Isabelle_DOF/AFP-contribs/Functional-Automata/RegExp2NAe.thy

642 lines
17 KiB
Plaintext

(* Author: Tobias Nipkow
Copyright 1998 TUM
*)
section "From regular expressions to nondeterministic automata with epsilon"
theory RegExp2NAe
imports "Regular-Sets.Regular_Exp" NAe
begin
type_synonym 'a bitsNAe = "('a,bool list)nae"
definition
epsilon :: "'a bitsNAe" where
"epsilon = ([],%a s. {}, %s. s=[])"
definition
"atom" :: "'a => 'a bitsNAe" where
"atom a = ([True],
%b s. if s=[True] & b=Some a then {[False]} else {},
%s. s=[False])"
definition
or :: "'a bitsNAe => 'a bitsNAe => 'a bitsNAe" where
"or = (%(ql,dl,fl)(qr,dr,fr).
([],
%a s. case s of
[] => if a=None then {True#ql,False#qr} else {}
| left#s => if left then True ## dl a s
else False ## dr a s,
%s. case s of [] => False | left#s => if left then fl s else fr s))"
definition
conc :: "'a bitsNAe => 'a bitsNAe => 'a bitsNAe" where
"conc = (%(ql,dl,fl)(qr,dr,fr).
(True#ql,
%a s. case s of
[] => {}
| left#s => if left then (True ## dl a s) Un
(if fl s & a=None then {False#qr} else {})
else False ## dr a s,
%s. case s of [] => False | left#s => ~left & fr s))"
definition
star :: "'a bitsNAe => 'a bitsNAe" where
"star = (%(q,d,f).
([],
%a s. case s of
[] => if a=None then {True#q} else {}
| left#s => if left then (True ## d a s) Un
(if f s & a=None then {True#q} else {})
else {},
%s. case s of [] => True | left#s => left & f s))"
primrec rexp2nae :: "'a rexp => 'a bitsNAe" where
"rexp2nae Zero = ([], %a s. {}, %s. False)" |
"rexp2nae One = epsilon" |
"rexp2nae(Atom a) = atom a" |
"rexp2nae(Plus r s) = or (rexp2nae r) (rexp2nae s)" |
"rexp2nae(Times r s) = conc (rexp2nae r) (rexp2nae s)" |
"rexp2nae(Star r) = star (rexp2nae r)"
declare split_paired_all[simp]
(******************************************************)
(* epsilon *)
(******************************************************)
lemma step_epsilon[simp]: "step epsilon a = {}"
by(simp add:epsilon_def step_def)
lemma steps_epsilon: "((p,q) : steps epsilon w) = (w=[] & p=q)"
by (induct "w") auto
lemma accepts_epsilon[simp]: "accepts epsilon w = (w = [])"
apply (simp add: steps_epsilon accepts_def)
apply (simp add: epsilon_def)
done
(******************************************************)
(* atom *)
(******************************************************)
lemma fin_atom: "(fin (atom a) q) = (q = [False])"
by(simp add:atom_def)
lemma start_atom: "start (atom a) = [True]"
by(simp add:atom_def)
(* Use {x. False} = {}? *)
lemma eps_atom[simp]:
"eps(atom a) = {}"
by (simp add:atom_def step_def)
lemma in_step_atom_Some[simp]:
"(p,q) : step (atom a) (Some b) = (p=[True] & q=[False] & b=a)"
by (simp add:atom_def step_def)
lemma False_False_in_steps_atom:
"([False],[False]) : steps (atom a) w = (w = [])"
apply (induct "w")
apply (simp)
apply (simp add: relcomp_unfold)
done
lemma start_fin_in_steps_atom:
"(start (atom a), [False]) : steps (atom a) w = (w = [a])"
apply (induct "w")
apply (simp add: start_atom rtrancl_empty)
apply (simp add: False_False_in_steps_atom relcomp_unfold start_atom)
done
lemma accepts_atom: "accepts (atom a) w = (w = [a])"
by (simp add: accepts_def start_fin_in_steps_atom fin_atom)
(******************************************************)
(* or *)
(******************************************************)
(***** lift True/False over fin *****)
lemma fin_or_True[iff]:
"!!L R. fin (or L R) (True#p) = fin L p"
by(simp add:or_def)
lemma fin_or_False[iff]:
"!!L R. fin (or L R) (False#p) = fin R p"
by(simp add:or_def)
(***** lift True/False over step *****)
lemma True_in_step_or[iff]:
"!!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)"
apply (simp add:or_def step_def)
apply blast
done
lemma False_in_step_or[iff]:
"!!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)"
apply (simp add:or_def step_def)
apply blast
done
(***** lift True/False over epsclosure *****)
lemma lemma1a:
"(tp,tq) : (eps(or L R))^* ==>
(!!p. tp = True#p ==> ? q. (p,q) : (eps L)^* & tq = True#q)"
apply (induct rule:rtrancl_induct)
apply (blast)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lemma1b:
"(tp,tq) : (eps(or L R))^* ==>
(!!p. tp = False#p ==> ? q. (p,q) : (eps R)^* & tq = False#q)"
apply (induct rule:rtrancl_induct)
apply (blast)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lemma2a:
"(p,q) : (eps L)^* ==> (True#p, True#q) : (eps(or L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lemma2b:
"(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(or L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma True_epsclosure_or[iff]:
"(True#p,q) : (eps(or L R))^* = (? r. q = True#r & (p,r) : (eps L)^*)"
by (blast dest: lemma1a lemma2a)
lemma False_epsclosure_or[iff]:
"(False#p,q) : (eps(or L R))^* = (? r. q = False#r & (p,r) : (eps R)^*)"
by (blast dest: lemma1b lemma2b)
(***** lift True/False over steps *****)
lemma lift_True_over_steps_or[iff]:
"!!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)"
apply (induct "w")
apply auto
apply force
done
lemma lift_False_over_steps_or[iff]:
"!!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)"
apply (induct "w")
apply auto
apply (force)
done
(***** Epsilon closure of start state *****)
lemma unfold_rtrancl2:
"R^* = Id Un (R O R^*)"
apply (rule set_eqI)
apply (simp)
apply (rule iffI)
apply (erule rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
apply (blast intro: converse_rtrancl_into_rtrancl)
done
lemma in_unfold_rtrancl2:
"(p,q) : R^* = (q = p | (? r. (p,r) : R & (r,q) : R^*))"
apply (rule unfold_rtrancl2[THEN equalityE])
apply (blast)
done
lemmas [iff] = in_unfold_rtrancl2[where ?p = "start(or L R)"] for L R
lemma start_eps_or[iff]:
"!!L R. (start(or L R),q) : eps(or L R) =
(q = True#start L | q = False#start R)"
by (simp add:or_def step_def)
lemma not_start_step_or_Some[iff]:
"!!L R. (start(or L R),q) ~: step (or L R) (Some a)"
by (simp add:or_def step_def)
lemma steps_or:
"(start(or L R), q) : steps (or L R) w =
( (w = [] & q = start(or L R)) |
(? p. q = True # p & (start L,p) : steps L w |
q = False # p & (start R,p) : steps R w) )"
apply (case_tac "w")
apply (simp)
apply (blast)
apply (simp)
apply (blast)
done
lemma start_or_not_final[iff]:
"!!L R. ~ fin (or L R) (start(or L R))"
by (simp add:or_def)
lemma accepts_or:
"accepts (or L R) w = (accepts L w | accepts R w)"
apply (simp add:accepts_def steps_or)
apply auto
done
(******************************************************)
(* conc *)
(******************************************************)
(** True/False in fin **)
lemma in_conc_True[iff]:
"!!L R. fin (conc L R) (True#p) = False"
by (simp add:conc_def)
lemma fin_conc_False[iff]:
"!!L R. fin (conc L R) (False#p) = fin R p"
by (simp add:conc_def)
(** True/False in step **)
lemma True_step_conc[iff]:
"!!L R. (True#p,q) : step (conc L R) a =
((? r. q=True#r & (p,r): step L a) |
(fin L p & a=None & q=False#start R))"
by (simp add:conc_def step_def) (blast)
lemma False_step_conc[iff]:
"!!L R. (False#p,q) : step (conc L R) a =
(? r. q = False#r & (p,r) : step R a)"
by (simp add:conc_def step_def) (blast)
(** False in epsclosure **)
lemma lemma1b':
"(tp,tq) : (eps(conc L R))^* ==>
(!!p. tp = False#p ==> ? q. (p,q) : (eps R)^* & tq = False#q)"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lemma2b':
"(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma False_epsclosure_conc[iff]:
"((False # p, q) : (eps (conc L R))^*) =
(? r. q = False # r & (p, r) : (eps R)^*)"
apply (rule iffI)
apply (blast dest: lemma1b')
apply (blast dest: lemma2b')
done
(** False in steps **)
lemma False_steps_conc[iff]:
"!!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"
apply (induct "w")
apply (simp)
apply (simp)
apply (fast) (*MUCH faster than blast*)
done
(** True in epsclosure **)
lemma True_True_eps_concI:
"(p,q): (eps L)^* ==> (True#p,True#q) : (eps(conc L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma True_True_steps_concI:
"!!p. (p,q) : steps L w ==> (True#p,True#q) : steps (conc L R) w"
apply (induct "w")
apply (simp add: True_True_eps_concI)
apply (simp)
apply (blast intro: True_True_eps_concI)
done
lemma lemma1a':
"(tp,tq) : (eps(conc L R))^* ==>
(!!p. tp = True#p ==>
(? q. tq = True#q & (p,q) : (eps L)^*) |
(? q r. tq = False#q & (p,r):(eps L)^* & fin L r & (start R,q) : (eps R)^*))"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lemma2a':
"(p, q) : (eps L)^* ==> (True#p, True#q) : (eps(conc L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma lem:
"!!L R. (p,q) : step R None ==> (False#p, False#q) : step (conc L R) None"
by(simp add: conc_def step_def)
lemma lemma2b'':
"(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (drule lem)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma True_False_eps_concI:
"!!L R. fin L p ==> (True#p, False#start R) : eps(conc L R)"
by(simp add: conc_def step_def)
lemma True_epsclosure_conc[iff]:
"((True#p,q) : (eps(conc L R))^*) =
((? r. (p,r) : (eps L)^* & q = True#r) |
(? r. (p,r) : (eps L)^* & fin L r &
(? s. (start R, s) : (eps R)^* & q = False#s)))"
apply (rule iffI)
apply (blast dest: lemma1a')
apply (erule disjE)
apply (blast intro: lemma2a')
apply (clarify)
apply (rule rtrancl_trans)
apply (erule lemma2a')
apply (rule converse_rtrancl_into_rtrancl)
apply (erule True_False_eps_concI)
apply (erule lemma2b'')
done
(** True in steps **)
lemma True_steps_concD[rule_format]:
"!p. (True#p,q) : steps (conc L R) w -->
((? r. (p,r) : steps L w & q = True#r) |
(? u v. w = u@v & (? r. (p,r) : steps L u & fin L r &
(? s. (start R,s) : steps R v & q = False#s))))"
apply (induct "w")
apply (simp)
apply (simp)
apply (clarify del: disjCI)
apply (erule disjE)
apply (clarify del: disjCI)
apply (erule disjE)
apply (clarify del: disjCI)
apply (erule allE, erule impE, assumption)
apply (erule disjE)
apply (blast)
apply (rule disjI2)
apply (clarify)
apply (simp)
apply (rule_tac x = "a#u" in exI)
apply (simp)
apply (blast)
apply (blast)
apply (rule disjI2)
apply (clarify)
apply (simp)
apply (rule_tac x = "[]" in exI)
apply (simp)
apply (blast)
done
lemma True_steps_conc:
"(True#p,q) : steps (conc L R) w =
((? r. (p,r) : steps L w & q = True#r) |
(? u v. w = u@v & (? r. (p,r) : steps L u & fin L r &
(? s. (start R,s) : steps R v & q = False#s))))"
by (blast dest: True_steps_concD
intro: True_True_steps_concI in_steps_epsclosure)
(** starting from the start **)
lemma start_conc:
"!!L R. start(conc L R) = True#start L"
by (simp add: conc_def)
lemma final_conc:
"!!L R. fin(conc L R) p = (? s. p = False#s & fin R s)"
by (simp add:conc_def split: list.split)
lemma accepts_conc:
"accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"
apply (simp add: accepts_def True_steps_conc final_conc start_conc)
apply (blast)
done
(******************************************************)
(* star *)
(******************************************************)
lemma True_in_eps_star[iff]:
"!!A. (True#p,q) : eps(star A) =
( (? r. q = True#r & (p,r) : eps A) | (fin A p & q = True#start A) )"
by (simp add:star_def step_def) (blast)
lemma True_True_step_starI:
"!!A. (p,q) : step A a ==> (True#p, True#q) : step (star A) a"
by (simp add:star_def step_def)
lemma True_True_eps_starI:
"(p,r) : (eps A)^* ==> (True#p, True#r) : (eps(star A))^*"
apply (induct rule: rtrancl_induct)
apply (blast)
apply (blast intro: True_True_step_starI rtrancl_into_rtrancl)
done
lemma True_start_eps_starI:
"!!A. fin A p ==> (True#p,True#start A) : eps(star A)"
by (simp add:star_def step_def)
lemma lem':
"(tp,s) : (eps(star A))^* ==> (! p. tp = True#p -->
(? r. ((p,r) : (eps A)^* |
(? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) &
s = True#r))"
apply (induct rule: rtrancl_induct)
apply (simp)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma True_eps_star[iff]:
"((True#p,s) : (eps(star A))^*) =
(? r. ((p,r) : (eps A)^* |
(? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) &
s = True#r)"
apply (rule iffI)
apply (drule lem')
apply (blast)
(* Why can't blast do the rest? *)
apply (clarify)
apply (erule disjE)
apply (erule True_True_eps_starI)
apply (clarify)
apply (rule rtrancl_trans)
apply (erule True_True_eps_starI)
apply (rule rtrancl_trans)
apply (rule r_into_rtrancl)
apply (erule True_start_eps_starI)
apply (erule True_True_eps_starI)
done
(** True in step Some **)
lemma True_step_star[iff]:
"!!A. (True#p,r): step (star A) (Some a) =
(? q. (p,q): step A (Some a) & r=True#q)"
by (simp add:star_def step_def) (blast)
(** True in steps **)
(* reverse list induction! Complicates matters for conc? *)
lemma True_start_steps_starD[rule_format]:
"!rr. (True#start A,rr) : steps (star A) w -->
(? us v. w = concat us @ v &
(!u:set us. accepts A u) &
(? r. (start A,r) : steps A v & rr = True#r))"
apply (induct w rule: rev_induct)
apply (simp)
apply (clarify)
apply (rule_tac x = "[]" in exI)
apply (erule disjE)
apply (simp)
apply (clarify)
apply (simp)
apply (simp add: O_assoc[symmetric] epsclosure_steps)
apply (clarify)
apply (erule allE, erule impE, assumption)
apply (clarify)
apply (erule disjE)
apply (rule_tac x = "us" in exI)
apply (rule_tac x = "v@[x]" in exI)
apply (simp add: O_assoc[symmetric] epsclosure_steps)
apply (blast)
apply (clarify)
apply (rule_tac x = "us@[v@[x]]" in exI)
apply (rule_tac x = "[]" in exI)
apply (simp add: accepts_def)
apply (blast)
done
lemma True_True_steps_starI:
"!!p. (p,q) : steps A w ==> (True#p,True#q) : steps (star A) w"
apply (induct "w")
apply (simp)
apply (simp)
apply (blast intro: True_True_eps_starI True_True_step_starI)
done
lemma steps_star_cycle:
"(!u : set us. accepts A u) ==>
(True#start A,True#start A) : steps (star A) (concat us)"
apply (induct "us")
apply (simp add:accepts_def)
apply (simp add:accepts_def)
by(blast intro: True_True_steps_starI True_start_eps_starI in_epsclosure_steps)
(* Better stated directly with start(star A)? Loop in star A back to start(star A)?*)
lemma True_start_steps_star:
"(True#start A,rr) : steps (star A) w =
(? us v. w = concat us @ v &
(!u:set us. accepts A u) &
(? r. (start A,r) : steps A v & rr = True#r))"
apply (rule iffI)
apply (erule True_start_steps_starD)
apply (clarify)
apply (blast intro: steps_star_cycle True_True_steps_starI)
done
(** the start state **)
lemma start_step_star[iff]:
"!!A. (start(star A),r) : step (star A) a = (a=None & r = True#start A)"
by (simp add:star_def step_def)
lemmas epsclosure_start_step_star =
in_unfold_rtrancl2[where ?p = "start (star A)"] for A
lemma start_steps_star:
"(start(star A),r) : steps (star A) w =
((w=[] & r= start(star A)) | (True#start A,r) : steps (star A) w)"
apply (rule iffI)
apply (case_tac "w")
apply (simp add: epsclosure_start_step_star)
apply (simp)
apply (clarify)
apply (simp add: epsclosure_start_step_star)
apply (blast)
apply (erule disjE)
apply (simp)
apply (blast intro: in_steps_epsclosure)
done
lemma fin_star_True[iff]: "!!A. fin (star A) (True#p) = fin A p"
by (simp add:star_def)
lemma fin_star_start[iff]: "!!A. fin (star A) (start(star A))"
by (simp add:star_def)
(* too complex! Simpler if loop back to start(star A)? *)
lemma accepts_star:
"accepts (star A) w =
(? us. (!u : set(us). accepts A u) & (w = concat us) )"
apply(unfold accepts_def)
apply (simp add: start_steps_star True_start_steps_star)
apply (rule iffI)
apply (clarify)
apply (erule disjE)
apply (clarify)
apply (simp)
apply (rule_tac x = "[]" in exI)
apply (simp)
apply (clarify)
apply (rule_tac x = "us@[v]" in exI)
apply (simp add: accepts_def)
apply (blast)
apply (clarify)
apply (rule_tac xs = "us" in rev_exhaust)
apply (simp)
apply (blast)
apply (clarify)
apply (simp add: accepts_def)
apply (blast)
done
(***** Correctness of r2n *****)
lemma accepts_rexp2nae:
"!!w. accepts (rexp2nae r) w = (w : lang r)"
apply (induct "r")
apply (simp add: accepts_def)
apply simp
apply (simp add: accepts_atom)
apply (simp add: accepts_or)
apply (simp add: accepts_conc Regular_Set.conc_def)
apply (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
done
end