceil>)", simp)
apply(erule conjE,
simp add: OclIncluding_finite_rep_set[simplified OclValid_def] card_including_exec
cp_OclAnd[of "\<delta> X" "\<upsilon> x"]
cp_OclAnd[of "true", THEN sym])
apply(subgoal_tac "(\<delta> X) \<tau> = true \<tau> \<and> (\<upsilon> x) \<tau> = true \<tau>", simp)
apply(rule foundation5[of _ "\<delta> X" "\<upsilon> x", simplified OclValid_def],
simp only: cp_OclAnd[THEN sym])
apply(simp, simp add: defined_def true_def false_def bot_fun_def bot_option_def)
apply(drule defined_inject_true[of "X->including(x)->size()"],
simp del: OclSize_including_exec,
simp only: cp_OclAnd[of "\<delta> (X->size())" "\<upsilon> x"],
simp add: cp_defined[of "X->including(x)->size()" ] cp_defined[of "X->size()" ]
del: OclSize_including_exec,
simp add: OclSize_def card_including_exec
del: OclSize_including_exec)
apply(case_tac "(\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<and> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>",
simp add: OclIncluding_finite_rep_set[simplified OclValid_def] card_including_exec,
simp only: cp_OclAnd[THEN sym],
simp add: defined_def bot_fun_def)
apply(split split_if_asm)
apply(simp add: OclIncluding_finite_rep_set[simplified OclValid_def] card_including_exec)+
apply(simp only: cp_OclAnd[THEN sym], simp, rule impI, erule conjE)
apply(case_tac "(\<upsilon> x) \<tau> = true \<tau>", simp add: cp_OclAnd[of "\<delta> X" "\<upsilon> x"])
by(drule valid_inject_true[of "x"], simp add: cp_OclAnd[of _ "\<upsilon> x"])
qed
lemma [simp,code_unfold]: "\<delta> ((X ->excluding(x)) ->size()) = (\<delta>(X->size()) and \<upsilon>(x))"
proof -
have defined_inject_true : "\<And>\<tau> P. (\<delta> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<delta> P) \<tau> = false \<tau>"
apply(simp add: defined_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac " P \<tau> = \<bottom> \<or> P \<tau> = null", simp_all add: true_def)
have valid_inject_true : "\<And>\<tau> P. (\<upsilon> P) \<tau> \<noteq> true \<tau> \<Longrightarrow> (\<upsilon> P) \<tau> = false \<tau>"
apply(simp add: valid_def true_def false_def bot_fun_def bot_option_def
null_fun_def null_option_def)
by (case_tac "P \<tau> = \<bottom>", simp_all add: true_def)
have OclExcluding_finite_rep_set : "\<And>\<tau>. (\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<Longrightarrow>
finite \<lceil>\<lceil>Rep_Set_0 (X->excluding(x) \<tau>)\<rceil>\<rceil> =
finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
apply(rule OclExcluding_finite_rep_set)
by(metis OclValid_def foundation5)+
have card_excluding_exec : "\<And>\<tau>. (\<delta> (\<lambda>_. \<lfloor>\<lfloor>int (card \<lceil>\<lceil>Rep_Set_0 (X->excluding(x) \<tau>)\<rceil>\<rceil>)\<rfloor>\<rfloor>)) \<tau> =
(\<delta> (\<lambda>_. \<lfloor>\<lfloor>int (card \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>)\<rfloor>\<rfloor>)) \<tau>"
by(simp add: defined_def bot_fun_def bot_option_def null_fun_def null_option_def)
show ?thesis
apply(rule ext, rename_tac \<tau>)
apply(case_tac "(\<delta> (X->excluding(x)->size())) \<tau> = true \<tau>", simp)
apply(subst cp_OclAnd, subst cp_defined, simp only: cp_defined[of "X->excluding(x)->size()"],
simp add: OclSize_def)
apply(case_tac "((\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<and> finite \<lceil>\<lceil>Rep_Set_0 (X->excluding(x) \<tau>)\<rceil>\<rceil>)", simp)
apply(erule conjE,
simp add: OclExcluding_finite_rep_set[simplified OclValid_def] card_excluding_exec
cp_OclAnd[of "\<delta> X" "\<upsilon> x"]
cp_OclAnd[of "true", THEN sym])
apply(subgoal_tac "(\<delta> X) \<tau> = true \<tau> \<and> (\<upsilon> x) \<tau> = true \<tau>", simp)
apply(rule foundation5[of _ "\<delta> X" "\<upsilon> x", simplified OclValid_def],
simp only: cp_OclAnd[THEN sym])
apply(simp, simp add: defined_def true_def false_def bot_fun_def bot_option_def)
apply(drule defined_inject_true[of "X->excluding(x)->size()"],
simp,
simp only: cp_OclAnd[of "\<delta> (X->size())" "\<upsilon> x"],
simp add: cp_defined[of "X->excluding(x)->size()" ] cp_defined[of "X->size()" ],
simp add: OclSize_def card_excluding_exec)
apply(case_tac "(\<delta> X and \<upsilon> x) \<tau> = true \<tau> \<and> finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>",
simp add: OclExcluding_finite_rep_set[simplified OclValid_def] card_excluding_exec,
simp only: cp_OclAnd[THEN sym],
simp add: defined_def bot_fun_def)
apply(split split_if_asm)
apply(simp add: OclExcluding_finite_rep_set[simplified OclValid_def] card_excluding_exec)+
apply(simp only: cp_OclAnd[THEN sym], simp, rule impI, erule conjE)
apply(case_tac "(\<upsilon> x) \<tau> = true \<tau>", simp add: cp_OclAnd[of "\<delta> X" "\<upsilon> x"])
by(drule valid_inject_true[of "x"], simp add: cp_OclAnd[of _ "\<upsilon> x"])
qed
lemma [simp]:
assumes X_finite: "\<And>\<tau>. finite \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>"
shows "\<delta> ((X ->including(x)) ->size()) = (\<delta>(X) and \<upsilon>(x))"
by(simp add: size_defined[OF X_finite] del: OclSize_including_exec)
subsection{* OclForall *}
lemma OclForall_rep_set_false:
assumes "\<tau> \<Turnstile> \<delta> X"
shows "(OclForall X P \<tau> = false \<tau>) = (\<exists>x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>\<tau>. x) \<tau> = false \<tau>)"
by(insert assms, simp add: OclForall_def OclValid_def false_def true_def
bot_fun_def bot_option_def null_fun_def null_option_def)
lemma OclForall_rep_set_true:
assumes "\<tau> \<Turnstile> \<delta> X"
shows "(\<tau> \<Turnstile> OclForall X P) = (\<forall>x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. \<tau> \<Turnstile> P (\<lambda>\<tau>. x))"
proof -
have destruct_ocl : "\<And>x \<tau>. x = true \<tau> \<or> x = false \<tau> \<or> x = null \<tau> \<or> x = \<bottom> \<tau>"
apply(case_tac x) apply (metis bot_Boolean_def)
apply(rename_tac x', case_tac x') apply (metis null_Boolean_def)
apply(rename_tac x'', case_tac x'') apply (metis (full_types) true_def)
by (metis (full_types) false_def)
have disjE4 : "\<And> P1 P2 P3 P4 R.
(P1 \<or> P2 \<or> P3 \<or> P4) \<Longrightarrow> (P1 \<Longrightarrow> R) \<Longrightarrow> (P2 \<Longrightarrow> R) \<Longrightarrow> (P3 \<Longrightarrow> R) \<Longrightarrow> (P4 \<Longrightarrow> R) \<Longrightarrow> R"
by metis
show ?thesis
apply(simp add: OclForall_def OclValid_def true_def false_def
bot_fun_def bot_option_def null_fun_def null_option_def split: split_if_asm)
apply(rule conjI, rule impI) apply (metis OCL_core.drop.simps option.distinct(1))
apply(rule impI, rule conjI, rule impI) apply (metis option.distinct(1))
apply(rule impI, rule conjI, rule impI) apply (metis OCL_core.drop.simps)
apply(intro conjI impI ballI)
proof - fix x show "\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> \<noteq> \<lfloor>None\<rfloor> \<Longrightarrow>
\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. \<exists>y. P (\<lambda>_. x) \<tau> = \<lfloor>y\<rfloor> \<Longrightarrow>
\<forall>x\<in>\<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil>. P (\<lambda>_. x) \<tau> \<noteq> \<lfloor>\<lfloor>False\<rfloor>\<rfloor> \<Longrightarrow>
x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> P (\<lambda>\<tau>. x) \<tau> = \<lfloor>\<lfloor>True\<rfloor>\<rfloor>"
apply(erule_tac x = x in ballE)+
by(rule disjE4[OF destruct_ocl[of "P (\<lambda>\<tau>. x) \<tau>"]],
(simp add: true_def false_def null_fun_def null_option_def bot_fun_def bot_option_def)+)
apply_end(simp add: assms[simplified OclValid_def true_def])+
qed
qed
lemma OclForall_includes :
assumes x_def : "\<tau> \<Turnstile> \<delta> x"
and y_def : "\<tau> \<Turnstile> \<delta> y"
shows "(\<tau> \<Turnstile> OclForall x (OclIncludes y)) = (\<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil> \<subseteq> \<lceil>\<lceil>Rep_Set_0 (y \<tau>)\<rceil>\<rceil>)"
apply(simp add: OclForall_rep_set_true[OF x_def],
simp add: OclIncludes_def OclValid_def y_def[simplified OclValid_def])
apply(insert Set_inv_lemma[OF x_def], simp add: valid_def false_def true_def bot_fun_def)
by(rule iffI, simp add: subsetI, simp add: subsetD)
lemma OclForall_not_includes :
assumes x_def : "\<tau> \<Turnstile> \<delta> x"
and y_def : "\<tau> \<Turnstile> \<delta> y"
shows "(OclForall x (OclIncludes y) \<tau> = false \<tau>) = (\<not> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil> \<subseteq> \<lceil>\<lceil>Rep_Set_0 (y \<tau>)\<rceil>\<rceil>)"
apply(simp add: OclForall_rep_set_false[OF x_def],
simp add: OclIncludes_def OclValid_def y_def[simplified OclValid_def])
apply(insert Set_inv_lemma[OF x_def], simp add: valid_def false_def true_def bot_fun_def)
by(rule iffI, metis set_rev_mp, metis subsetI)
lemma OclForall_iterate:
assumes S_finite: "finite \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil>"
shows "S->forAll(x | P x) \<tau> = (S->iterate(x; acc = true | acc and P x)) \<tau>"
proof -
have and_comm : "comp_fun_commute (\<lambda>x acc. acc and P x)"
apply(simp add: comp_fun_commute_def comp_def)
by (metis OclAnd_assoc OclAnd_commute)
have ex_insert : "\<And>x F P. (\<exists>x\<in>insert x F. P x) = (P x \<or> (\<exists>x\<in>F. P x))"
by (metis insert_iff)
have destruct_ocl : "\<And>x \<tau>. x = true \<tau> \<or> x = false \<tau> \<or> x = null \<tau> \<or> x = \<bottom> \<tau>"
apply(case_tac x) apply (metis bot_Boolean_def)
apply(rename_tac x', case_tac x') apply (metis null_Boolean_def)
apply(rename_tac x'', case_tac x'') apply (metis (full_types) true_def)
by (metis (full_types) false_def)
have disjE4 : "\<And> P1 P2 P3 P4 R.
(P1 \<or> P2 \<or> P3 \<or> P4) \<Longrightarrow> (P1 \<Longrightarrow> R) \<Longrightarrow> (P2 \<Longrightarrow> R) \<Longrightarrow> (P3 \<Longrightarrow> R) \<Longrightarrow> (P4 \<Longrightarrow> R) \<Longrightarrow> R"
by metis
let ?P_eq = "\<lambda>x b \<tau>. P (\<lambda>_. x) \<tau> = b \<tau>"
let ?P = "\<lambda>set b \<tau>. \<exists>x\<in>set. ?P_eq x b \<tau>"
let ?if = "\<lambda>f b c. if f b \<tau> then b \<tau> else c"
let ?forall = "\<lambda>P. ?if P false (?if P \<bottom> (?if P null (true \<tau>)))"
show ?thesis
apply(simp only: OclForall_def OclIterate_def)
apply(case_tac "\<tau> \<Turnstile> \<delta> S", simp only: OclValid_def)
apply(subgoal_tac "let set = \<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> in
?forall (?P set) =
Finite_Set.fold (\<lambda>x acc. acc and P x) true ((\<lambda>a \<tau>. a) ` set) \<tau>",
simp only: Let_def, simp add: S_finite, simp only: Let_def)
apply(case_tac "\<lceil>\<lceil>Rep_Set_0 (S \<tau>)\<rceil>\<rceil> = {}", simp)
apply(rule finite_ne_induct[OF S_finite], simp)
(* *)
apply(simp only: image_insert)
apply(subst comp_fun_commute.fold_insert[OF and_comm], simp)
apply (metis empty_iff image_empty)
apply(simp)
apply (metis OCL_core.bot_fun_def destruct_ocl null_fun_def)
(* *)
apply(simp only: image_insert)
apply(subst comp_fun_commute.fold_insert[OF and_comm], simp)
apply (metis (mono_tags) imageE)
(* *)
apply(subst cp_OclAnd) apply(drule sym, drule sym, simp only:, drule sym, simp only:)
apply(simp only: ex_insert)
apply(subgoal_tac "\<exists>x. x\<in>F") prefer 2
apply(metis all_not_in_conv)
proof - fix x F show "(\<delta> S) \<tau> = true \<tau> \<Longrightarrow> \<exists>x. x \<in> F \<Longrightarrow>
?forall (\<lambda>b \<tau>. ?P_eq x b \<tau> \<or> ?P F b \<tau>) =
((\<lambda>_. ?forall (?P F)) and (\<lambda>_. P (\<lambda>\<tau>. x) \<tau>)) \<tau>"
apply(rule disjE4[OF destruct_ocl[where x1 = "P (\<lambda>\<tau>. x) \<tau>"]])
apply(simp_all add: true_def false_def OclAnd_def
null_fun_def null_option_def bot_fun_def bot_option_def)
by (metis (lifting) option.distinct(1))+
apply_end(simp add: OclValid_def)+
qed
qed
lemma OclForall_cong:
assumes "\<And>x. x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> \<tau> \<Turnstile> P (\<lambda>\<tau>. x) \<Longrightarrow> \<tau> \<Turnstile> Q (\<lambda>\<tau>. x)"
assumes P: "\<tau> \<Turnstile> OclForall X P"
shows "\<tau> \<Turnstile> OclForall X Q"
proof -
have def_X: "\<tau> \<Turnstile> \<delta> X"
by(insert P, simp add: OclForall_def OclValid_def bot_option_def true_def split: split_if_asm)
show ?thesis
apply(insert P)
apply(subst (asm) OclForall_rep_set_true[OF def_X], subst OclForall_rep_set_true[OF def_X])
by (simp add: assms)
qed
lemma OclForall_cong':
assumes "\<And>x. x \<in> \<lceil>\<lceil>Rep_Set_0 (X \<tau>)\<rceil>\<rceil> \<Longrightarrow> \<tau> \<Turnstile> P (\<lambda>\<tau>. x) \<Longrightarrow> \<tau> \<Turnstile> Q (\<lambda>\<tau>. x) \<Longrightarrow> \<tau> \<Turnstile> R (\<lambda>\<tau>. x)"
assumes P: "\<tau> \<Turnstile> OclForall X P"
assumes Q: "\<tau> \<Turnstile> OclForall X Q"
shows "\<tau> \<Turnstile> OclForall X R"
proof -
have def_X: "\<tau> \<Turnstile> \<delta> X"
by(insert P, simp add: OclForall_def OclValid_def bot_option_def true_def split: split_if_asm)
show ?thesis
apply(insert P Q)
apply(subst (asm) (1 2) OclForall_rep_set_true[OF def_X], subst OclForall_rep_set_true[OF def_X])
by (simp add: assms)
qed
subsection{* Strict Equality *}
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_defined :
assumes x_def: "\<tau> \<Turnstile> \<delta> x"
assumes y_def: "\<tau> \<Turnstile> \<delta> y"
shows "((x::('\<AA>,'\<alpha>::null)Set) \<doteq> y) \<tau> =
(x->forAll(z| y->includes(z)) and (y->forAll(z| x->includes(z)))) \<tau>"
proof -
have rep_set_inj : "\<And>\<tau>. (\<delta> x) \<tau> = true \<tau> \<Longrightarrow>
(\<delta> y) \<tau> = true \<tau> \<Longrightarrow>
x \<tau> \<noteq> y \<tau> \<Longrightarrow>
\<lceil>\<lceil>Rep_Set_0 (y \<tau>)\<rceil>\<rceil> \<noteq> \<lceil>\<lceil>Rep_Set_0 (x \<tau>)\<rceil>\<rceil>"
apply(simp add: defined_def)
apply(split split_if_asm, simp add: false_def true_def)+
apply(simp add: null_fun_def null_Set_0_def bot_fun_def bot_Set_0_def)
apply(case_tac "x \<tau>", rename_tac x')
apply(case_tac x', simp_all, rename_tac x'')
apply(case_tac x'', simp_all)
apply(case_tac "y \<tau>", rename_tac y')
apply(case_tac y', simp_all, rename_tac y'')
apply(case_tac y'', simp_all)
apply(simp add: Abs_Set_0_inverse)
by(blast)
show ?thesis
apply(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t StrongEq_def
foundation20[OF x_def, simplified OclValid_def]
foundation20[OF y_def, simplified OclValid_def])
apply(subgoal_tac "\<lfloor>\<lfloor>x \<tau> = y \<tau>\<rfloor>\<rfloor> = true \<tau> \<or> \<lfloor>\<lfloor>x \<tau> = y \<tau>\<rfloor>\<rfloor> = false \<tau>")
prefer 2
apply(simp add: false_def true_def)
(* *)
apply(erule disjE)
apply(simp add: true_def)
apply(subgoal_tac "(\<tau> \<Turnstile> OclForall x (OclIncludes y)) \<and> (\<tau> \<Turnstile> OclForall y (OclIncludes x))")
apply(subst cp_OclAnd, simp add: true_def OclValid_def)
apply(simp add: OclForall_includes[OF x_def y_def]
OclForall_includes[OF y_def x_def])
(* *)
apply(simp)
apply(subgoal_tac "OclForall x (OclIncludes y) \<tau> = false \<tau> \<or>
OclForall y (OclIncludes x) \<tau> = false \<tau>")
apply(subst cp_OclAnd, metis OclAnd_false1 OclAnd_false2 cp_OclAnd)
apply(simp only: OclForall_not_includes[OF x_def y_def, simplified OclValid_def]
OclForall_not_includes[OF y_def x_def, simplified OclValid_def],
simp add: false_def)
by (metis OclValid_def rep_set_inj subset_antisym x_def y_def)
qed
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_exec[simp,code_unfold] :
"((x::('\<AA>,'\<alpha>::null)Set) \<doteq> y) =
(if \<delta> x then (if \<delta> y
then ((x->forAll(z| y->includes(z)) and (y->forAll(z| x->includes(z)))))
else if \<upsilon> y
then false (* x'->includes = null *)
else invalid
endif
endif)
else if \<upsilon> x (* null = ??? *)
then if \<upsilon> y then not(\<delta> y) else invalid endif
else invalid
endif
endif)"
proof -
have defined_inject_true : "\<And>\<tau> P. (\<not> (\<tau> \<Turnstile> \<delta> P)) = ((\<delta> P) \<tau> = false \<tau>)"
by (metis bot_fun_def OclValid_def defined_def foundation16 null_fun_def)
have valid_inject_true : "\<And>\<tau> P. (\<not> (\<tau> \<Turnstile> \<upsilon> P)) = ((\<upsilon> P) \<tau> = false \<tau>)"
by (metis bot_fun_def OclIf_true' OclIncludes_charn0 OclIncludes_charn0' OclValid_def valid_def
foundation6 foundation9)
show ?thesis
apply(rule ext, rename_tac \<tau>)
(* *)
apply(simp add: OclIf_def
defined_inject_true[simplified OclValid_def]
valid_inject_true[simplified OclValid_def],
subst false_def, subst true_def, simp)
apply(subst (1 2) cp_OclNot, simp, simp add: cp_OclNot[symmetric])
apply(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t_defined[simplified OclValid_def])
by(simp add: StrictRefEq\<^sub>S\<^sub>e\<^sub>t StrongEq_def false_def true_def valid_def defined_def)
qed
lemma StrictRefEq\<^sub>S\<^sub>e\<^sub>t_L_subst1 : "cp P \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> P x \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> P y \<Longrightarrow>
\<tau> \<Turnstile> (x::('\<AA>,'\<alpha>::null)Set) \<doteq> y \<Longrightarrow> \<tau> \<Turnstile> (P x ::('\<AA>,'\<alpha>::null)Set) \<doteq> P y"
apply(simp only: StrictRefEq\<^sub>S\<^sub>e\<^sub>t OclValid_def)
apply(split split_if_asm)
apply(simp add: StrongEq_L_subst1[simplified OclValid_def])
by (simp add: invalid_def bot_option_def true_def)
lemma OclIncluding_cong' :
shows "\<tau> \<Turnstile> \<delta> s \<Longrightarrow> \<tau> \<Turnstile> \<delta> t \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow>
\<tau> \<Turnstile> ((s::('\<AA>,'a::null)Set) \<doteq> t) \<Longrightarrow> \<tau> \<Turnstile> (s->including(x) \<doteq> (t->including(x)))"
proof -
have cp: "cp (\<lambda>s. (s->including(x)))"
apply(simp add: cp_def, subst cp_OclIncluding)
by (rule_tac x = "(\<lambda>xab ab. ((\<lambda>_. xab)->including(\<lambda>_. x ab)) ab)" in exI, simp)
show "\<tau> \<Turnstile> \<delta> s \<Longrightarrow> \<tau> \<Turnstile> \<delta> t \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> x \<Longrightarrow> \<tau> \<Turnstile> (s \<doteq> t) \<Longrightarrow> ?thesis"
apply(rule_tac P = "\<lambda>s. (s->including(x))" in StrictRefEq\<^sub>S\<^sub>e\<^sub>t_L_subst1)
apply(rule cp)
apply(simp add: foundation20) apply(simp add: foundation20)
apply (simp add: foundation10 foundation6)+
done
qed
lemma OclIncluding_cong : "\<And>(s::('\<AA>,'a::null)Set) t x y \<tau>. \<tau> \<Turnstile> \<delta> t \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> y \<Longrightarrow>
\<tau> \<Turnstile> s \<doteq> t \<Longrightarrow> x = y \<Longrightarrow> \<tau> \<Turnstile> s->including(x) \<doteq> (t->including(y))"
apply(simp only:)
apply(rule OclIncluding_cong', simp_all only:)
by(auto simp: OclValid_def OclIf_def invalid_def bot_option_def OclNot_def split : split_if_asm)
lemma const_StrictRefEq\<^sub>S\<^sub>e\<^sub>t_including : "const a \<Longrightarrow> const S \<Longrightarrow> const X \<Longrightarrow>
const (X \<doteq> S->including(a))"
apply(rule const_StrictRefEq\<^sub>S\<^sub>e\<^sub>t, assumption)
by(rule const_OclIncluding)
section{* Test Statements *}
lemma syntax_test: "Set{\<two>,\<one>} = (Set{}->including(\<one>)->including(\<two>))"
by (rule refl)
text{* Here is an example of a nested collection. Note that we have
to use the abstract null (since we did not (yet) define a concrete
constant @{term null} for the non-existing Sets) :*}
lemma semantic_test2:
assumes H:"(Set{\<two>} \<doteq> null) = (false::('\<AA>)Boolean)"
shows "(\<tau>::('\<AA>)st) \<Turnstile> (Set{Set{\<two>},null}->includes(null))"
by(simp add: OclIncludes_execute\<^sub>S\<^sub>e\<^sub>t H)
(* legacy---still better names ?
lemmas defined_charn = foundation16
lemmas definedD = foundation17
lemmas valid_charn =
lemmas validD = foundation19
lemmas valid_implies_defined = foundation20
end legacy *)
lemma short_cut'[simp,code_unfold]: "(\<eight> \<doteq> \<six>) = false"
apply(rule ext)
apply(simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def OclInt8_def OclInt6_def
true_def false_def invalid_def bot_option_def)
done
lemma short_cut''[simp,code_unfold]: "(\<two> \<doteq> \<one>) = false"
apply(rule ext)
apply(simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def OclInt2_def OclInt1_def
true_def false_def invalid_def bot_option_def)
done
lemma short_cut'''[simp,code_unfold]: "(\<one> \<doteq> \<two>) = false"
apply(rule ext)
apply(simp add: StrictRefEq\<^sub>I\<^sub>n\<^sub>t\<^sub>e\<^sub>g\<^sub>e\<^sub>r StrongEq_def OclInt2_def OclInt1_def
true_def false_def invalid_def bot_option_def)
done
text{* Elementary computations on Sets.*}
declare OclSelect_body_def [simp]
value "\<not> (\<tau> \<Turnstile> \<upsilon>(invalid::('\<AA>,'\<alpha>::null) Set))"
value "\<tau> \<Turnstile> \<upsilon>(null::('\<AA>,'\<alpha>::null) Set)"
value "\<not> (\<tau> \<Turnstile> \<delta>(null::('\<AA>,'\<alpha>::null) Set))"
value "\<tau> \<Turnstile> \<upsilon>(Set{})"
value "\<tau> \<Turnstile> \<upsilon>(Set{Set{\<two>},null})"
value "\<tau> \<Turnstile> \<delta>(Set{Set{\<two>},null})"
value "\<tau> \<Turnstile> (Set{\<two>,\<one>}->includes(\<one>))"
value "\<not> (\<tau> \<Turnstile> (Set{\<two>}->includes(\<one>)))"
value "\<not> (\<tau> \<Turnstile> (Set{\<two>,\<one>}->includes(null)))"
value "\<tau> \<Turnstile> (Set{\<two>,null}->includes(null))"
value "\<tau> \<Turnstile> (Set{null,\<two>}->includes(null))"
value "\<tau> \<Turnstile> ((Set{})->forAll(z | \<zero> `< z))"
value "\<tau> \<Turnstile> ((Set{\<two>,\<one>})->forAll(z | \<zero> `< z))"
value "\<not> (\<tau> \<Turnstile> ((Set{\<two>,\<one>})->exists(z | z `< \<zero> )))"
value "\<not> (\<tau> \<Turnstile> \<delta>(Set{\<two>,null})->forAll(z | \<zero> `< z))"
value "\<not> (\<tau> \<Turnstile> ((Set{\<two>,null})->forAll(z | \<zero> `< z)))"
value "\<tau> \<Turnstile> ((Set{\<two>,null})->exists(z | \<zero> `< z))"
value "\<not> (\<tau> \<Turnstile> (Set{null::'a Boolean} \<doteq> Set{}))"
value "\<not> (\<tau> \<Turnstile> (Set{null::'a Integer} \<doteq> Set{}))"
value "(\<tau> \<Turnstile> (Set{\<lambda>_. \<lfloor>\<lfloor>x\<rfloor>\<rfloor>} \<doteq> Set{\<lambda>_. \<lfloor>\<lfloor>x\<rfloor>\<rfloor>}))"
value "(\<tau> \<Turnstile> (Set{\<lambda>_. \<lfloor>x\<rfloor>} \<doteq> Set{\<lambda>_. \<lfloor>x\<rfloor>}))"
(* TO BE DONE
why does this not work ? ? ?
une regle importante est dans simp, mais pas dans code_unfold ... *)
lemma "\<not> (\<tau> \<Turnstile> (Set{true} \<doteq> Set{false}))" by simp
lemma "\<not> (\<tau> \<Turnstile> (Set{true,true} \<doteq> Set{false}))" by simp
lemma "\<not> (\<tau> \<Turnstile> (Set{\<two>} \<doteq> Set{\<one>}))" by simp
lemma "\<tau> \<Turnstile> (Set{\<two>,null,\<two>} \<doteq> Set{null,\<two>})" by simp
lemma "\<tau> \<Turnstile> (Set{\<one>,null,\<two>} <> Set{null,\<two>})" by simp
lemma "\<tau> \<Turnstile> (Set{Set{\<two>,null}} \<doteq> Set{Set{null,\<two>}})" by simp
lemma "\<tau> \<Turnstile> (Set{Set{\<two>,null}} <> Set{Set{null,\<two>},null})" by simp
lemma "\<tau> \<Turnstile> (Set{null}->select(x | not x) \<doteq> Set{null})" by simp
lemma "\<tau> \<Turnstile> (Set{null}->reject(x | not x) \<doteq> Set{null})" by simp
lemma "const (Set{Set{\<two>,null}, invalid})" by(simp add: const_ss)
(*
value "\<not> (\<tau> \<Turnstile> (Set{true} \<doteq> Set{false}))"
value "\<not> (\<tau> \<Turnstile> (Set{true,true} \<doteq> Set{false}))"
value "\<not> (\<tau> \<Turnstile> (Set{\<two>} \<doteq> Set{\<one>}))"
value "\<tau> \<Turnstile> (Set{\<two>,null,\<two>} \<doteq> Set{null,\<two>})"
value "\<tau> \<Turnstile> (Set{\<one>,null,\<two>} <> Set{null,\<two>})"
value "\<tau> \<Turnstile> (Set{Set{\<two>,null}} \<doteq> Set{Set{null,\<two>}})"
value "\<tau> \<Turnstile> (Set{Set{\<two>,null}} <> Set{Set{null,\<two>},null})"
value "\<tau> \<Turnstile> (Set{null}->select(x | not x) \<doteq> Set{null})"
value "\<tau> \<Turnstile> (Set{null}->reject(x | not x) \<doteq> Set{null})"
*)
end