
Refining Reasoning About Arrays in Formal Verification
Nyle Rodgers, Yakoub Nemouchi, Peter Lammich, Binoy Ravindran

{nyle,nemouchi,lpeter1,binoy}@vt.edu

Overview
We developed a library allowing a refinement from C arrays to lists. The
development effort is on a top of the interactive theorem prover Isabelle/
HOL[1] and AutoCorres[2,3,4]. Refining reasoning about arrays to the
level of lists was found to result in more modular and optimized proofs.

AutoCorres Overview
AutoCorres first translates C code into Simpl, a formal imperative
language embedded in Isabelle/HOL. It then transforms Simpl into a
monadic functional form to ease reasoning. Along the way, it generates
correctness proofs for each refinement transformation.

The processing chain of AutoCorres. Figure from [3].

AutoCorres 32-Bit Heap Memory Model
Function Description
is_valid_w32 s p Check if the given pointer p refers to a

valid 32-bit integer in memory state s

heap_w32 s p Read the 32-bit word referenced by p in
memory state s

heap_w32_update f s Use the function f to produce a new
memory state from state s

These functions satisfy the following properties

heap_w32_update f1 (heap_w32_update f2 s) =
	 heap_w32_update (f1 o f2) s

heap_w32 (heap_w32_update f s) = f (heap_w32 s)

heap_w32_update id s = s

is_valid_w32 (heap_w32_update f s) p =
	 is_valid_w32 s p

Array definition
The definition used to link arrays in memory to lists is

array s p data =
	 (∀i < (length data).
	 	 not_at_end (p +p i) ∧
	 	 is_valid_w32 s (p +p i) ∧
	 	 heap_w32 s (p +p i) = data ! i)

In English, this says that there is an array in the memory state s, starting
at location p,corresponding to the list data iff for all i that are indices
of data, the memory location at that index is not at the end of memory,
holds a valid 32-bit word, and has the same value as the corresponding
entry in data. The requirement that each address not be at the end of
memory ensures that the array does not “wrap around” from the end of
memory back to the start.

Read Array Definition
Additionally, the function read_array is defined as

read_array s p n =
	 map (heap_w32 s) (map (λi. (p +p i)) [0 ..< n])

That is, it reads out the list corresponding to an array given the
corresponding memory state, start address and length.

Rewriting Rules
Based on these definitions, if

array s p data ∧
i < length data ∧ j < length data ∧
n = length data

then the following rewriting rules can be applied

read_array s p n = data

length (read_array s p n) = n

heap_w32 s (p +p i) = data ! i

(p +p i = p +p j) = (i = j)
(p +p i ≠ p +p j) = (i ≠ j)
(p +p i < p +p j) = (i < j)
(p +p i ≤ p +p j) = (i ≤ j)

(read_array
	 (heap_w32_update ((λa. a(p +p i := x))) s) p n)
	 = read_array s p n)[i := x]

Case Study: Binary Search
The binary search function[5] uses a binary search algorithm to
determine if a number is present in a sorted array. With the approach
developed, the proof of correctness for the function was reduced from
about 190 lines in the provided AutoCorres example to about 50 lines
outside of the library.

Case Study: Partition
The partition function[5] re-arranges an array such that, for some pivot
element, every element before the pivot in the array is less than the
pivot, and every element after the pivot is greater than or equal to the
pivot. This partition function is used in the quicksort implementation
which is in the AutoCorres examples[5]; extending this approach to
handle the additional requirements of the quicksort function is still a
work in progress. With the approach developed, the proof of correctness
for the function was reduced from about 620 lines in the example to
about 120 lines outside of the library.

Visualization of the approach’s benifits for proof length

Binary Search
~190 Lines

Binary Search
~190 Lines

Partition
~620 Lines

Partition
~620 Lines

Partition
~120 Lines

Partition
~120 Lines

Arrays Library
~200 Lines

Arrays Library
~200 Lines

Binary Search
~50 Lines

AutoCorres
Example Proofs

New Proofs

References
[1]	T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
[2]	David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap: Automatic

verified abstraction of C. Proceedings of the Third International Conference on
Interactive Theorem Proving (ITP), August 2012. https://ts.data61.csiro.au/
publications/nicta_full_text/5662.pdf

[3]	David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t sweat the
small stuff—Formal verification of C code without the pain. Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, June 2014. https://ts.data61.csiro.au/publications/nicta_full_text/7629.pdf

[4]	https://ts.data61.csiro.au/projects/TS/autocorres/
[5]	https://github.com/seL4/l4v/blob/master/tools/autocorres/tests/examples/

