Isabelle_DOF/AFP-contribs/Regular-Sets/Regular_Set.thy

458 lines
16 KiB
Plaintext

(* Author: Tobias Nipkow, Alex Krauss, Christian Urban *)
section "Regular sets"
theory Regular_Set
imports Main
begin
type_synonym 'a lang = "'a list set"
definition conc :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a lang" (infixr "@@" 75) where
"A @@ B = {xs@ys | xs ys. xs:A & ys:B}"
text \<open>checks the code preprocessor for set comprehensions\<close>
export_code conc checking SML
overloading lang_pow == "compow :: nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
begin
primrec lang_pow :: "nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang" where
"lang_pow 0 A = {[]}" |
"lang_pow (Suc n) A = A @@ (lang_pow n A)"
end
text \<open>for code generation\<close>
definition lang_pow :: "nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang" where
lang_pow_code_def [code_abbrev]: "lang_pow = compow"
lemma [code]:
"lang_pow (Suc n) A = A @@ (lang_pow n A)"
"lang_pow 0 A = {[]}"
by (simp_all add: lang_pow_code_def)
hide_const (open) lang_pow
definition star :: "'a lang \<Rightarrow> 'a lang" where
"star A = (\<Union>n. A ^^ n)"
subsection\<open>@{term "op @@"}\<close>
lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A @@ B"
by (auto simp add: conc_def)
lemma concE[elim]:
assumes "w \<in> A @@ B"
obtains u v where "u \<in> A" "v \<in> B" "w = u@v"
using assms by (auto simp: conc_def)
lemma conc_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A @@ B \<subseteq> C @@ D"
by (auto simp: conc_def)
lemma conc_empty[simp]: shows "{} @@ A = {}" and "A @@ {} = {}"
by auto
lemma conc_epsilon[simp]: shows "{[]} @@ A = A" and "A @@ {[]} = A"
by (simp_all add:conc_def)
lemma conc_assoc: "(A @@ B) @@ C = A @@ (B @@ C)"
by (auto elim!: concE) (simp only: append_assoc[symmetric] concI)
lemma conc_Un_distrib:
shows "A @@ (B \<union> C) = A @@ B \<union> A @@ C"
and "(A \<union> B) @@ C = A @@ C \<union> B @@ C"
by auto
lemma conc_UNION_distrib:
shows "A @@ UNION I M = UNION I (%i. A @@ M i)"
and "UNION I M @@ A = UNION I (%i. M i @@ A)"
by auto
lemma conc_subset_lists: "A \<subseteq> lists S \<Longrightarrow> B \<subseteq> lists S \<Longrightarrow> A @@ B \<subseteq> lists S"
by(fastforce simp: conc_def in_lists_conv_set)
lemma Nil_in_conc[simp]: "[] \<in> A @@ B \<longleftrightarrow> [] \<in> A \<and> [] \<in> B"
by (metis append_is_Nil_conv concE concI)
lemma concI_if_Nil1: "[] \<in> A \<Longrightarrow> xs : B \<Longrightarrow> xs \<in> A @@ B"
by (metis append_Nil concI)
lemma conc_Diff_if_Nil1: "[] \<in> A \<Longrightarrow> A @@ B = (A - {[]}) @@ B \<union> B"
by (fastforce elim: concI_if_Nil1)
lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs : A \<Longrightarrow> xs \<in> A @@ B"
by (metis append_Nil2 concI)
lemma conc_Diff_if_Nil2: "[] \<in> B \<Longrightarrow> A @@ B = A @@ (B - {[]}) \<union> A"
by (fastforce elim: concI_if_Nil2)
lemma singleton_in_conc:
"[x] : A @@ B \<longleftrightarrow> [x] : A \<and> [] : B \<or> [] : A \<and> [x] : B"
by (fastforce simp: Cons_eq_append_conv append_eq_Cons_conv
conc_Diff_if_Nil1 conc_Diff_if_Nil2)
subsection\<open>@{term "A ^^ n"}\<close>
lemma lang_pow_add: "A ^^ (n + m) = A ^^ n @@ A ^^ m"
by (induct n) (auto simp: conc_assoc)
lemma lang_pow_empty: "{} ^^ n = (if n = 0 then {[]} else {})"
by (induct n) auto
lemma lang_pow_empty_Suc[simp]: "({}::'a lang) ^^ Suc n = {}"
by (simp add: lang_pow_empty)
lemma conc_pow_comm:
shows "A @@ (A ^^ n) = (A ^^ n) @@ A"
by (induct n) (simp_all add: conc_assoc[symmetric])
lemma length_lang_pow_ub:
"ALL w : A. length w \<le> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<le> k*n"
by(induct n arbitrary: w) (fastforce simp: conc_def)+
lemma length_lang_pow_lb:
"ALL w : A. length w \<ge> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<ge> k*n"
by(induct n arbitrary: w) (fastforce simp: conc_def)+
lemma lang_pow_subset_lists: "A \<subseteq> lists S \<Longrightarrow> A ^^ n \<subseteq> lists S"
by(induct n)(auto simp: conc_subset_lists)
subsection\<open>@{const star}\<close>
lemma star_subset_lists: "A \<subseteq> lists S \<Longrightarrow> star A \<subseteq> lists S"
unfolding star_def by(blast dest: lang_pow_subset_lists)
lemma star_if_lang_pow[simp]: "w : A ^^ n \<Longrightarrow> w : star A"
by (auto simp: star_def)
lemma Nil_in_star[iff]: "[] : star A"
proof (rule star_if_lang_pow)
show "[] : A ^^ 0" by simp
qed
lemma star_if_lang[simp]: assumes "w : A" shows "w : star A"
proof (rule star_if_lang_pow)
show "w : A ^^ 1" using \<open>w : A\<close> by simp
qed
lemma append_in_starI[simp]:
assumes "u : star A" and "v : star A" shows "u@v : star A"
proof -
from \<open>u : star A\<close> obtain m where "u : A ^^ m" by (auto simp: star_def)
moreover
from \<open>v : star A\<close> obtain n where "v : A ^^ n" by (auto simp: star_def)
ultimately have "u@v : A ^^ (m+n)" by (simp add: lang_pow_add)
thus ?thesis by simp
qed
lemma conc_star_star: "star A @@ star A = star A"
by (auto simp: conc_def)
lemma conc_star_comm:
shows "A @@ star A = star A @@ A"
unfolding star_def conc_pow_comm conc_UNION_distrib
by simp
lemma star_induct[consumes 1, case_names Nil append, induct set: star]:
assumes "w : star A"
and "P []"
and step: "!!u v. u : A \<Longrightarrow> v : star A \<Longrightarrow> P v \<Longrightarrow> P (u@v)"
shows "P w"
proof -
{ fix n have "w : A ^^ n \<Longrightarrow> P w"
by (induct n arbitrary: w) (auto intro: \<open>P []\<close> step star_if_lang_pow) }
with \<open>w : star A\<close> show "P w" by (auto simp: star_def)
qed
lemma star_empty[simp]: "star {} = {[]}"
by (auto elim: star_induct)
lemma star_epsilon[simp]: "star {[]} = {[]}"
by (auto elim: star_induct)
lemma star_idemp[simp]: "star (star A) = star A"
by (auto elim: star_induct)
lemma star_unfold_left: "star A = A @@ star A \<union> {[]}" (is "?L = ?R")
proof
show "?L \<subseteq> ?R" by (rule, erule star_induct) auto
qed auto
lemma concat_in_star: "set ws \<subseteq> A \<Longrightarrow> concat ws : star A"
by (induct ws) simp_all
lemma in_star_iff_concat:
"w : star A = (EX ws. set ws \<subseteq> A & w = concat ws)"
(is "_ = (EX ws. ?R w ws)")
proof
assume "w : star A" thus "EX ws. ?R w ws"
proof induct
case Nil have "?R [] []" by simp
thus ?case ..
next
case (append u v)
moreover
then obtain ws where "set ws \<subseteq> A \<and> v = concat ws" by blast
ultimately have "?R (u@v) (u#ws)" by auto
thus ?case ..
qed
next
assume "EX us. ?R w us" thus "w : star A"
by (auto simp: concat_in_star)
qed
lemma star_conv_concat: "star A = {concat ws|ws. set ws \<subseteq> A}"
by (fastforce simp: in_star_iff_concat)
lemma star_insert_eps[simp]: "star (insert [] A) = star(A)"
proof-
{ fix us
have "set us \<subseteq> insert [] A \<Longrightarrow> EX vs. concat us = concat vs \<and> set vs \<subseteq> A"
(is "?P \<Longrightarrow> EX vs. ?Q vs")
proof
let ?vs = "filter (%u. u \<noteq> []) us"
show "?P \<Longrightarrow> ?Q ?vs" by (induct us) auto
qed
} thus ?thesis by (auto simp: star_conv_concat)
qed
lemma star_unfold_left_Nil: "star A = (A - {[]}) @@ (star A) \<union> {[]}"
by (metis insert_Diff_single star_insert_eps star_unfold_left)
lemma star_Diff_Nil_fold: "(A - {[]}) @@ star A = star A - {[]}"
proof -
have "[] \<notin> (A - {[]}) @@ star A" by simp
thus ?thesis using star_unfold_left_Nil by blast
qed
lemma star_decom:
assumes a: "x \<in> star A" "x \<noteq> []"
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> star A"
using a by (induct rule: star_induct) (blast)+
subsection \<open>Left-Quotients of languages\<close>
definition Deriv :: "'a \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
where "Deriv x A = { xs. x#xs \<in> A }"
definition Derivs :: "'a list \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
where "Derivs xs A = { ys. xs @ ys \<in> A }"
abbreviation
Derivss :: "'a list \<Rightarrow> 'a lang set \<Rightarrow> 'a lang"
where
"Derivss s As \<equiv> \<Union> (Derivs s ` As)"
lemma Deriv_empty[simp]: "Deriv a {} = {}"
and Deriv_epsilon[simp]: "Deriv a {[]} = {}"
and Deriv_char[simp]: "Deriv a {[b]} = (if a = b then {[]} else {})"
and Deriv_union[simp]: "Deriv a (A \<union> B) = Deriv a A \<union> Deriv a B"
and Deriv_inter[simp]: "Deriv a (A \<inter> B) = Deriv a A \<inter> Deriv a B"
and Deriv_compl[simp]: "Deriv a (-A) = - Deriv a A"
and Deriv_Union[simp]: "Deriv a (Union M) = Union(Deriv a ` M)"
and Deriv_UN[simp]: "Deriv a (UN x:I. S x) = (UN x:I. Deriv a (S x))"
by (auto simp: Deriv_def)
lemma Der_conc [simp]:
shows "Deriv c (A @@ B) = (Deriv c A) @@ B \<union> (if [] \<in> A then Deriv c B else {})"
unfolding Deriv_def conc_def
by (auto simp add: Cons_eq_append_conv)
lemma Deriv_star [simp]:
shows "Deriv c (star A) = (Deriv c A) @@ star A"
proof -
have "Deriv c (star A) = Deriv c ({[]} \<union> A @@ star A)"
by (metis star_unfold_left sup.commute)
also have "... = Deriv c (A @@ star A)"
unfolding Deriv_union by (simp)
also have "... = (Deriv c A) @@ (star A) \<union> (if [] \<in> A then Deriv c (star A) else {})"
by simp
also have "... = (Deriv c A) @@ star A"
unfolding conc_def Deriv_def
using star_decom by (force simp add: Cons_eq_append_conv)
finally show "Deriv c (star A) = (Deriv c A) @@ star A" .
qed
lemma Deriv_diff[simp]:
shows "Deriv c (A - B) = Deriv c A - Deriv c B"
by(auto simp add: Deriv_def)
lemma Deriv_lists[simp]: "c : S \<Longrightarrow> Deriv c (lists S) = lists S"
by(auto simp add: Deriv_def)
lemma Derivs_simps [simp]:
shows "Derivs [] A = A"
and "Derivs (c # s) A = Derivs s (Deriv c A)"
and "Derivs (s1 @ s2) A = Derivs s2 (Derivs s1 A)"
unfolding Derivs_def Deriv_def by auto
lemma in_fold_Deriv: "v \<in> fold Deriv w L \<longleftrightarrow> w @ v \<in> L"
by (induct w arbitrary: L) (simp_all add: Deriv_def)
lemma Derivs_alt_def [code]: "Derivs w L = fold Deriv w L"
by (induct w arbitrary: L) simp_all
lemma Deriv_code [code]:
"Deriv x A = tl ` Set.filter (\<lambda>xs. case xs of x' # _ \<Rightarrow> x = x' | _ \<Rightarrow> False) A"
by (auto simp: Deriv_def Set.filter_def image_iff tl_def split: list.splits)
subsection \<open>Shuffle product\<close>
definition Shuffle (infixr "\<parallel>" 80) where
"Shuffle A B = \<Union>{shuffle xs ys | xs ys. xs \<in> A \<and> ys \<in> B}"
lemma Deriv_Shuffle[simp]:
"Deriv a (A \<parallel> B) = Deriv a A \<parallel> B \<union> A \<parallel> Deriv a B"
unfolding Shuffle_def Deriv_def by (fastforce simp: Cons_in_shuffle_iff neq_Nil_conv)
lemma shuffle_subset_lists:
assumes "A \<subseteq> lists S" "B \<subseteq> lists S"
shows "A \<parallel> B \<subseteq> lists S"
unfolding Shuffle_def proof safe
fix x and zs xs ys :: "'a list"
assume zs: "zs \<in> shuffle xs ys" "x \<in> set zs" and "xs \<in> A" "ys \<in> B"
with assms have "xs \<in> lists S" "ys \<in> lists S" by auto
with zs show "x \<in> S" by (induct xs ys arbitrary: zs rule: shuffle.induct) auto
qed
lemma Nil_in_Shuffle[simp]: "[] \<in> A \<parallel> B \<longleftrightarrow> [] \<in> A \<and> [] \<in> B"
unfolding Shuffle_def by force
lemma shuffle_Un_distrib:
shows "A \<parallel> (B \<union> C) = A \<parallel> B \<union> A \<parallel> C"
and "A \<parallel> (B \<union> C) = A \<parallel> B \<union> A \<parallel> C"
unfolding Shuffle_def by fast+
lemma shuffle_UNION_distrib:
shows "A \<parallel> UNION I M = UNION I (%i. A \<parallel> M i)"
and "UNION I M \<parallel> A = UNION I (%i. M i \<parallel> A)"
unfolding Shuffle_def by fast+
lemma Shuffle_empty[simp]:
"A \<parallel> {} = {}"
"{} \<parallel> B = {}"
unfolding Shuffle_def by auto
lemma Shuffle_eps[simp]:
"A \<parallel> {[]} = A"
"{[]} \<parallel> B = B"
unfolding Shuffle_def by auto
subsection \<open>Arden's Lemma\<close>
lemma arden_helper:
assumes eq: "X = A @@ X \<union> B"
shows "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
proof (induct n)
case 0
show "X = (A ^^ Suc 0) @@ X \<union> (\<Union>m\<le>0. (A ^^ m) @@ B)"
using eq by simp
next
case (Suc n)
have ih: "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" by fact
also have "\<dots> = (A ^^ Suc n) @@ (A @@ X \<union> B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" using eq by simp
also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> ((A ^^ Suc n) @@ B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
by (simp add: conc_Un_distrib conc_assoc[symmetric] conc_pow_comm)
also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)"
by (auto simp add: atMost_Suc)
finally show "X = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)" .
qed
lemma Arden:
assumes "[] \<notin> A"
shows "X = A @@ X \<union> B \<longleftrightarrow> X = star A @@ B"
proof
assume eq: "X = A @@ X \<union> B"
{ fix w assume "w : X"
let ?n = "size w"
from \<open>[] \<notin> A\<close> have "ALL u : A. length u \<ge> 1"
by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
by (metis length_lang_pow_lb nat_mult_1)
hence "ALL u : A^^(?n+1)@@X. length u \<ge> ?n+1"
by(auto simp only: conc_def length_append)
hence "w \<notin> A^^(?n+1)@@X" by auto
hence "w : star A @@ B" using \<open>w : X\<close> using arden_helper[OF eq, where n="?n"]
by (auto simp add: star_def conc_UNION_distrib)
} moreover
{ fix w assume "w : star A @@ B"
hence "EX n. w : A^^n @@ B" by(auto simp: conc_def star_def)
hence "w : X" using arden_helper[OF eq] by blast
} ultimately show "X = star A @@ B" by blast
next
assume eq: "X = star A @@ B"
have "star A = A @@ star A \<union> {[]}"
by (rule star_unfold_left)
then have "star A @@ B = (A @@ star A \<union> {[]}) @@ B"
by metis
also have "\<dots> = (A @@ star A) @@ B \<union> B"
unfolding conc_Un_distrib by simp
also have "\<dots> = A @@ (star A @@ B) \<union> B"
by (simp only: conc_assoc)
finally show "X = A @@ X \<union> B"
using eq by blast
qed
lemma reversed_arden_helper:
assumes eq: "X = X @@ A \<union> B"
shows "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
proof (induct n)
case 0
show "X = X @@ (A ^^ Suc 0) \<union> (\<Union>m\<le>0. B @@ (A ^^ m))"
using eq by simp
next
case (Suc n)
have ih: "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" by fact
also have "\<dots> = (X @@ A \<union> B) @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" using eq by simp
also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (B @@ (A ^^ Suc n)) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
by (simp add: conc_Un_distrib conc_assoc)
also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))"
by (auto simp add: atMost_Suc)
finally show "X = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))" .
qed
theorem reversed_Arden:
assumes nemp: "[] \<notin> A"
shows "X = X @@ A \<union> B \<longleftrightarrow> X = B @@ star A"
proof
assume eq: "X = X @@ A \<union> B"
{ fix w assume "w : X"
let ?n = "size w"
from \<open>[] \<notin> A\<close> have "ALL u : A. length u \<ge> 1"
by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
by (metis length_lang_pow_lb nat_mult_1)
hence "ALL u : X @@ A^^(?n+1). length u \<ge> ?n+1"
by(auto simp only: conc_def length_append)
hence "w \<notin> X @@ A^^(?n+1)" by auto
hence "w : B @@ star A" using \<open>w : X\<close> using reversed_arden_helper[OF eq, where n="?n"]
by (auto simp add: star_def conc_UNION_distrib)
} moreover
{ fix w assume "w : B @@ star A"
hence "EX n. w : B @@ A^^n" by (auto simp: conc_def star_def)
hence "w : X" using reversed_arden_helper[OF eq] by blast
} ultimately show "X = B @@ star A" by blast
next
assume eq: "X = B @@ star A"
have "star A = {[]} \<union> star A @@ A"
unfolding conc_star_comm[symmetric]
by(metis Un_commute star_unfold_left)
then have "B @@ star A = B @@ ({[]} \<union> star A @@ A)"
by metis
also have "\<dots> = B \<union> B @@ (star A @@ A)"
unfolding conc_Un_distrib by simp
also have "\<dots> = B \<union> (B @@ star A) @@ A"
by (simp only: conc_assoc)
finally show "X = X @@ A \<union> B"
using eq by blast
qed
end