Isabelle_DOF/src/SI/SI_Quantities.thy

310 lines
13 KiB
Plaintext

section \<open> SI Quantities \<close>
theory SI_Quantities
imports SI_Units Optics.Lenses
begin
subsection \<open> The \<^theory_text>\<open>Quantity\<close>-type and its operations \<close>
record 'a Quantity =
magn :: 'a \<comment> \<open> Magnitude of the quantity \<close>
unit :: Unit \<comment> \<open> Unit of the quantity \<close>
lemma Quantity_eq_intro:
assumes "magn x = magn y" "unit x = unit y" "more x = more y"
shows "x = y"
by (simp add: assms)
instantiation Quantity_ext :: (times, times) times
begin
definition [si_def]:
"times_Quantity_ext x y = \<lparr> magn = magn x \<cdot> magn y, unit = unit x \<cdot> unit y, \<dots> = more x \<cdot> more y \<rparr>"
instance ..
end
lemma magn_times [simp]: "magn (x \<cdot> y) = magn x \<cdot> magn y" by (simp add: times_Quantity_ext_def)
lemma unit_times [simp]: "unit (x \<cdot> y) = unit x \<cdot> unit y" by (simp add: times_Quantity_ext_def)
lemma more_times [simp]: "more (x \<cdot> y) = more x \<cdot> more y" by (simp add: times_Quantity_ext_def)
instantiation Quantity_ext :: (zero, zero) zero
begin
definition "zero_Quantity_ext = \<lparr> magn = 0, unit = 1, \<dots> = 0 \<rparr>"
instance ..
end
lemma magn_zero [simp]: "magn 0 = 0" by (simp add: zero_Quantity_ext_def)
lemma unit_zero [simp]: "unit 0 = 1" by (simp add: zero_Quantity_ext_def)
lemma more_zero [simp]: "more 0 = 0" by (simp add: zero_Quantity_ext_def)
instantiation Quantity_ext :: (one, one) one
begin
definition [si_def]: "one_Quantity_ext = \<lparr> magn = 1, unit = 1, \<dots> = 1 \<rparr>"
instance ..
end
lemma magn_one [simp]: "magn 1 = 1" by (simp add: one_Quantity_ext_def)
lemma unit_one [simp]: "unit 1 = 1" by (simp add: one_Quantity_ext_def)
lemma more_one [simp]: "more 1 = 1" by (simp add: one_Quantity_ext_def)
instantiation Quantity_ext :: (inverse, inverse) inverse
begin
definition [si_def]: "inverse_Quantity_ext x = \<lparr> magn = inverse (magn x), unit = inverse (unit x), \<dots> = inverse (more x) \<rparr>"
definition [si_def]: "divide_Quantity_ext x y = \<lparr> magn = magn x / magn y, unit = unit x / unit y, \<dots> = more x / more y \<rparr>"
instance ..
end
lemma magn_inverse [simp]: "magn (inverse x) = inverse (magn x)"
by (simp add: inverse_Quantity_ext_def)
lemma unit_inverse [simp]: "unit (inverse x) = inverse (unit x)"
by (simp add: inverse_Quantity_ext_def)
lemma more_inverse [simp]: "more (inverse x) = inverse (more x)"
by (simp add: inverse_Quantity_ext_def)
lemma magn_divide [simp]: "magn (x / y) = magn x / magn y"
by (simp add: divide_Quantity_ext_def)
lemma unit_divide [simp]: "unit (x / y) = unit x / unit y"
by (simp add: divide_Quantity_ext_def)
lemma more_divide [simp]: "more (x / y) = more x / more y"
by (simp add: divide_Quantity_ext_def)
instance Quantity_ext :: (comm_monoid_mult, comm_monoid_mult) comm_monoid_mult
by (intro_classes, simp_all add: one_Quantity_ext_def
times_Quantity_ext_def mult.assoc, simp add: mult.commute)
instance Quantity_ext :: (ab_group_mult, ab_group_mult) ab_group_mult
by (intro_classes, rule Quantity_eq_intro, simp_all)
subsection \<open> SI Tagged Types \<close>
text\<open>We 'lift' SI type expressions to SI tagged type expressions as follows:\<close>
typedef (overloaded) ('n, 'u::si_type) tQuant ("_[_]" [999,0] 999)
= "{x :: 'n Quantity. unit x = SI('u)}"
morphisms fromUnit toUnit by (rule_tac x="\<lparr> magn = undefined, unit = SI('u) \<rparr>" in exI, simp)
setup_lifting type_definition_tQuant
text \<open> Coerce values when their units are equivalent \<close>
definition coerceUnit :: "'u\<^sub>2 itself \<Rightarrow> 'a['u\<^sub>1::si_type] \<Rightarrow> 'a['u\<^sub>2::si_type]" where
"SI('u\<^sub>1) = SI('u\<^sub>2) \<Longrightarrow> coerceUnit t x = (toUnit (fromUnit x))"
section\<open>Operations SI-tagged types via their Semantic Domains\<close>
subsection\<open>Predicates on SI-tagged types\<close>
text \<open> Two SI types are equivalent if they have the same value-level units. \<close>
lift_definition Quant_equiv :: "'n['a::si_type] \<Rightarrow> 'n['b::si_type] \<Rightarrow> bool" (infix "\<approx>\<^sub>Q" 50) is
"(=)" .
text\<open>This gives us an equivalence, but, unfortunately, not a congruence.\<close>
lemma Quant_equiv_refl [simp]: "a \<approx>\<^sub>Q a"
by (simp add: Quant_equiv_def)
lemma Quant_equiv_sym: "a \<approx>\<^sub>Q b \<Longrightarrow> b \<approx>\<^sub>Q a"
by (simp add: Quant_equiv_def)
lemma Quant_equiv_trans: "\<lbrakk> a \<approx>\<^sub>Q b; b \<approx>\<^sub>Q c \<rbrakk> \<Longrightarrow> a \<approx>\<^sub>Q c"
by (simp add: Quant_equiv_def)
(* the following series of equivalent statements ... *)
lemma coerceQuant_eq_iff:
fixes x :: "'a['u\<^sub>1::si_type]"
assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)"
shows "(coerceUnit TYPE('u\<^sub>2) x) \<approx>\<^sub>Q x"
by (metis Quant_equiv.rep_eq assms coerceUnit_def toUnit_cases toUnit_inverse)
(* or equivalently *)
lemma coerceQuant_eq_iff2:
fixes x :: "'a['u\<^sub>1::si_type]"
assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" and "y = (coerceUnit TYPE('u\<^sub>2) x)"
shows "x \<approx>\<^sub>Q y"
using Quant_equiv_sym assms(1) assms(2) coerceQuant_eq_iff by blast
lemma updown_eq_iff:
fixes x :: "'a['u\<^sub>1::si_type]" fixes y :: "'a['u\<^sub>2::si_type]"
assumes "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)" and "y = (toUnit (fromUnit x))"
shows "x \<approx>\<^sub>Q y"
by (simp add: assms(1) assms(2) coerceQuant_eq_iff2 coerceUnit_def)
text\<open>This is more general that \<open>y = x \<Longrightarrow> x \<approx>\<^sub>Q y\<close>, since x and y may have different type.\<close>
find_theorems "(toUnit (fromUnit _))"
lemma eq_ :
fixes x :: "'a['u\<^sub>1::si_type]" fixes y :: "'a['u\<^sub>2::si_type]"
assumes "x \<approx>\<^sub>Q y"
shows "SI('u\<^sub>1) = SI('u\<^sub>2::si_type)"
by (metis (full_types) Quant_equiv.rep_eq assms fromUnit mem_Collect_eq)
subsection\<open>Operations on SI-tagged types\<close>
lift_definition
Quant_times :: "('n::times)['a::si_type] \<Rightarrow> 'n['b::si_type] \<Rightarrow> 'n['a \<cdot>'b]" (infixl "\<^bold>\<cdot>" 69) is "(*)"
by (simp add: si_sem_UnitTimes_def times_Quantity_ext_def)
lift_definition
Quant_inverse :: "('n::inverse)['a::si_type] \<Rightarrow> 'n['a\<^sup>-\<^sup>1]" ("(_\<^sup>-\<^sup>\<one>)" [999] 999) is "inverse"
by (simp add: inverse_Quantity_ext_def si_sem_UnitInv_def)
abbreviation
Quant_divide :: "('n::{times,inverse})['a::si_type] \<Rightarrow> 'n['b::si_type] \<Rightarrow> 'n['a/'b]" (infixl "\<^bold>'/" 70) where
"Quant_divide x y \<equiv> x \<^bold>\<cdot> y\<^sup>-\<^sup>\<one>"
abbreviation Quant_sq ("(_)\<^sup>\<two>" [999] 999) where "u\<^sup>\<two> \<equiv> u\<^bold>\<cdot>u"
abbreviation Quant_cube ("(_)\<^sup>\<three>" [999] 999) where "u\<^sup>\<three> \<equiv> u\<^bold>\<cdot>u\<^bold>\<cdot>u"
abbreviation Quant_quart ("(_)\<^sup>\<four>" [999] 999) where "u\<^sup>\<four> \<equiv> u\<^bold>\<cdot>u\<^bold>\<cdot>u\<^bold>\<cdot>u"
abbreviation Quant_neq_sq ("(_)\<^sup>-\<^sup>\<two>" [999] 999) where "u\<^sup>-\<^sup>\<two> \<equiv> (u\<^sup>\<two>)\<^sup>-\<^sup>\<one>"
abbreviation Quant_neq_cube ("(_)\<^sup>-\<^sup>\<three>" [999] 999) where "u\<^sup>-\<^sup>\<three> \<equiv> (u\<^sup>\<three>)\<^sup>-\<^sup>\<one>"
abbreviation Quant_neq_quart ("(_)\<^sup>-\<^sup>\<four>" [999] 999) where "u\<^sup>-\<^sup>\<four> \<equiv> (u\<^sup>\<three>)\<^sup>-\<^sup>\<one>"
instantiation tQuant :: (zero,si_type) zero
begin
lift_definition zero_tQuant :: "('a, 'b) tQuant" is "\<lparr> magn = 0, unit = SI('b) \<rparr>"
by simp
instance ..
end
instantiation tQuant :: (one,si_type) one
begin
lift_definition one_tQuant :: "('a, 'b) tQuant" is "\<lparr> magn = 1, unit = SI('b) \<rparr>"
by simp
instance ..
end
instantiation tQuant :: (plus,si_type) plus
begin
lift_definition plus_tQuant :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x y. \<lparr> magn = magn x + magn y, unit = SI('b) \<rparr>"
by (simp)
instance ..
end
instance tQuant :: (semigroup_add,si_type) semigroup_add
by (intro_classes, transfer, simp add: add.assoc)
instance tQuant :: (ab_semigroup_add,si_type) ab_semigroup_add
by (intro_classes, transfer, simp add: add.commute)
instance tQuant :: (monoid_add,si_type) monoid_add
by (intro_classes; (transfer, simp))
instance tQuant :: (comm_monoid_add,si_type) comm_monoid_add
by (intro_classes; transfer, simp)
instantiation tQuant :: (uminus,si_type) uminus
begin
lift_definition uminus_tQuant :: "'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x. \<lparr> magn = - magn x, unit = unit x \<rparr>" by (simp)
instance ..
end
instantiation tQuant :: (minus,si_type) minus
begin
lift_definition minus_tQuant :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> 'a['b]"
is "\<lambda> x y. \<lparr> magn = magn x - magn y, unit = unit x \<rparr>" by (simp)
instance ..
end
instance tQuant :: (numeral,si_type) numeral ..
instance tQuant :: (ab_group_add,si_type) ab_group_add
by (intro_classes, (transfer, simp)+)
instantiation tQuant :: (order,si_type) order
begin
lift_definition less_eq_tQuant :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> bool" is "\<lambda> x y. magn x \<le> magn y" .
lift_definition less_tQuant :: "'a['b] \<Rightarrow> 'a['b] \<Rightarrow> bool" is "\<lambda> x y. magn x < magn y" .
instance by (intro_classes, (transfer, simp add: less_le_not_le)+)
end
lift_definition scaleQ :: "'a \<Rightarrow> 'a::times['u::si_type] \<Rightarrow> 'a['u]" (infixr "*\<^sub>Q" 63)
is "\<lambda> r x. \<lparr> magn = r * magn x, unit = SI('u) \<rparr>" by simp
notation scaleQ (infixr "\<odot>" 63)
lift_definition mk_unit :: "'a \<Rightarrow> 'u itself \<Rightarrow> ('a::one)['u::si_type]"
is "\<lambda> n u. \<lparr> magn = n, unit = SI('u) \<rparr>" by simp
syntax "_mk_unit" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("UNIT'(_, _')")
translations "UNIT(n, 'a)" == "CONST mk_unit n TYPE('a)"
subsection \<open>Polymorphic Operations for Elementary SI Units \<close>
definition [si_def]: "meter = UNIT(1, Length)"
definition [si_def]: "second = UNIT(1, Time)"
definition [si_def]: "kilogram = UNIT(1, Mass)"
definition [si_def]: "ampere = UNIT(1, Current)"
definition [si_def]: "kelvin = UNIT(1, Temperature)"
definition [si_def]: "mole = UNIT(1, Amount)"
definition [si_def]: "candela = UNIT(1, Intensity)"
definition dimless ("\<one>")
where [si_def]: "dimless = UNIT(1, NoDimension)"
subsubsection \<open>The Projection: Stripping the SI-Tags \<close>
definition magnQuant :: "'a['u::si_type] \<Rightarrow> 'a" ("\<lbrakk>_\<rbrakk>\<^sub>Q") where
"magnQuant x = magn (fromUnit x)"
subsubsection \<open>More Operations \<close>
lemma unit_eq_iff_magn_eq:
"x = y \<longleftrightarrow> \<lbrakk>x\<rbrakk>\<^sub>Q = \<lbrakk>y\<rbrakk>\<^sub>Q"
by (auto simp add: magnQuant_def, transfer, simp)
lemma unit_equiv_iff:
fixes x :: "'a['u\<^sub>1::si_type]" and y :: "'a['u\<^sub>2::si_type]"
shows "x \<approx>\<^sub>Q y \<longleftrightarrow> \<lbrakk>x\<rbrakk>\<^sub>Q = \<lbrakk>y\<rbrakk>\<^sub>Q \<and> SI('u\<^sub>1) = SI('u\<^sub>2)"
proof -
have "\<forall>t ta. (ta::'a['u\<^sub>2]) = t \<or> magn (fromUnit ta) \<noteq> magn (fromUnit t)"
by (simp add: magnQuant_def unit_eq_iff_magn_eq)
then show ?thesis
by (metis (full_types) Quant_equiv.rep_eq coerceQuant_eq_iff2 eq_ magnQuant_def)
qed
lemma unit_le_iff_magn_le:
"x \<le> y \<longleftrightarrow> \<lbrakk>x\<rbrakk>\<^sub>Q \<le> \<lbrakk>y\<rbrakk>\<^sub>Q"
by (auto simp add: magnQuant_def; (transfer, simp))
lemma magnQuant_zero [si_def]: "\<lbrakk>0\<rbrakk>\<^sub>Q = 0"
by (simp add: magnQuant_def, transfer, simp)
lemma magnQuant_one [si_def]: "\<lbrakk>1\<rbrakk>\<^sub>Q = 1"
by (simp add: magnQuant_def, transfer, simp)
lemma magnQuant_plus [si_def]: "\<lbrakk>x + y\<rbrakk>\<^sub>Q = \<lbrakk>x\<rbrakk>\<^sub>Q + \<lbrakk>y\<rbrakk>\<^sub>Q"
by (simp add: magnQuant_def, transfer, simp)
lemma magnQuant_scaleQ [si_def]: "\<lbrakk>x *\<^sub>Q y\<rbrakk>\<^sub>Q = x * \<lbrakk>y\<rbrakk>\<^sub>Q"
by (simp add: magnQuant_def, transfer, simp)
lemma magnQuant_qinv [si_def]: "\<lbrakk>x\<^sup>-\<^sup>\<one>\<rbrakk>\<^sub>Q = inverse \<lbrakk>x\<rbrakk>\<^sub>Q"
by (simp add: magnQuant_def, transfer, simp)
lemma magnQuant_qdiv [si_def]: "\<lbrakk>(x::('a::field)[_]) \<^bold>/ y\<rbrakk>\<^sub>Q = \<lbrakk>x\<rbrakk>\<^sub>Q / \<lbrakk>y\<rbrakk>\<^sub>Q"
by (simp add: magnQuant_def, transfer, simp add: field_class.field_divide_inverse)
lemma magnQuant_numeral [si_def]: "\<lbrakk>numeral n\<rbrakk>\<^sub>Q = numeral n"
apply (induct n, simp_all add: si_def)
apply (metis magnQuant_plus numeral_code(2))
apply (metis magnQuant_one magnQuant_plus numeral_code(3))
done
lemma magnQuant_mk [si_def]: "\<lbrakk>UNIT(n, 'u::si_type)\<rbrakk>\<^sub>Q = n"
by (simp add: magnQuant_def, transfer, simp)
method si_calc =
(simp add: unit_eq_iff_magn_eq unit_le_iff_magn_le si_def)
end