Isabelle_DOF/Isabelle_DOF-Unit-Tests/Ontology_Matching_Example.thy

96 lines
3.3 KiB
Plaintext

(*************************************************************************
* Copyright (C)
* 2019-2023 The University of Exeter
* 2018-2023 The University of Paris-Saclay
* 2018 The University of Sheffield
*
* License:
* This program can be redistributed and/or modified under the terms
* of the 2-clause BSD-style license.
*
* SPDX-License-Identifier: BSD-2-Clause
*************************************************************************)
chapter\<open>Ontologys Matching\<close>
theory Ontology_Matching_Example
imports TestKit
"Isabelle_DOF.Isa_DOF"
"Isabelle_DOF_Unit_Tests_document"
begin
section\<open>Test Purpose.\<close>
text\<open> This is merely an example that shows that the generated invariants
fit nicely together; i.e. allow for sensible consistency and invariant
preservation proofs related to ontological matchings. \<close>
section\<open>The Scenario.\<close>
text\<open>Using HOL, we can define a mapping between two ontologies.
It is called ontology matching or ontology alignment.
Here is an example which show how to map two classes.
HOL also allows us to map the invariants (ontological rules) of the classes!\<close>
type_synonym UTF8 = string
definition utf8_to_string
where "utf8_to_string xx = xx"
doc_class A =
first_name :: UTF8
last_name :: UTF8
age :: nat
married_to :: "string option"
invariant a :: "age \<sigma> < 18 \<longrightarrow> married_to \<sigma> = None"
doc_class B =
name :: string
adult :: bool
is_married :: bool
invariant b :: "is_married \<sigma> \<longrightarrow> adult \<sigma>"
text\<open>We define the mapping between the two classes,
i.e. how to transform the class @{doc_class A} in to the class @{doc_class B}:\<close>
definition A_to_B_morphism
where "A_to_B_morphism X =
\<lparr> tag_attribute = A.tag_attribute X
, name = utf8_to_string (first_name X) @ '' '' @ utf8_to_string (last_name X)
, adult = (age X \<ge> 18)
, is_married = (married_to X \<noteq> None) \<rparr>"
text\<open>Sanity check: Invariants are non-contradictory, i.e. there is a witness.\<close>
lemma inv_a_satisfyable : " Ex (a_inv::A \<Rightarrow> bool)"
unfolding a_inv_def
apply(rule_tac x ="\<lparr>Ontology_Matching_Example.A.tag_attribute = xxx,
first_name = yyy, last_name = zzz, age = 17,
married_to = None\<rparr>" in exI)
by auto
text\<open>Now we check that the invariant is preserved through the morphism:\<close>
lemma inv_a_preserved :
"a_inv X \<Longrightarrow> b_inv (A_to_B_morphism X)"
unfolding a_inv_def b_inv_def A_to_B_morphism_def
by auto
text\<open>This also implies that B invariants are non-contradictory: \<close>
lemma inv_b_preserved : "\<exists>x. (b_inv::B \<Rightarrow> bool) x"
apply(rule_tac x ="A_to_B_morphism \<lparr>Ontology_Matching_Example.A.tag_attribute = xxx,
first_name = yyy, last_name = zzz, age = 17,
married_to = None\<rparr>" in exI)
by(rule inv_a_preserved,auto simp: a_inv_def)
lemma A_morphism_B_total :
"A_to_B_morphism ` ({X::A. a_inv X}) \<subseteq> ({X::B. b_inv X})"
using inv_a_preserved
by auto
end