(***************************************************************************** * HOL-TestGen --- theorem-prover based test case generation * http://www.brucker.ch/projects/hol-testgen/ * * UPF * This file is part of HOL-TestGen. * * Copyright (c) 2005-2012 ETH Zurich, Switzerland * 2008-2015 Achim D. Brucker, Germany * 2009-2017 Université Paris-Sud, France * 2015-2017 The University of Sheffield, UK * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * * Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************) section\Elementary Policies\ theory ElementaryPolicies imports UPFCore begin text\ In this theory, we introduce the elementary policies of UPF that build the basis for more complex policies. These complex policies, respectively, embedding of well-known access control or security models, are build by composing the elementary policies defined in this theory. \ subsection\The Core Policy Combinators: Allow and Deny Everything\ definition deny_pfun :: "('\ \'\) \ ('\ \ '\)" ("AllD") where "deny_pfun pf \ (\ x. case pf x of \y\ \ \deny (y)\ |\ \ \)" definition allow_pfun :: "('\ \'\) \ ('\ \ '\)" ( "AllA") where "allow_pfun pf \ (\ x. case pf x of \y\ \ \allow (y)\ |\ \ \)" syntax "_allow_pfun" :: "('\ \'\) \ ('\ \ '\)" ("A\<^sub>p") translations "A\<^sub>p f" \ "AllA f" syntax "_deny_pfun" :: "('\ \'\) \ ('\ \ '\)" ("D\<^sub>p") translations "D\<^sub>p f" \ "AllD f" notation "deny_pfun" (binder "\D" 10) and "allow_pfun" (binder "\A" 10) lemma AllD_norm[simp]: "deny_pfun (id o (\x. \x\)) = (\Dx. \x\)" by(simp add:id_def comp_def) lemma AllD_norm2[simp]: "deny_pfun (Some o id) = (\Dx. \x\)" by(simp add:id_def comp_def) lemma AllA_norm[simp]: "allow_pfun (id o Some) = (\Ax. \x\)" by(simp add:id_def comp_def) lemma AllA_norm2[simp]: "allow_pfun (Some o id) = (\Ax. \x\)" by(simp add:id_def comp_def) lemma AllA_apply[simp]: "(\Ax. Some (P x)) x = \allow (P x)\" by(simp add:allow_pfun_def) lemma AllD_apply[simp]: "(\Dx. Some (P x)) x = \deny (P x)\" by(simp add:deny_pfun_def) lemma neq_Allow_Deny: "pf \ \ \ (deny_pfun pf) \ (allow_pfun pf)" apply (erule contrapos_nn) apply (rule ext) subgoal for x apply (drule_tac x=x in fun_cong) apply (auto simp: deny_pfun_def allow_pfun_def) apply (case_tac "pf x = \") apply (auto) done done subsection\Common Instances\ definition allow_all_fun :: "('\ \ '\) \ ('\ \ '\)" ("A\<^sub>f") where "allow_all_fun f = allow_pfun (Some o f)" definition deny_all_fun :: "('\ \ '\) \ ('\ \ '\)" ("D\<^sub>f") where "deny_all_fun f \ deny_pfun (Some o f)" definition deny_all_id :: "'\ \ '\" ("D\<^sub>I") where "deny_all_id \ deny_pfun (id o Some)" definition allow_all_id :: "'\ \ '\" ("A\<^sub>I") where "allow_all_id \ allow_pfun (id o Some)" definition allow_all :: "('\ \ unit)" ("A\<^sub>U") where "allow_all p = \allow ()\" definition deny_all :: "('\ \ unit)" ("D\<^sub>U") where "deny_all p = \deny ()\" text\... and resulting properties:\ lemma "A\<^sub>I \ Map.empty = A\<^sub>I" by simp lemma "A\<^sub>f f \ Map.empty = A\<^sub>f f" by simp lemma "allow_pfun Map.empty = Map.empty" apply (rule ext) apply (simp add: allow_pfun_def) done lemma allow_left_cancel :"dom pf = UNIV \ (allow_pfun pf) \ x = (allow_pfun pf)" apply (rule ext)+ apply (auto simp: allow_pfun_def option.splits) done lemma deny_left_cancel :"dom pf = UNIV \ (deny_pfun pf) \ x = (deny_pfun pf)" apply (rule ext)+ by (auto simp: deny_pfun_def option.splits) subsection\Domain, Range, and Restrictions\ text\ Since policies are essentially maps, we inherit the basic definitions for domain and range on Maps: \\ \verb+Map.dom_def+ : @{thm Map.dom_def} \\ whereas range is just an abrreviation for image: \begin{verbatim} abbreviation range :: "('a => 'b) => 'b set" where -- "of function" "range f == f ` UNIV" \end{verbatim} As a consequence, we inherit the following properties on policies: \begin{itemize} \item \verb+Map.domD+ @{thm Map.domD} \item\verb+Map.domI+ @{thm Map.domI} \item\verb+Map.domIff+ @{thm Map.domIff} \item\verb+Map.dom_const+ @{thm Map.dom_const} \item\verb+Map.dom_def+ @{thm Map.dom_def} \item\verb+Map.dom_empty+ @{thm Map.dom_empty} \item\verb+Map.dom_eq_empty_conv+ @{thm Map.dom_eq_empty_conv} \item\verb+Map.dom_eq_singleton_conv+ @{thm Map.dom_eq_singleton_conv} \item\verb+Map.dom_fun_upd+ @{thm Map.dom_fun_upd} \item\verb+Map.dom_if+ @{thm Map.dom_if} \item\verb+Map.dom_map_add+ @{thm Map.dom_map_add} \end{itemize} \ text\ However, some properties are specific to policy concepts: \ lemma sub_ran : "ran p \ Allow \ Deny" apply (auto simp: Allow_def Deny_def ran_def full_SetCompr_eq[symmetric])[1] subgoal for x a apply (case_tac "x") apply (simp_all) done done lemma dom_allow_pfun [simp]:"dom(allow_pfun f) = dom f" apply (auto simp: allow_pfun_def) subgoal for x y apply (case_tac "f x", simp_all) done done lemma dom_allow_all: "dom(A\<^sub>f f) = UNIV" by(auto simp: allow_all_fun_def o_def) lemma dom_deny_pfun [simp]:"dom(deny_pfun f) = dom f" apply (auto simp: deny_pfun_def)[1] apply (case_tac "f x") apply (simp_all) done lemma dom_deny_all: " dom(D\<^sub>f f) = UNIV" by(auto simp: deny_all_fun_def o_def) lemma ran_allow_pfun [simp]:"ran(allow_pfun f) = allow `(ran f)" apply (simp add: allow_pfun_def ran_def) apply (rule set_eqI) apply (auto)[1] subgoal for x a apply (case_tac "f a") apply (auto simp: image_def)[1] apply (auto simp: image_def)[1] done subgoal for xa a apply (rule_tac x=a in exI) apply (simp) done done lemma ran_allow_all: "ran(A\<^sub>f id) = Allow" apply (simp add: allow_all_fun_def Allow_def o_def) apply (rule set_eqI) apply (auto simp: image_def ran_def) done lemma ran_deny_pfun[simp]: "ran(deny_pfun f) = deny ` (ran f)" apply (simp add: deny_pfun_def ran_def) apply (rule set_eqI) apply (auto)[1] subgoal for x a apply (case_tac "f a") apply (auto simp: image_def)[1] apply (auto simp: image_def)[1] done subgoal for xa a apply (rule_tac x=a in exI) apply (simp) done done lemma ran_deny_all: "ran(D\<^sub>f id) = Deny" apply (simp add: deny_all_fun_def Deny_def o_def) apply (rule set_eqI) apply (auto simp: image_def ran_def) done text\ Reasoning over \verb+dom+ is most crucial since it paves the way for simplification and reordering of policies composed by override (i.e. by the normal left-to-right rule composition method. \begin{itemize} \item \verb+Map.dom_map_add+ @{thm Map.dom_map_add} \item \verb+Map.inj_on_map_add_dom+ @{thm Map.inj_on_map_add_dom} \item \verb+Map.map_add_comm+ @{thm Map.map_add_comm} \item \verb+Map.map_add_dom_app_simps(1)+ @{thm Map.map_add_dom_app_simps(1)} \item \verb+Map.map_add_dom_app_simps(2)+ @{thm Map.map_add_dom_app_simps(2)} \item \verb+Map.map_add_dom_app_simps(3)+ @{thm Map.map_add_dom_app_simps(3)} \item \verb+Map.map_add_upd_left+ @{thm Map.map_add_upd_left} \end{itemize} The latter rule also applies to allow- and deny-override. \ definition dom_restrict :: "['\ set, '\\'\] \ '\\'\" (infixr "\" 55) where "S \ p \ (\x. if x \ S then p x else \)" lemma dom_dom_restrict[simp] : "dom(S \ p) = S \ dom p" apply (auto simp: dom_restrict_def) subgoal for x y apply (case_tac "x \ S") apply (simp_all) done subgoal for x y apply (case_tac "x \ S") apply (simp_all) done done lemma dom_restrict_idem[simp] : "(dom p) \ p = p" apply (rule ext) apply (auto simp: dom_restrict_def dest: neq_commute[THEN iffD1,THEN not_None_eq [THEN iffD1]]) done lemma dom_restrict_inter[simp] : "T \ S \ p = T \ S \ p" apply (rule ext) apply (auto simp: dom_restrict_def dest: neq_commute[THEN iffD1,THEN not_None_eq [THEN iffD1]]) done definition ran_restrict :: "['\\'\,'\ decision set] \ '\ \'\" (infixr "\" 55) where "p \ S \ (\x. if p x \ (Some`S) then p x else \)" definition ran_restrict2 :: "['\\'\,'\ decision set] \ '\ \'\" (infixr "\2" 55) where "p \2 S \ (\x. if (the (p x)) \ (S) then p x else \)" lemma "ran_restrict = ran_restrict2" apply (rule ext)+ apply (simp add: ran_restrict_def ran_restrict2_def) subgoal for x xa xb apply (case_tac "x xb") apply simp_all apply (metis inj_Some inj_image_mem_iff) done done lemma ran_ran_restrict[simp] : "ran(p \ S) = S \ ran p" by(auto simp: ran_restrict_def image_def ran_def) lemma ran_restrict_idem[simp] : "p \ (ran p) = p" apply (rule ext) apply (auto simp: ran_restrict_def image_def Ball_def ran_def) apply (erule contrapos_pp) apply (auto dest!: neq_commute[THEN iffD1,THEN not_None_eq [THEN iffD1]]) done lemma ran_restrict_inter[simp] : "(p \ S) \ T = p \ T \ S" apply (rule ext) apply (auto simp: ran_restrict_def dest: neq_commute[THEN iffD1,THEN not_None_eq [THEN iffD1]]) done lemma ran_gen_A[simp] : "(\Ax. \P x\) \ Allow = (\Ax. \P x\)" apply (rule ext) apply (auto simp: Allow_def ran_restrict_def) done lemma ran_gen_D[simp] : "(\Dx. \P x\) \ Deny = (\Dx. \P x\)" apply (rule ext) apply (auto simp: Deny_def ran_restrict_def) done lemmas ElementaryPoliciesDefs = deny_pfun_def allow_pfun_def allow_all_fun_def deny_all_fun_def allow_all_id_def deny_all_id_def allow_all_def deny_all_def dom_restrict_def ran_restrict_def end