Isabelle_DOF/src/SI/ISQ_Quantities.thy

265 lines
11 KiB
Plaintext

section \<open> Quantities \<close>
theory ISQ_Quantities
imports ISQ_Dimensions
begin
section \<open> The Semantic SI-Unit-Type and its Operations \<close>
record 'a Quantity =
mag :: 'a \<comment> \<open> Magnitude of the unit \<close>
dim :: Dimension \<comment> \<open> Dimension of the unit \<close>
lemma Quantity_eq_intro:
assumes "mag x = mag y" "dim x = dim y" "more x = more y"
shows "x = y"
by (simp add: assms)
instantiation Quantity_ext :: (times, times) times
begin
definition [si_def]:
"times_Quantity_ext x y = \<lparr> mag = mag x \<cdot> mag y, dim = dim x \<cdot> dim y, \<dots> = more x \<cdot> more y \<rparr>"
instance ..
end
lemma mag_times [simp]: "mag (x \<cdot> y) = mag x \<cdot> mag y" by (simp add: times_Quantity_ext_def)
lemma dim_times [simp]: "dim (x \<cdot> y) = dim x \<cdot> dim y" by (simp add: times_Quantity_ext_def)
lemma more_times [simp]: "more (x \<cdot> y) = more x \<cdot> more y" by (simp add: times_Quantity_ext_def)
instantiation Quantity_ext :: (zero, zero) zero
begin
definition "zero_Quantity_ext = \<lparr> mag = 0, dim = 1, \<dots> = 0 \<rparr>"
instance ..
end
lemma mag_zero [simp]: "mag 0 = 0" by (simp add: zero_Quantity_ext_def)
lemma dim_zero [simp]: "dim 0 = 1" by (simp add: zero_Quantity_ext_def)
lemma more_zero [simp]: "more 0 = 0" by (simp add: zero_Quantity_ext_def)
instantiation Quantity_ext :: (one, one) one
begin
definition [si_def]: "one_Quantity_ext = \<lparr> mag = 1, dim = 1, \<dots> = 1 \<rparr>"
instance ..
end
lemma mag_one [simp]: "mag 1 = 1" by (simp add: one_Quantity_ext_def)
lemma dim_one [simp]: "dim 1 = 1" by (simp add: one_Quantity_ext_def)
lemma more_one [simp]: "more 1 = 1" by (simp add: one_Quantity_ext_def)
instantiation Quantity_ext :: (inverse, inverse) inverse
begin
definition [si_def]:
"inverse_Quantity_ext x = \<lparr> mag = inverse (mag x), dim = inverse (dim x), \<dots> = inverse (more x) \<rparr>"
definition [si_def]:
"divide_Quantity_ext x y = \<lparr> mag = mag x / mag y, dim = dim x / dim y, \<dots> = more x / more y \<rparr>"
instance ..
end
lemma mag_inverse [simp]: "mag (inverse x) = inverse (mag x)"
by (simp add: inverse_Quantity_ext_def)
lemma dim_inverse [simp]: "dim (inverse x) = inverse (dim x)"
by (simp add: inverse_Quantity_ext_def)
lemma more_inverse [simp]: "more (inverse x) = inverse (more x)"
by (simp add: inverse_Quantity_ext_def)
lemma mag_divide [simp]: "mag (x / y) = mag x / mag y"
by (simp add: divide_Quantity_ext_def)
lemma dim_divide [simp]: "dim (x / y) = dim x / dim y"
by (simp add: divide_Quantity_ext_def)
lemma more_divide [simp]: "more (x / y) = more x / more y"
by (simp add: divide_Quantity_ext_def)
instance Quantity_ext :: (comm_monoid_mult, comm_monoid_mult) comm_monoid_mult
by (intro_classes, simp_all add: one_Quantity_ext_def
times_Quantity_ext_def mult.assoc, simp add: mult.commute)
instance Quantity_ext :: (ab_group_mult, ab_group_mult) ab_group_mult
by (intro_classes, rule Quantity_eq_intro, simp_all)
instantiation Quantity_ext :: (ord, ord) ord
begin
definition less_eq_Quantity_ext :: "('a, 'b) Quantity_scheme \<Rightarrow> ('a, 'b) Quantity_scheme \<Rightarrow> bool"
where "less_eq_Quantity_ext x y = (mag x \<le> mag y \<and> dim x = dim y \<and> more x \<le> more y)"
definition less_Quantity_ext :: "('a, 'b) Quantity_scheme \<Rightarrow> ('a, 'b) Quantity_scheme \<Rightarrow> bool"
where "less_Quantity_ext x y = (x \<le> y \<and> \<not> y \<le> x)"
instance ..
end
instance Quantity_ext :: (order, order) order
by (intro_classes, auto simp add: less_Quantity_ext_def less_eq_Quantity_ext_def)
section \<open> The Abstract SI-\<^theory_text>\<open>Quantity\<close>-Type and its Operations \<close>
text\<open>We 'lift' SI type expressions to SI unit type expressions as follows:\<close>
typedef (overloaded) ('n, 'u::dim_type) QuantT ("_[_]" [999,0] 999)
= "{x :: 'n Quantity. dim x = QD('u)}"
morphisms fromQ toQ by (rule_tac x="\<lparr> mag = undefined, dim = QD('u) \<rparr>" in exI, simp)
setup_lifting type_definition_QuantT
text \<open> Coerce values when their dimensions are equivalent \<close>
definition coerceQuantT :: "'u\<^sub>2 itself \<Rightarrow> 'a['u\<^sub>1::dim_type] \<Rightarrow> 'a['u\<^sub>2::dim_type]" where
"QD('u\<^sub>1) = QD('u\<^sub>2) \<Longrightarrow> coerceQuantT t x = (toQ (fromQ x))"
subsection\<open>Predicates on Abstract SI-\<^theory_text>\<open>Unit\<close>-types\<close>
text \<open> Two SI Unit types are orderable if their magnitude type is of class @{class "order"},
and have the same dimensions (not necessarily dimension types).\<close>
lift_definition qless_eq ::
"'n::order['a::dim_type] \<Rightarrow> 'n['b::dim_type] \<Rightarrow> bool" (infix "\<lesssim>\<^sub>Q" 50) is "(\<le>)" .
text\<open> Two SI Unit types are equivalent if they have the same dimensions
(not necessarily dimension types). This equivalence the a vital point
of the overall construction of SI Units. \<close>
lift_definition qequiv ::
"'n['a::dim_type] \<Rightarrow> 'n['b::dim_type] \<Rightarrow> bool" (infix "\<cong>\<^sub>Q" 50) is "(=)" .
subsection\<open>The Equivalence on Abstract SI-\<^theory_text>\<open>Unit\<close>-Types\<close>
text\<open>The latter predicate gives us an equivalence, but, unfortunately, not a congruence.\<close>
lemma qequiv_refl [simp]: "a \<cong>\<^sub>Q a"
by (simp add: qequiv_def)
lemma qequiv_sym: "a \<cong>\<^sub>Q b \<Longrightarrow> b \<cong>\<^sub>Q a"
by (simp add: qequiv_def)
lemma qequiv_trans: "\<lbrakk> a \<cong>\<^sub>Q b; b \<cong>\<^sub>Q c \<rbrakk> \<Longrightarrow> a \<cong>\<^sub>Q c"
by (simp add: qequiv_def)
theorem qeq_iff_same_dim:
fixes x y :: "'a['u::dim_type]"
shows "x \<cong>\<^sub>Q y \<longleftrightarrow> x = y"
by (transfer, simp)
(* the following series of equivalent statements ... *)
lemma coerceQuant_eq_iff:
fixes x :: "'a['u\<^sub>1::dim_type]"
assumes "QD('u\<^sub>1) = QD('u\<^sub>2::dim_type)"
shows "(coerceQuantT TYPE('u\<^sub>2) x) \<cong>\<^sub>Q x"
by (metis qequiv.rep_eq assms coerceQuantT_def toQ_cases toQ_inverse)
(* or equivalently *)
lemma coerceQuant_eq_iff2:
fixes x :: "'a['u\<^sub>1::dim_type]"
assumes "QD('u\<^sub>1) = QD('u\<^sub>2::dim_type)" and "y = (coerceQuantT TYPE('u\<^sub>2) x)"
shows "x \<cong>\<^sub>Q y"
using qequiv_sym assms(1) assms(2) coerceQuant_eq_iff by blast
lemma updown_eq_iff:
fixes x :: "'a['u\<^sub>1::dim_type]" fixes y :: "'a['u\<^sub>2::dim_type]"
assumes "QD('u\<^sub>1) = QD('u\<^sub>2::dim_type)" and "y = (toQ (fromQ x))"
shows "x \<cong>\<^sub>Q y"
by (simp add: assms(1) assms(2) coerceQuant_eq_iff2 coerceQuantT_def)
text\<open>This is more general that \<open>y = x \<Longrightarrow> x \<cong>\<^sub>Q y\<close>, since x and y may have different type.\<close>
lemma qeq:
fixes x :: "'a['u\<^sub>1::dim_type]" fixes y :: "'a['u\<^sub>2::dim_type]"
assumes "x \<cong>\<^sub>Q y"
shows "QD('u\<^sub>1) = QD('u\<^sub>2::dim_type)"
by (metis (full_types) qequiv.rep_eq assms fromQ mem_Collect_eq)
subsection\<open>Operations on Abstract SI-Unit-Types\<close>
lift_definition
qtimes :: "('n::comm_ring_1)['a::dim_type] \<Rightarrow> 'n['b::dim_type] \<Rightarrow> 'n['a \<cdot>'b]" (infixl "\<^bold>\<cdot>" 69) is "(*)"
by (simp add: dim_ty_sem_DimTimes_def times_Quantity_ext_def)
lift_definition
qinverse :: "('n::field)['a::dim_type] \<Rightarrow> 'n['a\<^sup>-\<^sup>1]" ("(_\<^sup>-\<^sup>\<one>)" [999] 999) is "inverse"
by (simp add: inverse_Quantity_ext_def dim_ty_sem_DimInv_def)
abbreviation
qdivide :: "('n::field)['a::dim_type] \<Rightarrow> 'n['b::dim_type] \<Rightarrow> 'n['a/'b]" (infixl "\<^bold>'/" 70) where
"qdivide x y \<equiv> x \<^bold>\<cdot> y\<^sup>-\<^sup>\<one>"
abbreviation qsq ("(_)\<^sup>\<two>" [999] 999) where "u\<^sup>\<two> \<equiv> u\<^bold>\<cdot>u"
abbreviation qcube ("(_)\<^sup>\<three>" [999] 999) where "u\<^sup>\<three> \<equiv> u\<^bold>\<cdot>u\<^bold>\<cdot>u"
abbreviation qquart ("(_)\<^sup>\<four>" [999] 999) where "u\<^sup>\<four> \<equiv> u\<^bold>\<cdot>u\<^bold>\<cdot>u\<^bold>\<cdot>u"
abbreviation qneq_sq ("(_)\<^sup>-\<^sup>\<two>" [999] 999) where "u\<^sup>-\<^sup>\<two> \<equiv> (u\<^sup>\<two>)\<^sup>-\<^sup>\<one>"
abbreviation qneq_cube ("(_)\<^sup>-\<^sup>\<three>" [999] 999) where "u\<^sup>-\<^sup>\<three> \<equiv> (u\<^sup>\<three>)\<^sup>-\<^sup>\<one>"
abbreviation qneq_quart ("(_)\<^sup>-\<^sup>\<four>" [999] 999) where "u\<^sup>-\<^sup>\<four> \<equiv> (u\<^sup>\<three>)\<^sup>-\<^sup>\<one>"
instantiation QuantT :: (zero,dim_type) zero
begin
lift_definition zero_QuantT :: "('a, 'b) QuantT" is "\<lparr> mag = 0, dim = QD('b) \<rparr>"
by simp
instance ..
end
instantiation QuantT :: (one,dim_type) one
begin
lift_definition one_QuantT :: "('a, 'b) QuantT" is "\<lparr> mag = 1, dim = QD('b) \<rparr>"
by simp
instance ..
end
instantiation QuantT :: (plus,dim_type) plus
begin
lift_definition plus_QuantT :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x y. \<lparr> mag = mag x + mag y, dim = QD('b) \<rparr>"
by (simp)
instance ..
end
instance QuantT :: (semigroup_add,dim_type) semigroup_add
by (intro_classes, transfer, simp add: add.assoc)
instance QuantT :: (ab_semigroup_add,dim_type) ab_semigroup_add
by (intro_classes, transfer, simp add: add.commute)
instance QuantT :: (monoid_add,dim_type) monoid_add
by (intro_classes; (transfer, simp))
instance QuantT :: (comm_monoid_add,dim_type) comm_monoid_add
by (intro_classes; transfer, simp)
instantiation QuantT :: (uminus,dim_type) uminus
begin
lift_definition uminus_QuantT :: "'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x. \<lparr> mag = - mag x, dim = dim x \<rparr>" by (simp)
instance ..
end
instantiation QuantT :: (minus,dim_type) minus
begin
lift_definition minus_QuantT :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x y. \<lparr> mag = mag x - mag y, dim = dim x \<rparr>" by (simp)
instance ..
end
instance QuantT :: (numeral,dim_type) numeral ..
instance QuantT :: (ab_group_add,dim_type) ab_group_add
by (intro_classes, (transfer, simp)+)
instantiation QuantT :: (order,dim_type) order
begin
lift_definition less_eq_QuantT :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> bool" is "\<lambda> x y. mag x \<le> mag y" .
lift_definition less_QuantT :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> bool" is "\<lambda> x y. mag x < mag y" .
instance by (intro_classes, (transfer, simp add: less_le_not_le)+)
end
text\<open>The scaling operator permits to multiply the magnitude of a unit; this scalar product
produces what is called "prefixes" in the terminology of the SI system.\<close>
lift_definition scaleQ :: "'a \<Rightarrow> 'a::comm_ring_1['u::dim_type] \<Rightarrow> 'a['u]" (infixr "*\<^sub>Q" 63)
is "\<lambda> r x. \<lparr> mag = r * mag x, dim = QD('u) \<rparr>" by simp
notation scaleQ (infixr "\<odot>" 63)
end