UPF_Firewall/Examples/Transformation/Transformation01.thy

269 lines
8.7 KiB
Plaintext

(*****************************************************************************
* Copyright (c) 2005-2010 ETH Zurich, Switzerland
* 2008-2015 Achim D. Brucker, Germany
* 2009-2016 Université Paris-Sud, France
* 2015-2016 The University of Sheffield, UK
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************)
subsection {* Transformation Example 1 *}
theory
Transformation01
imports
"../../UPF-Firewall"
begin
definition
FWLink :: "adr\<^sub>i\<^sub>p net" where
"FWLink = {{(a,b). a = 1}}"
definition
any :: "adr\<^sub>i\<^sub>p net" where
"any = {{(a,b). a > 5}}"
definition
i4:: "adr\<^sub>i\<^sub>p net" where
"i4 = {{(a,b). a = 2 }}"
definition
i27:: "adr\<^sub>i\<^sub>p net" where
"i27 = {{(a,b). a = 3 }}"
definition
eth_intern:: "adr\<^sub>i\<^sub>p net" where
"eth_intern = {{(a,b). a = 4 }}"
definition
eth_private:: "adr\<^sub>i\<^sub>p net" where
"eth_private = {{(a,b). a = 5 }}"
definition
(* Mandatory: Global *)
MG2 :: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"MG2 = AllowPortFromTo i27 any 1 \<oplus>
AllowPortFromTo i27 any 2 \<oplus>
AllowPortFromTo i27 any 3"
definition
MG3 :: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"MG3 = AllowPortFromTo any FWLink 1"
definition
MG4 :: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"MG4 = AllowPortFromTo FWLink FWLink 4"
definition
MG7 :: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"MG7 = AllowPortFromTo FWLink i4 6 \<oplus>
AllowPortFromTo FWLink i4 7"
definition
MG8 :: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"MG8 = AllowPortFromTo FWLink i4 6 \<oplus>
AllowPortFromTo FWLink i4 7"
(* Default Global *)
definition
DG3:: "(adr\<^sub>i\<^sub>p net,port) Combinators" where
"DG3 = AllowPortFromTo any any 7"
definition
"Policy = DenyAll \<oplus> MG8 \<oplus> MG7 \<oplus> MG4 \<oplus> MG3 \<oplus> MG2 \<oplus> DG3"
lemmas PolicyLemmas = Policy_def
FWLink_def
any_def
i27_def
i4_def
eth_intern_def
eth_private_def
MG2_def MG3_def MG4_def MG7_def MG8_def
DG3_def
lemmas PolicyL = MG2_def MG3_def MG4_def MG7_def MG8_def
DG3_def Policy_def
definition
not_in_same_net :: "(adr\<^sub>i\<^sub>p,DummyContent) packet \<Rightarrow> bool" where
"not_in_same_net x = (((src x \<sqsubset> i27) \<longrightarrow> ( \<not> (dest x \<sqsubset> i27))) \<and>
((src x \<sqsubset> i4) \<longrightarrow> ( \<not> (dest x \<sqsubset> i4))) \<and>
((src x \<sqsubset> eth_intern) \<longrightarrow> ( \<not> (dest x \<sqsubset> eth_intern))) \<and>
((src x \<sqsubset> eth_private) \<longrightarrow> ( \<not> (dest x \<sqsubset> eth_private))))"
consts fixID :: id
consts fixContent :: DummyContent
definition "fixElements p = (id p = fixID \<and> content p = fixContent)"
lemmas fixDefs = fixElements_def NetworkCore.id_def NetworkCore.content_def
lemma sets_distinct1: "(n::int) \<noteq> m \<Longrightarrow> {(a,b). a = n} \<noteq> {(a,b). a = m}"
apply auto
done
lemma sets_distinct2: "(m::int) \<noteq> n \<Longrightarrow> {(a,b). a = n} \<noteq> {(a,b). a = m}"
apply auto
done
lemma sets_distinct3: "{((a::int),(b::int)). a = n} \<noteq> {(a,b). a > n}"
apply auto
done
lemma sets_distinct4: "{((a::int),(b::int)). a > n} \<noteq> {(a,b). a = n}"
apply auto
done
lemma aux: "\<lbrakk>a \<in> c; a \<notin> d; c = d\<rbrakk> \<Longrightarrow> False"
apply auto
done
lemma sets_distinct5: "(s::int) < g \<Longrightarrow> {(a::int, b::int). a = s} \<noteq> {(a::int, b::int). g < a}"
apply (auto simp: sets_distinct3)
apply (subgoal_tac "(s,4) \<in> {(a::int,b::int). a = (s)}")
apply (subgoal_tac "(s,4) \<notin> {(a::int,b::int). g < a}")
apply (erule aux)
apply assumption+
apply simp
by blast
lemma sets_distinct6: "(s::int) < g \<Longrightarrow> {(a::int, b::int). g < a} \<noteq> {(a::int, b::int). a = s}"
apply (rule not_sym)
apply (rule sets_distinct5)
by simp
lemma distinctNets: "FWLink \<noteq> any \<and> FWLink \<noteq> i4 \<and> FWLink \<noteq> i27 \<and> FWLink \<noteq> eth_intern \<and> FWLink \<noteq> eth_private \<and>
any \<noteq> FWLink \<and> any \<noteq> i4 \<and> any \<noteq> i27 \<and> any \<noteq> eth_intern \<and> any \<noteq> eth_private \<and> i4 \<noteq> FWLink \<and>
i4 \<noteq> any \<and> i4 \<noteq> i27 \<and> i4 \<noteq> eth_intern \<and> i4 \<noteq> eth_private \<and> i27 \<noteq> FWLink \<and> i27 \<noteq> any \<and>
i27 \<noteq> i4 \<and> i27 \<noteq> eth_intern \<and> i27 \<noteq> eth_private \<and> eth_intern \<noteq> FWLink \<and> eth_intern \<noteq> any \<and>
eth_intern \<noteq> i4 \<and> eth_intern \<noteq> i27 \<and> eth_intern \<noteq> eth_private \<and> eth_private \<noteq> FWLink \<and>
eth_private \<noteq> any \<and> eth_private \<noteq> i4 \<and> eth_private \<noteq> i27 \<and> eth_private \<noteq> eth_intern"
apply (simp add: PolicyLemmas sets_distinct1 sets_distinct2 sets_distinct3 sets_distinct4 sets_distinct5 sets_distinct6)
done
lemma aux5: "\<lbrakk>x \<noteq> a; y\<noteq>b; (x \<noteq> y \<and> x \<noteq> b) \<or> (a \<noteq> b \<and> a \<noteq> y)\<rbrakk> \<Longrightarrow> {x,a} \<noteq> {y,b}"
apply auto
done
lemma aux2: "{a,b} = {b,a}"
apply auto
done
(*
lemma noMT: "\<forall> x \<in> set (policy2list Policy). dom (C x) \<noteq> {}"
apply (simp add: PolicyLemmas)
apply (simp add: PLemmas PolicyLemmas)
by arith
*)
lemma ANDex: "allNetsDistinct (policy2list Policy)"
apply (simp add: PolicyL allNetsDistinct_def distinctNets)
apply (auto simp: PLemmas PolicyLemmas netsDistinct_def sets_distinct5 sets_distinct6)
done
(*
lemma count_the_rules: "(int (length(policy2list (list2FWpolicy(normalize Policy)))) = post) \<and>
(int(length (policy2list Policy)) = pre) \<and>
(int (length((normalize Policy))) = Partitions)"
apply (insert distinctNets noMT)
apply (simp add: normalize_def PolicyL bothNets_def aux5 aux2 Nets_List_def, thin_tac "?X",thin_tac "?S")
oops
lemma normedPolicy: "normalize Policy = X"
apply (insert distinctNets noMT)
apply (simp add: normalize_def PolicyL bothNets_def aux5 aux2 Nets_List_def, thin_tac "?X",thin_tac "?S")
oops
*)
fun (sequential) numberOfRules where
"numberOfRules (a\<oplus>b) = numberOfRules a + numberOfRules b"
|"numberOfRules a = (1::int)"
fun numberOfRulesList where
"numberOfRulesList (x#xs) = ((numberOfRules x)#(numberOfRulesList xs)) "
|"numberOfRulesList [] = []"
(*
lemma "numberOfRulesList (normalize Policy) = X"
apply (insert distinctNets noMT)
apply (simp add: normalize_def PolicyL bothNets_def aux5 aux2 Nets_List_def, thin_tac "?X",thin_tac "?S")
oops
*)
lemma all_in_list: "all_in_list (policy2list Policy) (Nets_List Policy)"
apply (simp add: PolicyL)
apply (unfold Nets_List_def)
apply (unfold bothNets_def)
apply (insert distinctNets)
apply simp
done
lemmas normalizeUnfold = normalize_def Policy_def Nets_List_def bothNets_def aux aux2 bothNets_def
(*
lemma noMT2: "\<forall> x \<in> set (policy2list Policy). dom (C x) \<noteq> {}"
apply (simp add: PLemmas normalize_def bothNets_def
PolicyLemmas aux5 aux2 Nets_List_def )
by (metis zless_add1_eq)
*)
end