Isabelle_DOF/AFP-contribs/Functional-Automata/RegExp2NA.thy

443 lines
11 KiB
Plaintext

(* Author: Tobias Nipkow
Copyright 1998 TUM
*)
section "From regular expressions directly to nondeterministic automata"
theory RegExp2NA
imports "Regular-Sets.Regular_Exp" NA
begin
type_synonym 'a bitsNA = "('a,bool list)na"
definition
"atom" :: "'a => 'a bitsNA" where
"atom a = ([True],
%b s. if s=[True] & b=a then {[False]} else {},
%s. s=[False])"
definition
or :: "'a bitsNA => 'a bitsNA => 'a bitsNA" where
"or = (%(ql,dl,fl)(qr,dr,fr).
([],
%a s. case s of
[] => (True ## dl a ql) Un (False ## dr a qr)
| left#s => if left then True ## dl a s
else False ## dr a s,
%s. case s of [] => (fl ql | fr qr)
| left#s => if left then fl s else fr s))"
definition
conc :: "'a bitsNA => 'a bitsNA => 'a bitsNA" where
"conc = (%(ql,dl,fl)(qr,dr,fr).
(True#ql,
%a s. case s of
[] => {}
| left#s => if left then (True ## dl a s) Un
(if fl s then False ## dr a qr else {})
else False ## dr a s,
%s. case s of [] => False | left#s => left & fl s & fr qr | ~left & fr s))"
definition
epsilon :: "'a bitsNA" where
"epsilon = ([],%a s. {}, %s. s=[])"
definition
plus :: "'a bitsNA => 'a bitsNA" where
"plus = (%(q,d,f). (q, %a s. d a s Un (if f s then d a q else {}), f))"
definition
star :: "'a bitsNA => 'a bitsNA" where
"star A = or epsilon (plus A)"
primrec rexp2na :: "'a rexp => 'a bitsNA" where
"rexp2na Zero = ([], %a s. {}, %s. False)" |
"rexp2na One = epsilon" |
"rexp2na(Atom a) = atom a" |
"rexp2na(Plus r s) = or (rexp2na r) (rexp2na s)" |
"rexp2na(Times r s) = conc (rexp2na r) (rexp2na s)" |
"rexp2na(Star r) = star (rexp2na r)"
declare split_paired_all[simp]
(******************************************************)
(* atom *)
(******************************************************)
lemma fin_atom: "(fin (atom a) q) = (q = [False])"
by(simp add:atom_def)
lemma start_atom: "start (atom a) = [True]"
by(simp add:atom_def)
lemma in_step_atom_Some[simp]:
"(p,q) : step (atom a) b = (p=[True] & q=[False] & b=a)"
by (simp add: atom_def step_def)
lemma False_False_in_steps_atom:
"([False],[False]) : steps (atom a) w = (w = [])"
apply (induct "w")
apply simp
apply (simp add: relcomp_unfold)
done
lemma start_fin_in_steps_atom:
"(start (atom a), [False]) : steps (atom a) w = (w = [a])"
apply (induct "w")
apply (simp add: start_atom)
apply (simp add: False_False_in_steps_atom relcomp_unfold start_atom)
done
lemma accepts_atom:
"accepts (atom a) w = (w = [a])"
by (simp add: accepts_conv_steps start_fin_in_steps_atom fin_atom)
(******************************************************)
(* or *)
(******************************************************)
(***** lift True/False over fin *****)
lemma fin_or_True[iff]:
"!!L R. fin (or L R) (True#p) = fin L p"
by(simp add:or_def)
lemma fin_or_False[iff]:
"!!L R. fin (or L R) (False#p) = fin R p"
by(simp add:or_def)
(***** lift True/False over step *****)
lemma True_in_step_or[iff]:
"!!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)"
apply (simp add:or_def step_def)
apply blast
done
lemma False_in_step_or[iff]:
"!!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)"
apply (simp add:or_def step_def)
apply blast
done
(***** lift True/False over steps *****)
lemma lift_True_over_steps_or[iff]:
"!!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)"
apply (induct "w")
apply force
apply force
done
lemma lift_False_over_steps_or[iff]:
"!!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)"
apply (induct "w")
apply force
apply force
done
(** From the start **)
lemma start_step_or[iff]:
"!!L R. (start(or L R),q) : step(or L R) a =
(? p. (q = True#p & (start L,p) : step L a) |
(q = False#p & (start R,p) : step R a))"
apply (simp add:or_def step_def)
apply blast
done
lemma steps_or:
"(start(or L R), q) : steps (or L R) w =
( (w = [] & q = start(or L R)) |
(w ~= [] & (? p. q = True # p & (start L,p) : steps L w |
q = False # p & (start R,p) : steps R w)))"
apply (case_tac "w")
apply (simp)
apply blast
apply (simp)
apply blast
done
lemma fin_start_or[iff]:
"!!L R. fin (or L R) (start(or L R)) = (fin L (start L) | fin R (start R))"
by (simp add:or_def)
lemma accepts_or[iff]:
"accepts (or L R) w = (accepts L w | accepts R w)"
apply (simp add: accepts_conv_steps steps_or)
(* get rid of case_tac: *)
apply (case_tac "w = []")
apply auto
done
(******************************************************)
(* conc *)
(******************************************************)
(** True/False in fin **)
lemma fin_conc_True[iff]:
"!!L R. fin (conc L R) (True#p) = (fin L p & fin R (start R))"
by(simp add:conc_def)
lemma fin_conc_False[iff]:
"!!L R. fin (conc L R) (False#p) = fin R p"
by(simp add:conc_def)
(** True/False in step **)
lemma True_step_conc[iff]:
"!!L R. (True#p,q) : step (conc L R) a =
((? r. q=True#r & (p,r): step L a) |
(fin L p & (? r. q=False#r & (start R,r) : step R a)))"
apply (simp add:conc_def step_def)
apply blast
done
lemma False_step_conc[iff]:
"!!L R. (False#p,q) : step (conc L R) a =
(? r. q = False#r & (p,r) : step R a)"
apply (simp add:conc_def step_def)
apply blast
done
(** False in steps **)
lemma False_steps_conc[iff]:
"!!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"
apply (induct "w")
apply fastforce
apply force
done
(** True in steps **)
lemma True_True_steps_concI:
"!!L R p. (p,q) : steps L w ==> (True#p,True#q) : steps (conc L R) w"
apply (induct "w")
apply simp
apply simp
apply fast
done
lemma True_False_step_conc[iff]:
"!!L R. (True#p,False#q) : step (conc L R) a =
(fin L p & (start R,q) : step R a)"
by simp
lemma True_steps_concD[rule_format]:
"!p. (True#p,q) : steps (conc L R) w -->
((? r. (p,r) : steps L w & q = True#r) |
(? u a v. w = u@a#v &
(? r. (p,r) : steps L u & fin L r &
(? s. (start R,s) : step R a &
(? t. (s,t) : steps R v & q = False#t)))))"
apply (induct "w")
apply simp
apply simp
apply (clarify del:disjCI)
apply (erule disjE)
apply (clarify del:disjCI)
apply (erule allE, erule impE, assumption)
apply (erule disjE)
apply blast
apply (rule disjI2)
apply (clarify)
apply simp
apply (rule_tac x = "a#u" in exI)
apply simp
apply blast
apply (rule disjI2)
apply (clarify)
apply simp
apply (rule_tac x = "[]" in exI)
apply simp
apply blast
done
lemma True_steps_conc:
"(True#p,q) : steps (conc L R) w =
((? r. (p,r) : steps L w & q = True#r) |
(? u a v. w = u@a#v &
(? r. (p,r) : steps L u & fin L r &
(? s. (start R,s) : step R a &
(? t. (s,t) : steps R v & q = False#t)))))"
by(force dest!: True_steps_concD intro!: True_True_steps_concI)
(** starting from the start **)
lemma start_conc:
"!!L R. start(conc L R) = True#start L"
by (simp add:conc_def)
lemma final_conc:
"!!L R. fin(conc L R) p = ((fin R (start R) & (? s. p = True#s & fin L s)) |
(? s. p = False#s & fin R s))"
apply (simp add:conc_def split: list.split)
apply blast
done
lemma accepts_conc:
"accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"
apply (simp add: accepts_conv_steps True_steps_conc final_conc start_conc)
apply (rule iffI)
apply (clarify)
apply (erule disjE)
apply (clarify)
apply (erule disjE)
apply (rule_tac x = "w" in exI)
apply simp
apply blast
apply blast
apply (erule disjE)
apply blast
apply (clarify)
apply (rule_tac x = "u" in exI)
apply simp
apply blast
apply (clarify)
apply (case_tac "v")
apply simp
apply blast
apply simp
apply blast
done
(******************************************************)
(* epsilon *)
(******************************************************)
lemma step_epsilon[simp]: "step epsilon a = {}"
by(simp add:epsilon_def step_def)
lemma steps_epsilon: "((p,q) : steps epsilon w) = (w=[] & p=q)"
by (induct "w") auto
lemma accepts_epsilon[iff]: "accepts epsilon w = (w = [])"
apply (simp add: steps_epsilon accepts_conv_steps)
apply (simp add: epsilon_def)
done
(******************************************************)
(* plus *)
(******************************************************)
lemma start_plus[simp]: "!!A. start (plus A) = start A"
by(simp add:plus_def)
lemma fin_plus[iff]: "!!A. fin (plus A) = fin A"
by(simp add:plus_def)
lemma step_plusI:
"!!A. (p,q) : step A a ==> (p,q) : step (plus A) a"
by(simp add:plus_def step_def)
lemma steps_plusI: "!!p. (p,q) : steps A w ==> (p,q) : steps (plus A) w"
apply (induct "w")
apply simp
apply simp
apply (blast intro: step_plusI)
done
lemma step_plus_conv[iff]:
"!!A. (p,r): step (plus A) a =
( (p,r): step A a | fin A p & (start A,r) : step A a )"
by(simp add:plus_def step_def)
lemma fin_steps_plusI:
"[| (start A,q) : steps A u; u ~= []; fin A p |]
==> (p,q) : steps (plus A) u"
apply (case_tac "u")
apply blast
apply simp
apply (blast intro: steps_plusI)
done
(* reverse list induction! Complicates matters for conc? *)
lemma start_steps_plusD[rule_format]:
"!r. (start A,r) : steps (plus A) w -->
(? us v. w = concat us @ v &
(!u:set us. accepts A u) &
(start A,r) : steps A v)"
apply (induct w rule: rev_induct)
apply simp
apply (rule_tac x = "[]" in exI)
apply simp
apply simp
apply (clarify)
apply (erule allE, erule impE, assumption)
apply (clarify)
apply (erule disjE)
apply (rule_tac x = "us" in exI)
apply (simp)
apply blast
apply (rule_tac x = "us@[v]" in exI)
apply (simp add: accepts_conv_steps)
apply blast
done
lemma steps_star_cycle[rule_format]:
"us ~= [] --> (!u : set us. accepts A u) --> accepts (plus A) (concat us)"
apply (simp add: accepts_conv_steps)
apply (induct us rule: rev_induct)
apply simp
apply (rename_tac u us)
apply simp
apply (clarify)
apply (case_tac "us = []")
apply (simp)
apply (blast intro: steps_plusI fin_steps_plusI)
apply (clarify)
apply (case_tac "u = []")
apply (simp)
apply (blast intro: steps_plusI fin_steps_plusI)
apply (blast intro: steps_plusI fin_steps_plusI)
done
lemma accepts_plus[iff]:
"accepts (plus A) w =
(? us. us ~= [] & w = concat us & (!u : set us. accepts A u))"
apply (rule iffI)
apply (simp add: accepts_conv_steps)
apply (clarify)
apply (drule start_steps_plusD)
apply (clarify)
apply (rule_tac x = "us@[v]" in exI)
apply (simp add: accepts_conv_steps)
apply blast
apply (blast intro: steps_star_cycle)
done
(******************************************************)
(* star *)
(******************************************************)
lemma accepts_star:
"accepts (star A) w = (? us. (!u : set us. accepts A u) & w = concat us)"
apply(unfold star_def)
apply (rule iffI)
apply (clarify)
apply (erule disjE)
apply (rule_tac x = "[]" in exI)
apply simp
apply blast
apply force
done
(***** Correctness of r2n *****)
lemma accepts_rexp2na:
"!!w. accepts (rexp2na r) w = (w : lang r)"
apply (induct "r")
apply (simp add: accepts_conv_steps)
apply simp
apply (simp add: accepts_atom)
apply (simp)
apply (simp add: accepts_conc Regular_Set.conc_def)
apply (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
done
end